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Abstract

This paper analyzes a firm’s capacity expansion and reduction problem under uncertainty.
The firm expands (resp., contracts) the capacity if the output price is sufficiently large
(resp., low). Consequently, the firm has two types of operational flexibility. The firm faces
uncertainty about the output price and can not uniquely identify its distribution. The firm
treats the price dynamics as an approximation of its actual dynamics. Then, the firm decides
its managerial strategy under model uncertainty. To deal with the model uncertainty, we
employ the robust control approach. We reveal the effect of both sides’ operational flexibility
on the firm’s decision-making under model uncertainty.
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1 Introduction

Uncertainty in business environments makes the prospect of business activities difficult. The real
options approach provides a framework for strategic decision-making in business management
under uncertainty (Trigeorgis and Reuer, 2017). Many researches of the real options approach
treat uncertainty as risk in the context of Knight’s. However, the current business environment
is highly uncertain and analyses of management strategies under such uncertainty are required.

The analyses on real options approach under Knightian uncertainty has started to grow only
in the last 20 decades (Nishimura and Ozaki, 2007; Trojanowska and Kort, 2010; Wang, 2010;
Miao and Wang, 2011; Flor and Hesel, 2015; Viviani et al., 2018; Delaney, 2022; Luo and Tian,
2022). Nishimura and Ozaki (2007) investigate the irreversible investment under Knightian
uncertainty by adopting the continuous-time multiple-priors utility model developed by Chen
and Epstein (2002). The approach is called κ-ignorance approach. Many other researches
(Trojanowska and Kort, 2010; Wang, 2010; Viviani et al., 2018; Delaney, 2022) also employ
κ-ignorance approach to investigate the irreversible investment under Knightian uncertainty.
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Another approach to analyzing firms’ investment problems under Knightian uncertainty is
the robust control approach developed by Hansen, Sargent, and coauthors (Hansen and Sargent,
2001; Hansen et al., 2006). In the robust control approach, a decision-maker considers the refer-
ence model as an approximation of the true model due to the existence of Knightian uncertainty.
The decision-maker considers a set of approximation models by disturbing the reference model.
The disturbances depict the set of possible probability measures. Consequently, the term model
uncertainty is used in the robust control approach. A fictitious decision-maker is introduced
to deal with uncertainty in robust control approach. The fictitious decision-maker chooses the
worst possible alternative measure with considering the cost of taking the alternative measure.
Hansen and Sargent (2001) and Hansen et al. (2006) use the relative entropy to evaluate the
difference between the reference measure and the alternative measure. Then, a decision-making
problem is formulated as a two-player zero-sum game.

Hansen and Sargent (2001) and Hansen et al. (2006) investigate the utility maximization
problem under model uncertainty. Other applications of the robust control approach include the
analysis of environmental problems (Roseta-Palma and Xepapadeas, 2004; Athanassoglou and
Xepapadeas, 2012; Yoshioka and Tsujimura, 2022), financial problems (Uppal and Wang, 2003;
Ghaoui et al., 2003; Liu, 2010; Zawisza, 2015; Balter and Pelsser, 2020), and firms’ management
strategies (Flor and Hesel, 2015; Miao and Rivera, 2006; Imai and Tsujimura, 2022; Luo and
Tian, 2022; Zhao, 2022) under model uncertainty.

This paper analyzes a firm’s managerial decision-making under model uncertainty. The firm
considers changing its capacity in response to the output demand, i.e., the output price. The firm
expands the capacity if the demand is sufficiently large, while the firm reduces the capacity if
the demand is sufficiently low. In sum, the firm has operational flexibility regarding the capacity
size and has two managerial options: capacity expansion and reduction options. In this paper,
we consider the case in which the firm can either expand or reduce the capacity only once. In
making decisions, the firm faces uncertainty on the output price and can not uniquely identify
its distribution. The firm treats the price dynamics as an approximation of its true dynamics.
Then, the firm decides its capacity management strategy under model uncertainty. To deal with
the model uncertainty, we employ the robust control approach developed by Hansen, Sargent,
and their coauthors (Hansen and Sargent, 2001; Hansen et al., 2006) as mentioned above. Then,
the firm’s problem is a maxmin problem: the firm optimally chooses the timing of capacity
expansion/reduction to maximize the present value of net profit, while the fictitious decision-
maker optimally chooses the distortion of probability measure to minimize the present value of
profit with the cost of taking distortion. In this paper, we numerically investigate the firm’s
optimal capacity management strategy, which is characterized by two thresholds for capacity
expansion and reduction. Further, we examine the impact of uncertainty on both managerial
options values.

2 Firm’s Problem

Suppose that a firm produces an output Q in a competitive market. We assume that one unit
output is produced by per unit capacity. This means that the change in Q is equivalent to the
change in capacity. The firm changes the level of its capacity depending on the demand. The
inverse demand function, i.e., the output price P , is exogenously given by the assumption of a
competitive market. Then, the firm changes the level of capacity depending on the output price.
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We consider the case in which the firm has two managerial options: the option to expand
and to contract the capacity. The firm expands the capacity from Q0 to QH := Q0 +∆Q with
∆Q ∈ (0, Q0) when the output price is larger than or equal to pH , while the firm contracts the
capacity from QL := Q0 − ∆Q, when the output price is less than or equal to pL. Then, the
output Qt at time t ≥ 0 is given by:

Qt =


QH , Pt ≥ pH ,

Q0, pL < Pt < pH ,

QL, Pt ≤ pL.

(2.1)

Expanding the capacity by ∆Q costs qH∆Q, while reducing the capacity by ∆Q yields sales
gains of qL∆Q. Here, qH is the purchasing price of capacity and qL is the selling price of capacity
with qL < qH .

The firm’s operating profit π at time t is given by:

π(Pt, Qt) = (Pt − c)Qt, (2.2)

where Pt is the output price and c > 0 is the constant operating cost. The dynamics of the
output price Pt is governed by the following geometric Brownian motion:

dPt = µPtdt+ σPtdWt, P0 = p > 0, (2.3)

where µ, σ > 0 andWt is a standard Brownian motion on a filtered probability space (Ω,F ,P, {Ft}t≥0),
where Ft is generated by Wt. The firm’s manager feels the possibility of errors in identifying the
reference probabilities and treats (2.3) as an approximation. That is, the firm’s manager faces
model uncertainty. To express the model uncertainty, we introduce a set of equivalent proba-
bility measures, P, on (Ω,F). Then, the reference probability measure P replaced by another
equivalent probability measure Q ∈ P . We replace Wt in (2.3) by WQ

t +
∫ t
0 hsds, where ht is

progressively measurable and WQ
t is a Brownian motion under the measure Q. Then, equation

(2.3) is rewritten as:

dPt = (µ+ σht)Ptdt+ σPtdW
Q
t , P0 = p > 0. (2.4)

We use the relative entropy to measure the distance between two probability measures and
introduce the discounted relative entropy as in Hansen and Sargent (2001) and Hansen et al.
(2006):

R(Q) = r

∫ ∞

0
e−rt

(∫
log

(
dQ
dP

)
dQ

)
dt

= EQ

[∫ ∞

0
e−rth

2
t

2
dt

]
,

(2.5)

where r ∈ (0, 1) is the discount rate. Further, we set the instantaneous relative entropy constraint
for all t as in Vardas and Xepapadeas (2010):

Rt(Q) = EQ

[
h2t
2

]
≤ ζ2

2
, (2.6)

where ζ represents the acceptable degree of model misspecification.
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The firm’s problem is to maximize the expected net present value of profit under model
uncertainty. To this end, the firm chooses whether capacity expansion or reduction timing
over the set of timing T . Here, we employ the robust control approach to investigate the firm’s
decision-making under model uncertainty. A fictitious decision-maker chooses the worst possible
alternative measure to deal with the model uncertainty with considering the cost of taking the
alternative probability measure. The relative entropy represents the cost. Then, the firm’s
problem is formulated as:

V (p) = sup
τ∈T

inf
Q∈P

EQ

[∫ ∞

0
e−rtπ(Pt, Qt)dt+ θR(Q)− e−rτ

(
qH∆Q1{τ=τH} − qL∆Q1{τ=τL}

)]
,

(2.7)
where V is the value function of the firm’s problem and θ > 0 is the robustness parameter. τ is
the capacity expansion/reduction time given by:

τ := min{τH , τL}, (2.8)

where τH and τL represent capacity expansion and reduction time, respectively:

τH := inf{t ≥ 0;Pt ≥ pH} and τL := inf{t ≥ 0;Pt ≤ pL}. (2.9)

1S is the indicator function such that 1S = 1 if 1S is true and 1S = 0 otherwise. The second
term of the right-hand side, θR(Q), represents the cost of taking the alternative probability
measure.

We assume the expected present value of the operating profit π is finite so that the firm’s
problem is meaningful:

EQ

[∫ ∞

0
e−rtπ(Pt, Qt)dt

]
=

pQ0

r − (µ+ σh0)
− cQ0

r
< ∞. (2.10)

3 Variational Inequalities of the Firm’s Problem

The firm’s problem (2.7) is formulated as an optimal stopping problem. The optimal stopping
problem is solved via the variational inequalities (Bensoussan and Lions, 1982; Øksendal and
Reikvam, 1998).

The variational inequalities of the firm’s problem (2.7) is the followings:

max

{
inf
h

{
LV (p) + π(p,Q0) + θ

h2

2

}
, inf

h
{(GH(p)− qH∆Q)− V (p)},

inf
h
{(GL(p) + qL∆Q)− V (p)}

}
= 0,

(3.1)

where L is the infinitesimal operator:

1

2
σ2p2V ′′(p) + (µ+ σh)pV ′(p)− rV (p), (3.2)

and Gi (i = {0,H, L}) the value of operating profit with the output level Qi and the cost of
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taking the distortion:

Gi(Pt) := EQ

[∫ ∞

t
e−r(t−s)π(Ps;Qi)ds+ θR(Q)|Ft

]
= EQ

[∫ ∞

t
e−r(t−s)π(Ps;Qi)ds+ θ

∫ ∞

t
e−r(t−s)h

2
s

2
ds|Ft

]
=

PtQi

r − (µ+ σht)
− cQi

r
+ θ

h2t
2r

.

(3.3)

From the variational inqqualities (3.1), the capacity expansion region E and the capacity
reduction region R are respectively given by:

E :=

{
p; inf

h
{V (p) ≤ GH(p)− qH∆Q}

}
and R :=

{
p; inf

h
{V (p) ≤ GL(p) + qL∆Q}

}
. (3.4)

The continuation region C, where the firm does not expand/reduce the capacity, is given by:

C := {p;R++ \ E ∪ R} =

{
p; inf

h
{V (p) > GH(p)− qH∆Q} and inf

h
{V (p) > GL(p) + qL∆Q}

}
.

(3.5)
For p ∈ C, the variational inequalities (3.1) leads to

inf
h

{
LV (p) + π(p,Q0) + θ

h2

2

}
= 0. (3.6)

Equation (3.6) yields the the optimal distortion h∗ as:

h∗ = −σpV ′(p)

θ
. (3.7)

From (3.7), h∗ goes to 0 as θ → ∞. This means that the firm’s problem (2.7) goes to the
problem without model uncertainty. Then, the parameter θ represents the degree of concern for
model uncertainty. Replacing h by h∗ in (3.6), we obtain a general solution to (3.6):

V (p) = A1p
β1 +A2p

β2 +
pQ0

r − (µ+ σh∗)
− cQ0

r
+ θ

(h∗)2

r
, (3.8)

where A1, A2 > 0 are the constants to be determined and β1 > 1, β2 < 0 are the roots of the
particular equation:

1

2
σ2β(β − 1) + (µ+ σh)β − rβ = 0. (3.9)

We consider that the capacity expansion and reduction region are characterized by thresholds
as in (2.1). If the output price is higher (resp., lower) than or equal to pH (resp., pL), the firm
expands (resp., reduces) the capacity. Then, the continuation, expansion, and reduction regions
are rewritten as

C = {{p > pL} ∪ {p < pH}}, E = {p ≥ pH}, and R = {p ≤ pL}. (3.10)

If h∗ is calculated, four unknown parameters A1, A2, pH , and pL, are derived by the following
value-matching conditions and smooth-pasting conditions:

V (pH ;h∗) = GH(pH ;h∗H)− qH∆Q, (3.11)
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V (pL;h
∗) = GL(pL;h

∗
L) + qL∆Q, (3.12)

V ′(pH ;h∗) = G′
H(pH ;h∗H), (3.13)

V ′(pL;h
∗) = G′

L(pL;h
∗
L), (3.14)

where h∗i (i = {H,L}) is derived from the fictitious decision-maker’s problem when either of two
options is exercised:

inf
h
{GH(pH)− qH∆Q} or inf

h
{GL(pL) + qL∆Q}. (3.15)

From (3.3) and (3.15), h∗i is the real solution to the following cubic equation:

θσ2

r
h3 − 2θ(r − µ)

r
h2 +

θ(r − µ)2

r
h+ σpQi = 0. (3.16)

Notice also that when the output price is equal to the thresholds, Pt = pi, we have ht = h∗ = h∗i
(i = {H,L}).

4 Numerical Analysis

We will present the results of numerical analysis on the conference.

References

Athanassoglou, S. and Xepapadeas, A., 2012. Pollution control with uncertain stock dynamics:
when, and how, to be precautious, Journal of Environmental Economics and Management,
63(3), 304–320.

Balter, A. G. and Pelsser, A., 2020. Pricing and hedging in incomplete markets with model
uncertainty, European Journal of Operational Research, 282(3), 911–925.

Bensoussan, A. and Lions, J. L., 1982. Applications of variational inequalities in stochastic
control, North-Holland, Amsterdam.

Chen, Z. and Epstein, L., 2002. Ambiguity, risk, and asset returns in continuous time, Econo-
metrica, 70(4), 1403–1443.

Delaney, L., 2022. The impact of operational delay on irreversible investment under Knightian
uncertainty, Economics Letters, 215, 110494.

Flor, C. R. and Hesel, S., 2015. Uncertain dynamics, correlation effects, and robust investment
decisions, Journal of Economic Dynamics and Control, 51, 278–298.

Ghaoui, L. E., Oks, M., and Oustry, F., 2003. Worst-case value-at-risk and robust portfolio
optimization: A conic programming approach, Operations research, 51(4), 543–556.

Hansen, L. P. and Sargent, T. J., 2001. Robust control and model uncertainty, American Eco-
nomic Review, 91(2), 60–66.

6



Hansen, L. P., Sargent, T. J., Turmuhambetova, G. A., and Williams, N., 2006. Robust Control
and Model Misspecification, Journal of Economic Theory, 128(1), 45–90.

Imai, J. and Tsujimura M., 2022. Assessing Capital Investment Strategy with Convex Adjust-
ment Cost under Ambiguity, International Journal of Real Options and Strategy, 9, 11–39.

Liu, H., 2010. Robust consumption and portfolio choice for time varying investment opportuni-
ties, Annals of Finance, 6(4), 435–454.

Luo, P. and Tian, Y., 2022. Investment, payout, and cash management under risk and ambiguity,
Journal of Banking & Finance, 41, 106551.

Nishimura, K. G., and Ozaki. H., 2007. Irreversible Investment and Knightian Uncertainty,
Journal of Economic Theory, 136(1), 668–694.

Miao, J. and Rivera, A., 2016. Robust contracts in continuous time, Econometrica, 84(4), 1405–
1440.

Miao, J. and Wang, N., 2011. Risk, uncertainty, and option exercise, Journal of Economic
Dynamics and Control, 35(4), 442–461.

Øksendal, B. and Reikvam, K., 1998. Viscosity solutions of optimal stopping problems, Stochas-
tics and Stochastic Reports, 62(3-4), 285–301.

Roseta-Palma, C. and Xepapadeas,A., 2004. Robust Control in Water Management, Journal of
Risk and Uncertainty, 29(1), 21–34.

Trigeorgis, L. and Reuer, J. J., 2017. Real options theory in strategic management, Strategic
management journal, 38(1), 42–63.

Uppal, R. and Wang, T., 2003. Model misspecification and underdiversification, The Journal of
Finance, 58(6), 2465–2486.

Vardas, G. and Xepapadeas, A., 2010. Model uncertainty, ambiguity and the precautionary
principle: implications for biodiversity management, Environmental and Resource Economics,
45(3), 379–404.

Zawisza, D., 2015. Robust consumption-investment problem on infinite horizon, Applied Math-
ematics & Optimization, 72(3), 469–491.

Zhao, S., 2022. Robust contracting and corporate-termism, Economics Letters, 213, 110344.

Trojanowska, M., and Kort, P. M., 2010. The Worst Case for Real Options. Journal of Opti-
mization Theory and Applications, 146(3), 709–734.

Viviani, J.-L., Lai, A.-N., and Louhichi, W., 2018. The impact of asymmetric ambiguity on
investment and financing decisions, Economic Modelling, 69, 169–180.

Wang, Z., 2010. Irreversible Investment of the Risk- and Uncertainty-averse DM under k-
Ignorance: The Role of BSDE. Annals of Economics and Finance, 11(2), 313–335.

Yoshioka, H. and Tsujimura, M., 2022. Hamilton–Jacobi–Bellman–Isaacs equation for rational
inattention in the long-run management of river environments under uncertainty, Computers
& Mathematics with Applications, 112, 23–54.

7


