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Abstract

This article presents a generalized method for multi-dimensional optimal stopping, tailored

to problems that arise in electricity markets, when addressing decisions under uncertainty

with Real Options Analysis. Electricity markets are highly transparent with supply and

demand volumes available as high-resolution time series and with a fair transparency on

production costs. Both supply and demand show strong periodic behavior in the form of, e.g.,

standard load profiles or similar, making mean-reverting stochastic processes with periodic

time-dependent trend functions a good choice for modeling the dynamics. However, this class

of problems does not fit well to established methods for optimal stopping – e.g., reducing

dimensions or making use of properties of the reward function – and therefore, we propose an

alternative, generalized approach. We derive a general form of the Hamilton-Jacobi-Bellman

equation instead and propose a numerical solution via the Bellman-Howard operator iteration.

We demonstrate the functionality of this approach by setting up an example which represents

the retrofit of an electrolyzer to an offshore wind farm. We solve the optimal stopping problem

numerically and show that the method supports decision making well on such an irreversible

investment under uncertainty.

Keywords: Real Options, Stochastic Mean-Reverting Processes with Time-Dependent Trend,

Optimal Stopping, Decision Making under Uncertainty

JEL Classification Nos.: C61, D81, G11

1 Introduction

Real Options Analysis is well established for decision making concerning irreversible investments

under uncertainty. Either via tree-based models (cf. [15]), contingent claims analysis or dynamic

programming, various option values like the value to wait can be determined and thus optimal

decisions found. Among the solution methods available, dynamic programming is the most generic
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one; however, it comes with considerable mathematical complexity. The main approach in dynamic

programming therefore is to first reduce any problem to only one dimension without explicit time

dependency, for which solution methods exist (e.g., [8] for general Itô processes), or to leverage that

an underlying stochastic process is one-dimensional, before mathematical solutions are determined.

Multidimensional stopping problems have been researched as well, with results for, e.g., reward

functions given as positive definite quadratic forms (Ref. [6]) or for monotone reward functions,

using a Doob-Meyer decomposition approach (Ref. [7]).

However, when researching the energy sector and electricity markets in particular, in many

cases it is difficult to reduce the dimensions or to postulate certain properties of the reward

function. At the same time, one outstanding characteristics is that supply and demand volumes

are very transparent – high-resolution time series are typically available – and are dominated

by periodic behavior. Such dynamics can be modeled well with mean-reverting processes with

explicit time dependency, so-called one-factor Hull-White models (Ref. [20]), or, to avoid negative

values for electricity demand and supply, with Inverse-Gamma dynamics (Refs. [27] and [28]).

Further, also production costs are fairly transparent. This allows to model the pricing dynamics

with a rather simple diffusion process1 which is using supply and demand (cf. [2]) compared to

mathematically more complex jump-diffusion models as these advocated in, e.g., [3] or [18].

Making use of these specific properties, we suggest an alternative approach to multi-dimensional

optimal stopping. We derive a general Hamilton-Jacobi-Bellman equation that is applicable to

a system of mean-reverting stochastic differential equations with periodic trend functions. This

system captures the pricing dynamics well, it allows to add intermittent power sources and it

enables us to model potential stochastic dependencies among the underlying Brownian motions.

It allows long-term price forecasts by making use of the existing long-term forecasts of supply and

demand which are available from research related to the ongoing energy transition (see, e.g., the

meta study [37], or the detailed study [32]). By doing so, it allows to research optimal stopping

in the energy market under realistic assumptions. Further it contributes to quantifying the so-

called merit order effect in the energy market, i.e., the expected electricity price reduction in the

day-ahead market, due to a rise in renewable power generation (see [38] for a literature overview).

Hence, this setup expands the theory of Real Options to a relevant class of research problems in

today’s electricity markets.

We complete this approach by adding the solution method of a Bellman-Howard operator

iteration and finally suggest an implementation architecture. We demonstrate its usefulness by

setting up the example of an investment decision with relevance for energy policy making – the

retrofit of a subsidy-free offshore wind farm with an electrolyzer, i.e., one particular type of

equipment that is needed in addition to renewable power generation equipment for a successful

energy transition – and show that for this kind of dynamics, the option value to wait (i.e., to defer

the investment) can be determined by setting up and solving the corresponding optimal stopping

problem numerically.

This article is structured as follows. In section 2, we derive the generalized stopping problem.

In section 3, we introduce the illustrative example. Some sources and basic calculation results for

1In the mathematical literature, the term diffusion process is frequently used for stochastic processes driven by a
Brownian motion, since in applications outside economics, these processes can be used to describe, e.g., the diffusion
of heat in a material or similar phenomena. Correspondingly, jump-diffusion processes denote a combination of a
Poisson process with a Brownian motion.
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this section we have moved to the appendix. In section 4, we determine numerical solutions before

we discuss the results in section 5, draw conclusions on the practical applicability and finally close

with an outlook for further research.

2 The generalized Methodology

In this section, we introduce the dynamics of stochastic, positive mean-reverting processes with

periodic, time-dependent trend functions for supply and demand, for the production volume of a

hypothetical asset and introduce the merit order curve for the electricity price. Based on this setup

of price and volume over time, we derive the Hamilton-Jacobi-Bellman equation, restricted to the

subset of discounted value functions and end this section with proposing a software architecture

for implementation, e.g., in C++.

2.1 The underlying dynamics

We formulate our electricity price model in the style of [2] and expand it in several ways. Already

[2] suggests time-dependent trend functions: let Xt = (X
(1)
t , X

(2)
t ) be a two-dimensional stochastic

process with X
(1)
t representing the renewable supply and X

(2)
t representing the demand. Then,

the one-factor Hull-White model of the form

dXt = Θ(µ(t) −Xt)dt + σdWt , (1)

with trend functions restricted to linear combinations of sin and cos including intercept, captures

the dynamics well. Here, dWt is the increment of a two-dimensional Brownian motion and σ,Θ ∈
R2×2 are constant, diagonal matrices, whose components can be identified with empirical data.

There exists an analytical solution to eq. (1) and it can easily be shown that under the restriction

imposed on the trend functions, the expected value approximates µ(t) for t → ∞, which is the

desired behavior of the dynamics. However, the paths of the solutions to this model can have

negative values. A further expansion to an Inverse Gamma model

dXt = Θ(µ(t) −Xt)dt + σ̃(t)XtdWt (2)

avoids this while at the same time, it preserves the desired dynamical properties. Ref [28] shows,

by approximating eq. (2) with a discrete ARCH scheme, that the paths remain positive as long

as µ(t) and Θ are positive (ibid, section 2). Ref. [27] shows that for a constant µ, the expectation

shows the desired property E → µ (ibid, p.22). Further, from both references it can be derived

that Θ and µ stay the same as for the Hull-White dynamics, while in each dimension, the volatility

coefficient σ is

σi(t) = 2 Θi,i

√
σ2
X(i)

µ(i)(t)2 + 2Θi,i σ2
X(i)

, i = 1, 2. (3)

The coefficients of eq. (2) are globally Lipschitz and growth limited2, so finally with [22], p.289,

we can conclude that E||Xt||2 < ∞ and from that, we derive that also for a time-dependent trend,

2This property is required later for optimal stopping, too – thus, another well-known positive short-rate model,
the ECIR model, cannot be used because it is not globally Lipschitz.
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we have E → µ(t), as long as µ(t) is restricted as stated above.

Having an inelastic demand, the electricity price is determined by a supply function F that

on the one hand incorporates random renewable power generation into the merit order curve

representing the supply side and on the other hand takes the random demand as an input. When

studying a current merit order curve in e.g., the bidding zone DE LU3 of the day-ahead market

for electricity in Germany and Luxembourg, as given, e.g., in [19], we show that the function

F (x1, x2) = c2 arctan

(
x2

c1 + c4x1

)
+ c3

(
1 + α

x2 − x1

c1

)1/α

(4)

can be used. The variable x1 represents the random part of the power supply, the variable x2

represents the random demand for power. A full pricing model for the electricity price SE
t is

dXt = Θ(µ(t) −Xt)dt + σ(t,Xt)dWt

SE
t = Fα,ci(Xt) . (5)

Because of the fundamental-stochastic approach of this model (taxonomy cf. [36]), the future

energy system can be estimated, a step which is impossible if relying on statistics of current

empirical data alone. Another advantage is that it is mathematically much less complex than

other models such as these advocated in, e.g., [3] or [18]. The parameters ci are used to calibrate

the supply function to a current merit order curve. Making the parameters ci time-dependent, the

model finally can handle an extrapolation from today to an expected future merit order curve.

The dynamics for the price can be found by expanding F and using the differential equation

for Xt:

dSE
t =

∂F

∂t
(t,Xt) dt + ∇F (t,Xt) dXt +

1

2
Σ2

i,j=1

∂2F

∂xi∂xj
(t,Xt) d[X(i), X(j)]t

=

(
∂F

∂t
+

1

2

(
∂2F

∂x2
1

σ2
X(1)X

(1)
t +

∂2F

∂x2
2

σ2
X(2)X

(2)
t

)
+ ∇F Θ (µ(t) −Xt)

)
dt + ∇Fσ dWt

= S1(t,Xt) dt + S2(t,Xt) dWt a.s.

with differentiable functions S1 : R2 × [0,∞) → R and S2 : R2 × [0,∞) → R2 for abbreviation.

This expansion shows that the volatility of the electricity price is ∥∇Fσ∥, i.e., it is driven by the

slope of the merit order curve, the volatility of renewable electricity supply and electricity demand,

and its trend functions4.

We complete the underlying dynamics by adding the electricity production volume of an asset

to be analyzed in the form of another Inverse Gamma mean-reverting stochastic process of the

form

dQt = ζ (κ(t) −Qt) dt + σQ(t, Qt) dWt , (6)

which in practical problems can be used either for modeling the climatic drivers of renewable

power production (wind speed, solar radiation) or for the power itself. In our example later on, we

3A bidding zone is the largest geographical area within which market participants are able to exchange energy
without capacity allocation [29]. The bidding zone DE LU (EIC Code 10Y1001A1001A82H) has been introduced
at the beginning of 2019 and includes the two countries Germany and Luxembourg [12].

4Note that ∇FσdWt = ∥∇Fσ∥ dW̃t for a one-dimensional Brownian motion dW̃t.
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derive the power rate Yt from wind speed data with a so-called power curve P , which is a property

of the wind turbines used, i.e., Yt = P (Qt):

dYt(Qt) =
∂P

∂x
(Qt) dQt +

1

2

∂2P

∂x2
(Qt)σ

2
Qdt

=

(
∂P

∂x
(Qt)ζ (κ(t) −Qt) +

σ2
Q

2

∂2P

∂x2
(Qt)

)
dt + σQ

∂P

∂x
(Qt) dWt

=Y1(t, Qt) dt + Y2(t, Qt) dWt a.s.

with differentiable functions Y1, Y2 : R× [0,∞) → R.

The explicit time dependency needs to be normalized, i.e., treated as a third space dimension.

For this, we define the stochastic process Zt = t with its obvious differential equation dZt = dt.

The complete system finally reads

dΓt = B(Γt)dt + Λ(Γt)dWt ,

with Γt = (SE
t , Yt, Zt), B ∈ R3, Λ ∈ R3×2 and Wt being a two-dimensional Brownian motion.

Note that the two dimensions of Wt are not necessarily stochastically independent from each other.

In real-world problems, we may encounter a cross-correlation between the electricity price and the

electricity production, see, e.g., the recent research in Ref. [23] or see our example in subsection

3.3. This can be implemented in the model by using suitably correlated series of random numbers

in the numerical solution (see, e.g., [27], p.4).

2.2 The optimal stopping problem

Next, we formulate the optimal stopping problem adapted to this dynamics. For this, we follow

the rather general theory presented in [26] on a heuristical level, with occasional cross-references

to [9]. Proofs of the respective statements can be found in [26].

Let v(u)(x, t) be a momentary value at a time t and at a point x ∈ R2, controlled by a control

process ut. Then, for one chosen strategy ut, the value of one individual complete trajectory along

Γt, over the complete time horizon, is

ν(u)(Γ0) =

∫ ∞

0

v(ut)(Γt) dt ,

and the project value is the mean of the momentary value function along all trajectories Γt:

V (u)(Γ0) = E
[
ν(u)(Γ0)

]
= E

[∫ ∞

0

v(us)(Γs)ds

]
.

The general optimization problem is to find an optimal control strategy ut such that the project

value V (u)(Γ0) is maximized5:

V (Γ0) = sup
u

{
V (u)(Γ0)

}
= sup

u

{
E

[∫ ∞

0

v(us)(Γs)ds

]}
. (7)

5Please note that while every project value starts at 0 at the beginning for every starting point Γ0, the trajectories
of Γt depend on its starting point and, therefore, V (u) and V depend on the starting point, too.
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We restrict the control process ut to stopping, i.e., to a problem of the form

V (Γ0) = sup
t∗

{
E

[∫ t∗

0

v1(Γs)ds + v2(Γt∗)

]}
, (8)

in which the problem requires to find the stopping time t∗. The momentary value v1 provides a

potential pay-off before t∗, the function v2 provides the value after stopping. Further, following

[9], we require any payoff function to be of the form g(ut)(t,Γt)e
−ρt with a bounded function g

and a discounting factor with discount rate ρ. Following [26], the value function is of the same

form, i.e. exp(−ρt)V (Γt), and thus

∂(e−ρtV )

∂t

∣∣∣∣
t=0

= −ρV (Γ0) + e−ρt ∂V

∂t

∣∣∣∣
t=0

= −ρV (Γ0) +
∂V

∂t
(Γ0) (9)

as well as
∂(e−ρtV )

∂x

∣∣∣∣
t=0

=
∂V

∂x
(Γ0) and

∂(e−ρtV )

∂y

∣∣∣∣
t=0

=
∂V

∂y
(Γ0) . (10)

Going back to eq. (8), this deterministic stopping can be approximated by randomized stopping,

which finally leads to Bellman’s differential equation. We use the control process ut as an intensity

rate that switches between v1 and v2. At first, we set

U(t) = exp

(
−
∫ t

0

us ds

)
.

We define ut such that U is the probability that Γt does not stop until time t. Then, ut∆t+o(∆t)

is the probability that stopping occurs in [t, t+∆t] and, finally, ut U(t) ∆t+o(∆t) is the probability

that stopping does in fact occur in the interval [t, t + ∆t] and not earlier.

The value of an individual trajectory that is controlled in this way is the sum of its value gained

up to any time t if stopped at that time, probability-weighted over all t, plus the value gained if

not stopped at all (which can have a probability > 0), weighted with its respective probability:

ν(u)(Γ0) =

∫ ∞

0

νt(Γ0)utU(t) dt +

∫ ∞

0

v1(Γt) dt exp

(
−
∫ ∞

0

usds

)

(see Ref. [26], p.10). We note that dU/dt = −utU(t) and use the abbreviation W (t) =
∫ t

0
v1(Γs)e

−ρsds

for the integral term in νt. Replacing νt gives

ν(u)(Γ0) =

∫ ∞

0

(W (t) + v2(Γt))utU(t) dt +

∫ ∞

0

W ′(t) dt exp

(∫ ∞

0

usds

)
=

∫ ∞

0

v2(Γt)utU(t) dt−
∫ ∞

0

W (t)U ′(t) dt +

∫ ∞

0

W ′(t) dt lim
t→∞

U(t) .

Using the fact that W (0) = 0, we have
∫∞
0

W ′(t)dt = limt→∞ W (t). Assuming that all limits exist

we can formulate

ν(u)(Γ0) =

∫ ∞

0

v2(Γt)utU(t)dt−
∫ ∞

0

W (t)U ′(t)dt + lim
t→∞

(W (t)U(t)) .
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We observe that U(0) = 1 and hence, we can further write W (t)U(t) =
∫ t

0
(W (s)U(s))

′
ds and

then integrate by parts:

ν(u)(X0) =

∫ ∞

0

v2(Γt)utU(t)dt−
∫ ∞

0

W (t)U ′(t)dt +

∫ ∞

0

(W (t)U(t))
′
dt

=

∫ ∞

0

v2(Γt)utU(t)dt +

∫ ∞

0

W ′(t)U(t)dt

=

∫ ∞

0

v2(Γt)utU(t) + v1(Γt)U(t)dt .

This, combined with eq. (7), leads to the project value in the case of randomized stopping:

V (Γ0) = sup
u

{
E

[∫ ∞

0

v1(Γs)U(s) + v2(Γs)usU(s)ds

]}
. (11)

In this sense, eq. (8) turns into the limit over a sequence of more and more sharpened intensities

u in eq. (11). We restrict the problem further. For establishing the option value to wait, during

waiting there is no pay-off but only a potential capital gain, thus v1 ≡ 0. Applying Bellman’s

principle, we see that

V (Γ0) = sup
u

{
E

[∫ t

0

v2(Γs)usU(s)ds

]
+ E [V (Γt)]

}
.

Expanding V (Γt) by Itô’s lemma (in integral form) yields6:

0 = sup
u

{
E

[∫ t

0

v2(Γs)usU(s)ds

]
+ E

[∫ t

0

∇V B − ρV +
1

2

(
Λ2
11

∂2V

∂x2
+ Λ2

22

∂2V

∂y2

)
ds

]}
. (12)

Here, we used that V = 0 at t = 0, and we used equations (9) and (10). The control process ut is

unbounded, therefore, in eq. (12), in order to come to a suitable differential equation, a further

coordinate transformation is required. Let m = (1 + ut)
−1 and observe that for an otherwise

unbounded intensity rate ut, the functions m and m · u are positive and bounded. With our

restrictions imposed on the trend functions, with the merit order curve F and (if used) the power

curve P , we ensure that the coefficients of the differential equations are bounded as well and so

are
√
mΛij and mB. Note further that

Ψt =

∫ t

0

(1 + us) ds < ∞ for all t < ∞ and Ψ∞ = ∞ .

The new randomized time τt = Ψ−1 is defined on [0,∞) and τ∞ = ∞. Replacing t = τs and

Hs = Γτs yields∫ ∞

0

U(t)(v2(Γt)ut)dt =

∫ ∞

0

exp

(
−
∫ t

0

usds

)
(v2(Γt)ut) dt

=

∫ ∞

0

exp

(
−
∫ s

0

uy

1 + uy
dy

)(
us

1 + us
v2(Hs)

)
ds ,

6We denote ∇ = (∂x, ∂y , ∂z), i.e., we have the time derivative included as the third space dimension.
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with a process Hs that solves

Hs = Γ0 +

∫ s

0

B(Hy)

1 + uy
dy +

∫ s

0

(√
Λij

1 + uy

)
ij

dξy .

Here, ξ is a two-dimensional Wiener process which equals

ξτ =

∫ τs

0

√
1 + us dWs .

With this time shift it can be shown that

0 = sup
u0≥0

1

1 + u0

{
v2(Γ0)u0 − u0V + ∇V B − ρV +

1

2

(
Λ2
11

∂2V

∂x2
+ Λ2

22

∂2V

∂y2

)}
.

Furthermore, with ε = 1
1+ut

we can model the behavior of the intensity rate u in the interval [0, 1]

and write

0 = sup
ε∈[0,1]

{
ε

(
∇V B − ρV +

1

2

(
Λ2
11

∂2V

∂x2
+ Λ2

22

∂2V

∂y2

))
+ (1 − ε)(v2 − V )

}
.

This equation is linear in ε. For the interior ε ∈ (0, 1), there exists only the trivial solution

V ≡ v2 ≡ 0 which can be disregarded. On the edges, ε = 0 is an interesting special case. Here we

have v2 = V , which means that the value can come only from the investment if there is any value

at all, implying either to immediately invest or never invest, i.e., this is equivalent to the classical

criterion NPV > 0. On the other end, at ε = 1, it is obvious that we cannot have V < v2.

Otherwise, because of continuity, for a small shift 1 − ε, we would contradict the supremum.

Instead, we find two conditions (cf. [26]):

0 ≥ ∇V B − ρV +
1

2

(
Λ2
11

∂2V

∂x2
+ Λ2

22

∂2V

∂y2

)
for V ≥ v2 (13)

0 = ∇V B − ρV +
1

2

(
Λ2
11

∂2V

∂x2
+ Λ2

22

∂2V

∂y2

)
for V > v2 . (14)

Eqs. (13) and (14) finally can be combined into

v2 − V +

[
∇V B + (1 − ρ)V +

1

2

(
Λ2
11

∂2V

∂x2
+ Λ2

22

∂2V

∂y2

)
− v2

]
+

= 0 , (15)

which, in its general form as given in [26] p.13, is called Bellman’s equation for optimal stopping

of a controlled process. Here, eq. (15) is already adapted to our problem with its dimensions, with

the specific components of the underlying differential equations, their normalized time dependency

and with restricting V to a family of functions with discounting. The brackets [·]+ denote the

positive part of the interior and are calculated as [x]+ = 1/2(|x| − x).

2.3 Numerical solutions and implementation

As numerical solution method, we propose the Bellman-Howard method which iterates the op-

erator derived from the functional equation (15). Here, we assume that v2 > 0 in some subset
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(otherwise, the investment can be dropped). Then, let us define the operator

Φ(V ) := v2(Γ0) +

[
B1(Γ0)

∂V

∂x
(Γ0) + B2(Γ0)

∂V

∂y
(Γ0) +

∂V

∂t
(Γ0) + (1 − ρ)V (Γ0)

+
1

2

(
Λ2
11(Γ0)

∂2V

∂x2
(Γ0) + Λ2

22(Γ0)
∂2V

∂y2
(Γ0)

)
− v2(Γ0)

]
+

for all Γ0,

the stopping time t∗ as being the smallest time such that

V (SE
t , Yt, t) ≥ v2(SE

t , Yt, t) for 0 ≤ t ≤ t∗

(t∗ = 0 or t∗ = ∞ possible), and the continuation region

C = {Γ ∈ R2 × [t∗,∞) |V (Γ) ≥ v2(Γ)} .

Next, we define the set A as the closure of

R2 × [0,∞) ∩ {Y > 0} .

A allows negative prices but requires that the electricity production can be arbitrarily small

but necessarily positive, which is a sufficient approximation of the real operations of any power

generation asset to be analyzed. This set can be restricted further based on economic criteria,

i.e., upper limits on price, production and time. Furthermore, in our model, any such set fulfills

the necessary and sufficient criterion defined in [26], pp.203ff. This criterion requires that for all

x ∈ A, a number δ > 0 shall exist such that (ΛΛtrx)x ≥ δ. This holds true because ΛΛtr is

positive semi-definite and positive definite when projected into the subspace R2. Then the value

of waiting V is given by

lim
n→∞

Φn(V (Γ)) = V (Γ) for Γ ∈ A ∩ C ,

which can be approximated by iterating the operator Φ.

The set C ∩A can be empty, which means that immediate investment (v2 ≥ 0) or dropping the

project (v2 < 0) is preferable over waiting. In the set A ∩ C, V approximates the solution of the

optimization problem. Furthermore, for all Γ for which V (Γ) = v2(Γ), we have the smooth-pasting

condition ∇V = ∇v2 ensured as well (see Ref. [26]), e.g., on the boundary ∂(A ∩ C).

Assuming that the process Qt represents a wind resource on the site of a wind farm and Yt

the production as a function of Qt, the class diagram as given in figure 1 represents a possible

architecture for an object-oriented implementation with, e.g., C++. For integrating the stochastic

differential equations, Runge-Kutta-type schemes as given in Ref. [24] or [33] with a convergence

rate of O(h) for step size h → 0 are a suitable choice.

The performance requirements on any actual implementation are considerable. Given the

periodic nature of the trend functions with cycle times as low as six hours in one case (see table

A.2), as well as the high volatility in supply and demand, a resolution in the time dimension of 30

min per step is required for integrating the stochastic differential equations. This resolution already

assumes an integration scheme of a convergence order O(h), provided by, e.g., Runge-Kutta type

9
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Basic

ElecPrice

Profit

Production
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stochastic process

Stochastic process for
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project site

For profit function

Association („points to“)

Inheritance („is a“)

For trajectories

Electricity price model Electricity production

of wind farm

Profit calculation Option value calculation

For trajectories For trajectories

For SDE components

Figure 1: Proposed class diagram for implementation

schemes (see, e.g., [24], or [33]). We can demonstrate this requirement on resolution by comparing

the electricity production of a hypothetical wind farm that is using empirical climatic data at

first, and then comparing it against the production as a result of a wind speed forecast from eq.

(6). This makes in particular the calculation of the profit function v2 costly which requires to

integrate supply, demand and wind speed over the life time of the investment, in high resolution

and in a high number to calculate the average, for each point of time-to-invest. The subsequent

Bellman-Howard approximation requires high computing power as well.

3 Example: an electrolyzer retrofit to an offshore wind farm

In this section, we give an example of the class of problems that our generalized approach is

applicable to.

3.1 Electricity market model

The ENTSO-E transparency platform [10] provides downloads for total electricity consumption

as well as for the total production data and separately for intermittent production from wind and

solar, in 15 min values and for time zone CET/CEST. The data are normalized to hourly values

and time zone GMT, to match climatic data used later on for the electricity production of the

underlying wind farm. These time series, for the bidding zone DE LU, can be analyzed with R

(see [31], methods for time series analyses see Ref. [34]). Guided by spectral analysis, periodic

time-dependent trend functions are found via regression, reported in appendix A.1, equations

(A.1)-(A.5). The speed of reversion parameters are found with a numerical simulation, the mean

and standard deviation of supply, demand and wind speed can be measured in the empirical data

and, together with the speed of reversion parameters, lead to the volatility coefficients defined in

eq. (3).

A current merit order curve can be found in [1], see figure 2a. A future merit order curve

(figure 2b) can be estimated with the help of studies on the energy transition, such as in, e.g., [32].
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For an overview of such studies, see Ref. [37] and in this meta study, [32] represents an average
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Figure 2: Merit order curves

path to decarbonization. The data from [32] that we have used for estimating the future merit

order, as well as most of the future demand, are listed in appendix A.2.

Based on this, parameter estimates for the supply function (eq. (4)) can be found with a

numerical simulation. The parameters are reported in table 1, for the beginning and the end of a

hypothetical time horizon that runs from today to the expected end state of the energy transition

in Germany, i.e., to the year 2050, for which the policy target is carbon neutrality.

3.2 Parameters for the electrolyzer

In our example, we investigate the retrofit of an offshore wind farm with an electrolyzer. We assume

that the offshore wind farm operates without subsidies, thus enabling it to sell its production on the

day-ahead market for electricity. Let SH2 be the hydrogen price, η be the electrolyzer efficiency, I

the investment expenditure, C the variable costs of operation, and M the fixed costs of operation
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Table 1: Parameters for the merit order list approximation

Parameter Value at start Value at end

α 0.088 0.400

c1 2500 2500

c2 30.5 57.0

c3 0.00004 0.49150

c4 1.55 2.91

(i.e. without capital costs). Then,

πt =

{
Yt (SH2η − SE

t − C) for SE
t < SH2η − C

0 otherwise

is the gross profit rate. We regularize π with a convolution ([39], p.29) and use the same notation

for the gross profit rate as defined above and for its regularization. The momentary value of the

investment project is

vt = πt −M = π(Yt, S
H2 , SE

t (t,Xt)) −M(t) .

The project value for one trajectory of the process, starting at time t∗ and going up to time t, is

consequently represented as

νt,t∗(SE
t , Yt) =

∫ t

t∗
vse

−ρsds− I .

The remaining parameters for the example are estimated as follows (t∗ denotes the time to invest,

P is the power of the electrolyzer):

� Investment expenditure I = I(t∗, P ); Ref. [32] estimates I at 1344 AC/kW today and at 500

AC/kW in the year 2050 (p.108)

� Efficiency η = η(t∗) = 0.722 as of today, see Ref. [37], p.5 or η = 0.65 in the year 2020 and

η = 0.7 in the year 2050 (see Ref. [32], p.108)

� Other direct operating costs C = C(t∗, P ); Ref. [32] puts these at zero

� Other momentary operating and maintenance costs M = M(t, t∗, P ); estimated at 3% of

the investment expenditures in [32]

� Hydrogen selling price SH2 ; [32] estimates a range of 0.118 - 0.126 AC/kWh for hydrogen

imports, which drives the price for domestic hydrogen production as well (p.100f).

3.3 Wind farm electricity production

For completing the example, we define the electricity production by selecting one of the subsidy-

free offshore wind farms which is supposed to be commissioned soon in the German North Sea,

Borkum Riffgrund 3, comprising 83 machines with 11 MW rating each (see company homepage [30]

and planning approval notice [17]). For the electricity production of this wind farm, we estimate

the power curves of the wind turbines at first piece-wise, following [40] where a simple cubic model
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for the first part of the power curve is suggested and [21], which provides information on a suitable

rated wind speed:

P̃ (x) =



0.0074x3 for 0 ≤ x < 11.1

0.47x + 4.76 for 11.1 ≤ x < 13.3

11.0 for 13.3 ≤ x < 24.9

−27.5x + 693.0 for 24.9 ≤ x < 25.1

0 for x ≥ 25.1

(x in m/s, P̃ in MW), then and approximate it with a convolution P (x) = (P̃ ∗ Φδ)(x), here with

choosing the parameter value δ = 1.8, to ensure a suitable shape for P (see figure 3). The wind

Figure 3: Generic power curve

farm is located between 54.0◦ − 54.1◦N and 6.0◦ − 6.3◦E (see Ref. [17]) and wind speed data

can be accessed via the Copernicus Climate Change Service (C3S) Climate Data Store ([13]), in

hourly resolution and for time zone GMT. The hub height used at this wind farm can be found in

[17] and with this, a hub height correction in the wind speed is carried out (for measurements of

the wind shear for an offshore wind farm see Ref. [35], for calculations see, e.g., [5], eq. (4)). As

before, with R, the trend function κ(t) for eq. (6) can easily be calculated. As mentioned before,

it turns out that the wind farm electricity production is weekly cross-correlated to the renewable

power generation, a fact that we consider while generating the random numbers for the numerical

solution.

4 Numerical solution to the example

For the numerical calculations, we define the infinitesimal generator based on eq. (15) in difference

form L∆ = B1∆x+B2∆y +∆t+1/2(Λ11∆2
x+Λ22∆2

y). With this, we define the difference operator

for the option value Φ∆ and the sequence of option values Vn by

Φ∆(V ) = v2 + [LV + (1 − ρ)V − v2]+ , Vn+1 = Φ̃(Vn), with start functionV0 .
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The operator Φ∆ operates on the functions V for the total value and v2 for the expected profit

of the investment on the state space spanned by electricity price, production and time to invest

(SE , Y ) × [0,∞). For determining v2, for each point in the state space, values are found via

integrating the differential equations with the respective starting point, then averaging a number

of trajectories and then evaluating the profit function. For convergence of the operator iteration,

we use that Φ∆ is Lipschitz with a constant K > 0 and ensure K < 1 by coordinate transformation.

Further, in the bracket [·]+ above, one can see that for small LV , we must have (1− ρ)V − v2 > 0

to find non-trivial solutions. Therefore, the starting point of each iteration is chosen above and

close to v2
7. The usual stopping criterion for the iteration is the difference of adjacent elements

of the approximation, i.e., ∥|Vn+1 − Vn∥|L2 , sufficiently small. However, due to limitations in

resolution that we must observe on standard hardware, error propagation may lead to oscillation

(error handling and stability: e.g., [16]). Therefore, we add a second stopping criterion and stop

in the first local minimum, whatever comes first. Going through the state space from t = 0 to

(a) Numerical result (b) Regression

Figure 4: Surface that separates waiting from investing

t = 35 years, we find the surface at which v2 = V , i.e., the surface that separates the continuation

region (the region of waiting) from the stopping region (the region where the investment occurs

at its beginning and the electrolyzer operates early on). As figure 4 shows, this surface is placed

at very low points in time.

The numerical calculation for the stopping time tend to be imprecise because of the value

matching V (t∗) = v2(t∗) and smooth pasting condition V ′(t∗) = v′2(t∗) which are both fulfilled on

the separation surface. For the error propagation from V and v2 to t∗, we have, if t∗A denotes an

approximation for t∗:
V (t∗) − V (t∗A) − v2(t∗) + v2(t∗A)

V ′(t∗A) − v′2(t∗A)
≈ t∗ − t∗A . (16)

Both numerator and denominator on the left-hand side of eq. (16) are small. Given the challenge

in error propagation that this is causing, we consider the remaining curvature that is visible in

figure 4 as irrelevant. For practical considerations, figure 5 is more relevant as one can see how the

intrinsic option value declines with waiting, and how it does so in relation to the profit function.

7Iterating downwards monotonically in the case of convergence; note that the case of a diverging iteration
without any local minimum is possible, too. This would indicate an infinite option value and lead to the decision
not to invest at all.
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(a) Full time horizon (b) Zoomed in

Figure 5: Profit as function of time to invest and option value to defer

5 Results, conclusions and outlook

The proposed generalized approach to optimal stopping makes use of the unique properties of the

electricity market with its fully transparent time series for supply and demand and its quite good

transparency on production costs. With its specific choice of stochastic differential equations, it

captures the periodic behavior well, incorporates potential cross-correlations and thus, allows to

calculate the option value to wait on a realistic basis, for a wide range of problems related to this

market.

With our example, we can demonstrate the feasibility of the method. Firstly, we can provide a

long-term forecast which is a pre-requisite for estimating effects in the ongoing energy transition

with an end-to-end perspective. Secondly, we can show that once renewable power generation

assets are exposed to fluctuating day-ahead markets, it becomes attractive for the private sector

to invest in auxiliary technologies like electrolyzers without long waiting times – a step urgently

required for a successful energy transition and thus important for policy making. The remaining

rather small value of the option to defer may be overcome with, e.g., regulatory benefits for first

movers or similar considerations.

Our approach leads to high numerical complexity. The periodic behavior shows cycle times as

small as six hours per cycle and, therefore, it requires a high resolution in the time dimension.

This, in combination with the long time horizons that are typical for assets in the energy market, in

our example 35 years, requires a focus on performance in the numerical implementation. With the

implementation we propose, the market forecast and the expected profit as a function of time to

invest can be calculated with sufficient precision and acceptable calculation time. For the optimal

stopping, with restricted resolution, this process is possible on standard hardware as well.

With that in mind, the main future research is to apply the method to further case studies

with implications on energy policy, to e.g., other scenarios with a different mix of renewable power

generation technologies, different storage technologies and subsequently with an alternative price

development, or to other applications like investment in batteries etc. Ultimately, the goal is to

support drafting new regulation that incentivize the private sector to take the next steps in the

energy transition.
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[7] Sören Christensen and Albrecht Irle. The monotone case approach for the solution of certain
multidimensional optimal stopping problems. Stochastic Processes and their Applications,
130(4):1972–1993, 2020.

[8] Savas Dayanik and Ioannis Karatzas. On the optimal stopping problem for one-dimensional
diffusions. Stochastic Processes and their Applications, 107(2):173–212, 2003.

[9] A.K. Dixit and R.S. Pindyck. Investment Under Uncertainty. Princeton University Press,
1994.

[10] ENTSO-E. Actual generation by production type, for Bidding Zone Ger-
many BZN DE-LU. https://transparency.entsoe.eu/generation/r2/

actualGenerationPerProductionType/show, 2022. (Accessed on October 2, 2022).

[11] ENTSO-E. Installed Capacity per Production Type, for Bidding Zone Ger-
many BZN DE-LU. https://transparency.entsoe.eu/generation/r2/

installedGenerationCapacityAggregation/show, 2023. (Accessed on April 9, 2023).

[12] ENTSO-E Transparency Platform. EIC Approved Codes. https://www.entsoe.eu/data/

energy-identification-codes-eic/eic-approved-codes/, 2022. (Accessed on October
11, 2022).

[13] Hersbach et al. ERA5 hourly data on single levels from 1959 to present.
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-

levels?tab=form, 2018. (Accessed on August 12, 2022).

[14] Gebeyehu M. Fetene, Sigal Kaplan, Stefan L. Mabit, Anders F. Jensen, and Carlo G. Prato.
Harnessing big data for estimating the energy consumption and driving range of electric
vehicles. Transportation Research Part D: Transport and Environment, 54:1–11, 2017.

[15] Stefan Franzen and Reinhard Madlener. Optimal expansion of a hydrogen storage system for
wind power (H2-WESS): A real options analysis. Energy Procedia, 105:3816–3823, 2017. 8th
International Conference on Applied Energy, ICAE2016, 8-11 October 2016, Beijing, China.

[16] R.W. Freund and R.W. Hoppe. Stoer/Bulirsch: Numerische Mathematik 1. Springer-
Lehrbuch. Springer Berlin Heidelberg, 2007.

16



[17] Bundesamt für Seeschifffahrt und Hydrographie. Planfeststellungsbeschluss. https:

//www.bsh.de/DE/THEMEN/Offshore/_Anlagen/Downloads/Genehmigungsbescheid/

Windparks/PFB_Borkum_Riffgrund_3.pdf?__blob=publicationFile, 2021. (Accessed on
August 12, 2022).
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A Appendix

A.1 Electricity market model

A.1.1 Supply trend functions today

Based on a spectral analysis of the electricity production data in bidding zone DE LU, year 2019,

we find the following regressions in the data from [10]. For electricity production from wind power:

µ
(1)
1 (t) = 14185.8 + 5721.8 cos

(
2πt

8760

)
+ 1313.8 sin

(
2πt

8760

)
. (A.1)

For production from solar power, the complete regression is easiest constructed as the product of

daily and annual cycle: µ
(1)
2 (t) = µ

(1)
2,A · µ(1)

2,D, with the annual trend

µ
(1)
2,A(t) = 1 + 0.9 cos

(
2πt

8760
+ 3.3

)
(A.2)

formulated as a factor to the daily trend, where the daily trend is given as

µ
(1)
2,D(t) = 4784.9 +

4∑
i=1

Ci cos

(
2πωit

8760

)
+ Di sin

(
2πωit

8760

)
. (A.3)

The frequencies and coefficients are reported in table A.1. With the product formulas for trigono-

metric functions, this trend function can be transformed into a linear combination of sin and cos,

as required in section 2.1.
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Table A.1: Parametrization of the daily pattern in solar production, year 2019

i
Frequency ωi

in cycles per year
Time per cycle

(h)
Coefficients

Ci Di

1 365 24 -7397.2 512.7

2 730 12 3123.6 -492.7

3 1095 8 -322.8 150.9

4 1460 6 -271.8 39.4

A.1.2 Demand trend functions today

The load profile for the total electricity demand can be found in two steps. First, an annual cycle

is determined and taken out of the data.

µ
(2)
1 (t) = 57198.7 + 3741.2 cos

(
2πt

8760

)
+ 675.4 sin

(
2πt

8760

)
(in MW). (A.4)

Second, the more complex weekly and daily pattern is found in the data for year 2019, restricted to

February 2019 (four weeks), with identifying the required frequencies first with spectral analysis.

The trend function is

µ
(2)
2 (t) = 1550.3 +

11∑
i=1

Ai cos

(
2πωi(t− 72)

672

)
+ Bi sin

(
2πωi(t− 72)

672

)
, (A.5)

the frequencies and the coefficients are reported in table A.2. With this construction, the holiday

Table A.2: Parametrization of weekly and daily periodic fit, February 2019

i
Frequency ωi,

in cycles per four weeks
Time per cycle

Coefficients

Ai Bi

1 4 1 week 2188.1 -5916.3

2 8 84 h 2834.2 2644.5

3 12 56 h -1309.5 -

4 16 42 h 1078.9 -

5 20 33 h 36 min -1295.8 1067.2

6 24 28 h -564.8 -1487.9

7 28 24 h -7379.7 -3653.9

8 32 21 h - 989.0

9 56 12 h -1603.0 -3932.9

10 60 11 h 12 min -427.0 592.2

11 112 6 h 685.1 651.9

period at the beginning and the end of each year, which is clearly visible in the empirical data, is

deliberately ignored, as this does not add any relevant information to the model but complicates

the regression considerably.
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A.2 Future system state

Ref. [37] gives an overview of the studies on energy transition in Germany with the common goal

of mitigating at least 95% of greenhouse gases until year 2050. The study [32] is among those and

represents an average path among all studies mentioned. The main statements from [32] for the

future system state in the year 2050, relevant to our example, are listed here.

With its estimated electricity production, reported in table A.3, the future consumption can

be estimated and with this, the future trend functions are established. With the help of estimated

Table A.3: Electricity production by type

Production type Year 2019 Year 2050

[TWh] [TWh]

Wind 124.6 671.9

Solar 42.0 192.7

Biomass 40.6 47.7

Run-of-river hydro 14.6 14.6

Other renewable 1.5 74.5

Other 314.1 -

Balance - 6.6

Total 537.3 1008.0

Sources:

Year 2019: [10]

Year 2050: [32], pp.24, 27, 30, 33; [10]

Run-of river hydro assumed to remain constant

future capacity (table A.4) and estimated future operating costs (table A.5), the future merit

order curve is constructed. The demand is based on the capacity and electricity volume quoted

Table A.4: Generation and storage capacity by type in year 2050

Capacity type Capacity
[GW] [%]

Onshore wind 221.0 44%
PV - greenfield 104.0 21%
PV - rooftop 63.0 13%
Fuel cells, gas turbines 43.0
Offshore wind 33.0
Pumped storage hydro 10.4
Biomass 8.8
Compressed air energy storage 5.0
Batteries 4.8
Run-of river hydro 4.0
Total 497.0
Source: [32], pp. 4, 25-28, 31-33, [11], [25]
Run-of river hydro assumed to remain constant

from [32], but the future profile requires additional considerations. Among other sectors, also

the building sector is expected to be electrified and, therefore, a much stronger seasonal profile

in electricity consumption with a higher consumption in winter can be expected. Therefore, the
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Table A.5: Operating costs in year 2050

Technology Operating costs

(AC/kWh)

PV - greenfield 0.010

Onshore wind 0.011

Run-of-river hydro 0.014

PV - rooftop 0.017

Offshore wind 0.025

Batteries (market value) 0.060

Pumped storage hydro 0.125

Compressed air 0.149

energy storage

Fuel cells and 0.258

Gas turbines

Biomass 0.438

Batteries (full costs) 4.130

Source: [32], pp. 28, 32, 103ff; [10], [11];

own calculations

amount of electricity required for heating is distributed in line with the profile of gas consumption

(Ref. [4]) today.

The same consideration is applied to the transportation sector. Here, e.g., Ref. [14] provides

information on the temperature dependency of battery-electric vehicles.
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