Rival and Strategic Options in a Market Sharing Duopoly

Roger Adkins
School of Management, University of Bradford
Bradford BD7 1DP, UK
Alcino Azevedo ${ }^{1}$
Aston Business School, University of Aston
Birmingham B4 7ET, UK
Dean Paxson
Alliance Manchester Business School, University of Manchester
Manchester M15 6PB, UK

Submitted to the Real Options Conference 2023 Durham
2 February 2023

JEL Classification: D81, D92, O33.
Key words: Market Share Strategies, Mutually Exclusive Options, Switch/Divest, Real Rival Options
Acknowledgements: We thank Paulo Pereira, Helena Pinto, and Artur Rodrigues for helpful comments.

[^0]
Highlights:

Decomposition of Value Functions
Market Share Sensitivities Over Three Regimes
Market Share Partial Derivatives Over Three Regimes
Analytical Solutions for Some Strategic Option Derivatives
Consequences of Increasing Market Share

Abstract

We build on previous solutions for mutually exclusive options in a duopoly with switching and divestment alternatives. We study the likely implications for increasing the leader's market share MS at successive levels of market revenue. The conventional net present value NPV thresholds for switching and divestments, ignoring rival and strategic options, are likely to be a misleading basis for making MS decisions. The consequences of MS changes on the values for both the leader and follower are often surprising. The NPV of operations for the leader is reduced by increased MS when revenue is low, with a further negative change of value in the net switch and divest option values. The NPV of operations is increased for the leader by increased MS when revenue is higher, reduced by the decrease in value of the leader's rival option value. Those strategy results are consistent with the sign and dimension of MS partial derivatives, with some novel analytical solutions.

Rival and Strategic Options in a Market Sharing Duopoly

1. Introduction

Should the leader or follower in a duopoly attempt to increase market share when revenue is marginally less than operating cost? (i) Perhaps not if using a net present value approach, but there could be unintended consequences if rival and strategic option values are considered. (ii) What happens when revenue exceeds operating cost, but is less than the level that justifies the follower switching to lower cost technologies? (iii) What is the appropriate action in the initial regimes, for anticipating altering market share in the middle and final regimes, or in the middle regime, for anticipating altering market share in the final regime? (iv) How can competitors affect the value (and exercise) of rival options?

These are the critical questions we address in studying the real options when there are mutually exclusive strategic options (divest or switch to a lower cost technology) for a leader/follower in a market sharing duopoly. Following Adkins et al. (2022) we assume in the duopoly the market share is always divided only between a leader and a follower, and varies from an initial stage (or regime) to a middle stage (when the follower obtains a larger market share than initially), then to a final stage.

The first-mover advantage for the leader is dependent on only obtaining full salvage value; the secondmover follower is not immediately motivated to adopt the cost reduction technology in the second regime. But the second-mover is motivated eventually to adopt the new technology (but with a changed market share) as market revenue increases. So, there are issues about market sharing duopolies, initial and subsequent market shares, and mutually exclusive options (exercising one option cancels the other option). Also, there are examples of rival options (firms benefit from rivals exercising their strategic options).

There are many duopolies (or local, national near duopolies) that could be illustrations of our context. Pindyck and Rubinfeld (2018) note that Facebook faced competition from Google Plus which failed to build sufficient network externality. Airbus and Boeing, Coke and Pepsi, Uber and Lyft (or currently Twitter and Mastodon/Cohost) all have elements of duopoly with varying market shares over time, and both have strategic and rival options with marketing, technology or logistic advances.

There are several classical arguments that greater market share in a duopoly or oligopoly leads to greater profits. The frequently cited Buzzell et al. (1975) argues that a larger market share is a key to profitability, which Leontiades (1984) extends to a global context. Roberts (2003) provides proprietary evidence that increasing market share during a recession provides a competitive advantage for the leader in market upturns. These approaches appear to ignore the rival and strategic options accompanying market share rivalry over market cycles.

Kulatilaka and Perotti (1998) view the strategy of a first mover in a duopoly in terms of pre-empting (or discouraging) an entrant by investing, where there is an inverse demand function. Their discussion of "growth options" does not lead to exactly showing the value of such an anti-rival option, or how it is affected by varying market share. Paxson and Pinto (2003) focus on the partial derivatives of the value function for the leader/follower with respect to changes in the market share, market revenue and volatility, with several unusual patterns, along with some analytical expressions for deltas and vegas. Paxson and Pinto (2005) show the partial derivatives of the value function for the leader/follower in both preemptive and non-preemptive games with respect to changes in market revenue, changing as revenue approaches the thresholds. Kong and Kwok (2007) provide standard entry thresholds for leader/follower when asymmetric in investment cost and revenue, with real option values not separately disclosed. Dias and Teixeira (2010) focus on the entry of a leader/follower with symmetric/asymmetric costs, and covering several game strategies. Azevedo and Paxson (2014) review duopoly "exit options" and other "market sharing" articles.

Joaquin and Butler (2000) assume a first mover leader advantage of lower operating costs. Tsekrekos (2003) allows for both temporary and pre-emptive permanent market share advantages for the leader. In Paxson and Pinto (2003) a leader has an initial market share advantage, which changes as new customers arrive and existing customers depart. Paxson and Melmane (2009) assume the leader starts with a larger market share, which then follows a random process. Bobtcheff and Mariotti (2013) look at a pre-emptive game of two competitors, with the leadership revealed only by a first mover investment.

Bensoussan et al. (2017) study a duopoly with the possibility of regime switching. There are two investment entries for two states (good and bad \{low growth, high volatility\}), with the leader having 100% of the market when investing early, 50% when the follower enters, otherwise apparently symmetric firms. The solution is obtained by using the variational inequality approach. There is a nonsmooth reward function for the leader at the point of the follower's entry. There are eight thresholds (two for the follower) and a simultaneous solution of 8 nonlinear equations. There is a sensitivity analysis only of the thresholds under different regimes for changes in volatility, drift and investment cost, not market shares. Balliauw et al. (2019) is an empirical work on the investment thresholds of leader/follower ports with capacity choices, without identifying the precise real option values.

Dias (2004) provides solutions for mutually exclusive options using finite differences. Décamps et al. (2006) show that when firms hold the option to switch scales, a hysteresis region between the investment region can persist even if there is uncertainty. Bobtcheff and Villeneuve (2010) conclude that uncertainties imply that payoffs are not sufficient criteria for deciding on the investment timing for mutually exclusive projects. Siddiqui and Fleten (2010) provide numerical solutions for mutually exclusive projects. There are several other applications of the theory of mutually exclusive options, such as Bakke et al. (2016), which do not develop separate valuations for the rival and strategic options.

Hagspiel et al. (2016) show that a higher potential profitability of a product market accelerates the investment timing, especially if the choice of the investment capacity is smaller, reversing an intuitive result. Huberts et al. (2019) examine interesting strategies where entry by competitors may be deterred,
possibly in a war of attrition or pre-emption. Adkins and Paxson (2019) propose appropriate rescaling from an incumbent large-scale technology assuming that market revenue is declining, considering the investments both separately and jointly. Adkins et al. (2022) provide analytical and numerical solutions for the rival and strategic mutually exclusive options in a duopoly.

How important are rival and strategic options in joint formulation compared to the conventional net present value evaluation (opPV) (without options)? As a preview, with the assumed parameter values, the leader's divest joint threshold is 43% of the NPV threshold, the switch joint is 14% of the NPV threshold ${ }^{2}$. The follower's divest threshold is 56% of the NPV threshold, the switch joint threshold is 19% of the NPV thresholds. In the initial case, at $\mathrm{v}=5$ between the leader's divest and switching thresholds, the leader's options amount to 39.9 , the opPV $=-14.3$. In the middle case $(v=7)$ between the leader's and follower's switch thresholds, the joint value of the leader is 101% of the NPV value, but the follower's options amount to 26.6 compared to an opPV of 0 . An analyst or manager looking at the effect of changing initial, middle or final market share on the value of the firms focusing just on operating PV is likely to be severely myopic.

2. Joint Formulation

We assume that there is a duopoly of symmetric operating firms, except the leader has an advantage of obtaining full value Z in any divestment of the existing operating facility, while the follower obtains 1 Z , where $0<1<1$. The follower obtains a larger market share (60%) after the leader has switched to a lower

[^1]operating cost technology, policy Y. The order of divesting/switching thresholds divest $\left\{\hat{v}_{\text {IIFD }}\right.$, $\left.\widehat{v}_{I I L D}\right\}$, switch $\left\{\hat{v}_{\text {IILS }}\right.$ and $\left.\widehat{v}_{\text {IIFS }}\right\}$ is indicated in Figure 1. Total market revenue " v " follows a geometric Brownian motion with constant (negative) drift and volatility ${ }^{3}$. Each firm holds the option to divest and receive a salvage value from the initial X stage. Once the divestment option is exercised, the firm exits the market which is referred to as policy O. Since Y is the more cost efficient, the full-market operating cost $f_{X}>f_{Y}$. There is no salvage value after firms switch to policy Y. The two players in the duopoly game are designated the leader and the follower, referred to as L and F, respectively. We treat the two firms as being ex-ante symmetric, which implies that each firm has 50% of the market provided that the two firms are pursuing identical policies, so: $D_{L \mid X, X}=1-D_{F \mid X, X}$.

Figure 1: Leader and Follower Thresholds for a Random Revenue (v) under the Joint Formulation

The value function under the joint formulation for the leader is denoted by $V_{I I L}(v)$.

$$
V_{I I L}(v)=\left\{\begin{array}{lr}
D_{L \mid Y, Y}\left(\frac{v}{\delta+\theta}-\frac{f_{Y}}{r}\right) & \text { if } v \geq \hat{v}_{I I F S} L 1 \tag{1}\\
D_{L \mid Y, X}\left(\frac{v}{\delta+\theta}-\frac{f_{Y}}{r}\right)+A_{1 I L S S} v^{\beta_{1}} & \text { if } \hat{v}_{I L L S} \leq v<\hat{v}_{I I F S} L 2 \\
D_{L \mid X, X}\left(\frac{v}{\delta+\theta}-\frac{f_{X}}{r}\right)+A_{1 I L S S} v^{\beta_{1}}+A_{2 I I L D} v^{\beta_{2}} & \text { if } \hat{v}_{I L L D}<v<\hat{v}_{I I L S} L 3 \\
Z & \text { if } v \leq \hat{v}_{I I L D} L 4
\end{array}\right.
$$

In (1), the first line (regime 1) represents the expected present value of the leader's net revenue opPV once the follower has switched, with no further options; the second line represents the expected present value of leader's net revenue plus the value for the leader of the optional switching by the follower, denoted by $A_{1 \text { IILSS }} v^{\beta_{1}}$; the third line represents the expected present value of leader's net revenue plus

[^2]the option values to switch, $A_{1 I I L S} v^{\beta_{1}}>0$ and to divest, $A_{2 I I L D} v^{\beta_{2}}>0$; the fourth line represents the leader's receipt from divestment.

The value function under the joint formulation for the follower is denoted by $V_{I I F}(v)$.

$$
V_{I I F}(v)=\left\{\begin{array}{lr}
D_{F \mid Y, Y}\left(\frac{v}{\delta+\theta}-\frac{f_{Y}}{r}\right) & \text { if } v \geq \hat{v}_{I I F S} L 1 \tag{2}\\
D_{F \mid Y, X}\left(\frac{v}{\delta+\theta}-\frac{f_{X}}{r}\right)+A_{1 I I F S} v^{\beta_{1}}+A_{2 I I F D} v^{\beta_{2}} & \text { if } \hat{v}_{I I L S} \leq v<\hat{v}_{I I F S} L 2 \\
D_{F \mid X, X}\left(\frac{v}{\delta+\theta}-\frac{f_{X}}{r}\right)+A_{1 I I F S} v^{\beta_{1}}+A_{2 I I F D} v^{\beta_{2}} & \\
+A_{1 I I F S S} v^{\beta_{1}}+A_{2 I I F D D} v^{\beta_{2}} & \text { if } \hat{v}_{I I L D}<v<\hat{v}_{I I L S} L 3 \\
D_{F \mid O, X}\left(\frac{v}{\delta+\theta}-\frac{f_{X}}{r}\right)+A_{1 I I F S} v^{\beta_{1}}+A_{2 I I F D} v^{\beta_{2}} & \text { if } \hat{v}_{I I F D} \leq v<\hat{v}_{I L D D} L 4 \\
\lambda Z & \text { if } v<\hat{v}_{I I F D} L 5
\end{array}\right.
$$

In (2), the first line represents the expected present value of follower's net revenue opPV once the follower has switched; the second line represents the expected present value of follower's net revenue plus the option values to switch, $A_{1 \text { IIFS }} v^{\beta_{1}}>0$ and to divest, $A_{2 \text { IIFD }} v^{\beta_{2}}>0$; the third line represents the expected present value of follower's net revenue plus the option values to switch, $A_{1 I I F S} v^{\beta_{1}}$, and to divest, $A_{2 I I F D} v^{\beta_{2}}$, and the values accruing to the follower when the leader exercises the switching option, $A_{1 \text { IIFSS }} v^{\beta_{1}}$, or the divestment option, $A_{2 \text { IIFDD }} v^{\beta_{2}}<0$; the fourth line represents the expected present value of follower's net revenue plus the option values to switch, $A_{1 \text { IIFS }} v^{\beta_{1}}$, and to divest, $A_{2 I I F D} v^{\beta_{2}}$; the fifth line represents the follower's value on divestment.

The boundary conditions in the thresholds (value matching and smooth pasting) along with value functions (1) and (2) create a set of four equations from which the solutions to the unknown thresholds $\hat{v}_{I L S S}, \hat{v}_{I I F S}, \hat{v}_{\text {IILD }}$, and $\hat{v}_{\text {IIFD }}$, are obtainable. There are four unknown strategic option coefficients associated with the leader's and follower's switching and divesting policies, $A_{1 \text { IILS }}, A_{2 I I L D}, A_{1 \text { IIFS }}$, and $A_{2 \text { IIFD }}$, respectively, and three unknown coefficients associated with the rival options $A_{1 \text { IILSS }}, A_{1 \text { IIFSS }}$, and $A_{2 I I F D D}$, which benefit or hurt the option holder when the rival chooses to switch or divest. We can
obtain ${ }^{4}$ solutions for the follower's two thresholds $\hat{v}_{I I F S}$ and $\hat{v}_{\text {IIFD }}$ from the non-linear simultaneous equations:

$$
\begin{gather*}
\hat{v}_{I I F D} \beta_{2}\left(\hat{v}_{I I F S} \frac{D_{F \mid Y, Y}-D_{F \mid Y, X}}{\delta+\theta} \frac{\beta_{1}-1}{\beta_{1}}-\frac{D_{F \mid Y, Y} f_{Y}-D_{F \mid Y, X} f_{X}}{r}-(K-\lambda Z)\right)-\hat{v}_{I I F S}{ }^{\beta_{2}}\left(\lambda Z-\frac{D_{F \mid 0, X} \widehat{v}_{I I F D}}{\delta+\theta} \frac{\beta_{1}-1}{\beta_{1}}+\right. \\
\left.\frac{D_{F \mid O, X} f_{X}}{r}\right)=0 \tag{3}\\
\hat{v}_{I I F D} \beta_{1}\left(\hat{v}_{I I F S} \frac{D_{F \mid Y, Y}-D_{F \mid Y, X}}{\delta+\theta} \frac{\beta_{2}-1}{\beta_{2}}-\frac{D_{F \mid Y, Y} f_{Y}-D_{F \mid Y, X} f_{X}}{r}-(K-\lambda Z)\right)-\hat{v}_{I I F S}{ }^{\beta_{1}}\left(\lambda Z-\frac{D_{F \mid O, X} \hat{v}_{I I F D}}{\delta+\theta} \frac{\beta_{2}-1}{\beta_{2}}+\right. \\
\left.\frac{D_{F \mid 0, X} f_{X}}{r}\right)=0 \tag{4}
\end{gather*}
$$

Note that these thresholds are affected only by the middle and final market shares, and the market share, assumed to be one, of the follower if the leader divests, as well as by changes in the other parameter values indicated in Table 1.

We can obtain solutions for the leader's two thresholds $\hat{v}_{I L L}$ and $\hat{v}_{I I L D}$ from the non-linear simultaneous equations:

$$
\begin{gather*}
\hat{v}_{I I L D} \beta_{2}\left(\hat{v}_{I L L S} \frac{D_{L \mid Y, X}-D_{L \mid X, X}}{\delta+\theta} \frac{\beta_{1}-1}{\beta_{1}}-\frac{D_{L \mid Y, X} f_{Y}-D_{L \mid X, X} f_{X}}{r}\right)-(K-Z)-\hat{v}_{I L L S}{ }^{\beta_{2}}\left(Z-\frac{D_{L \mid X X X} \hat{v}_{I L L D}}{\delta+\theta} \frac{\beta_{1}-1}{\beta_{1}}+\right. \\
\left.\frac{D_{L \mid X X X} f_{X}}{r}\right)=0 \tag{5}\\
\hat{v}_{I I L D} \beta_{1}\left(\hat{v}_{I L L S} \frac{D_{L \mid Y, X}-D_{L \mid X X X}}{\delta+\theta} \frac{\beta_{2}-1}{\beta_{2}}-\frac{D_{L \mid Y, X} f_{Y}-D_{L \mid X, X} f_{X}}{r}+A_{1 I I L S} \hat{v}_{I I L S} \beta_{1} \frac{\beta_{2}-\beta_{1}}{\beta_{2}}-(K-Z)\right)- \\
\hat{v}_{I I L S} \beta_{1}\left(Z-\frac{D_{L \mid X, X} \hat{v}_{I I L D}}{\delta+\theta} \frac{\beta_{2}-1}{\beta_{2}}+\frac{D_{L \mid X, X} f_{X}}{r}\right)=0 \tag{6}
\end{gather*}
$$

Note that these thresholds are affected by the initial and middle market shares, not by the final market share (except for $\mathrm{A}_{1 \mathrm{IILS}}$) as well as by changes in the other parameter values in Table 1.

[^3]The follower's strategic switching and divestment option coefficients are:

$$
\begin{gather*}
A_{1 I I F S}=\frac{1}{\beta_{1} \Delta_{F}}\left(\hat{v}_{I I F S} \frac{D_{F \mid Y, Y}-D_{F \mid Y, X}}{\delta+\theta} \hat{v}_{I I F D} \beta_{2}+\hat{v}_{I I F D} \frac{D_{F \mid O, X}}{\delta+\theta} \hat{v}_{I I F S} \beta_{2}\right) \tag{7}\\
A_{2 I I F D}=\frac{1}{\beta_{2} \Delta_{F}}\left(-\hat{v}_{I I F S} \frac{D_{F \mid Y, Y}-D_{F \mid Y, X}}{\delta+\theta} \hat{v}_{I I F D} \beta_{1}+\hat{v}_{I I F D} \frac{D_{F \mid O, X}}{\delta+\theta} \hat{v}_{I I F S} \beta_{1}\right) \tag{8}
\end{gather*}
$$

where

$$
\begin{equation*}
\Delta_{F}=\hat{v}_{I I F S}{ }^{\beta_{1}} \hat{v}_{I I F D}{ }^{\beta_{2}}-\hat{v}_{I I F S}{ }^{\beta_{2}} \hat{v}_{I I F D}^{\beta_{1}} . \tag{B4}
\end{equation*}
$$

Note that these two option coefficients are not sensitive directly to changes in $\mathrm{D}_{\mathrm{L} / \mathrm{Xx}}$, but only to the difference between the market shares in the final and middle stage, since it is assumed that $\mathrm{D}_{\mathrm{F} / 0 \mathrm{x}}=1$. It is convenient that the initial F thresholds are not sensitive to changes in the initial market shares, and are not in (7) or (8). Both the threshold and coefficient insensitivities are confirmed in Table 4 of the sensitivities to changes in MS at the initial stage. Note that this analytical expression shows the relevance of considering both the middle and final market share for the SO FD value.

The follower's rival options (exercise determined by the leader, benefits the follower are:

$$
\begin{gather*}
A_{1 I I F S S}=\left(D_{F \mid Y, X}-D_{F \mid X, X}\right)\left(\frac{\hat{v}_{I I L S}}{\delta+\theta}-\frac{f_{X}}{r}\right) \frac{\hat{v}_{I I L D} \beta_{2}}{\Delta_{L}}-\left(D_{F \mid O, X}-D_{F \mid X, X}\right)\left(\frac{\hat{v}_{I I L D}}{\delta+\theta}-\frac{f_{X}}{r}\right) \frac{\hat{v}_{I I L S} \beta_{2}}{\Delta_{L}} \tag{9}\\
A_{2 I I F D D}=-\left(D_{F \mid Y, X}-D_{F \mid X, X}\right)\left(\frac{\hat{v}_{I L L S}}{\delta+\theta}-\frac{f_{X}}{r}\right) \frac{\hat{v}_{I I L D} \beta_{1}}{\Delta_{L}}+\left(D_{F \mid O, X}-D_{F \mid X, X}\right)\left(\frac{\hat{v}_{I I L D}}{\delta+\theta}-\frac{f_{X}}{r}\right) \frac{\hat{v}_{I I L S} \beta_{1}}{\Delta_{L}} \tag{10}
\end{gather*}
$$

Note that these two option coefficients are insensitive directly to changes in $\mathrm{D}_{\mathrm{L} / \mathrm{YY}}$, but to the initial stage F / XX and the difference between the market share in the initial and middle stage, assuming that $\mathrm{D}_{\mathrm{F} / 0 \mathrm{X}}$ is one (that is if the leader divests, the follower has the whole market). The RO F SS increases with increases in the L's final market share in the total derivatives sensitivities table, which must be due to the L's threshold changes.

The leader's strategic switching and divestment option coefficients are:

$$
\begin{align*}
& A_{1 I I L S}=\frac{1}{\beta_{1} \Delta_{L}}\left(\left(\hat{v}_{I I L S} \frac{D_{L \mid Y, X}-D_{L \mid X, X}}{\delta+\theta}+\beta_{1} A_{1 I L S S} \hat{v}_{I L S}{ }^{\beta_{1}}\right) \hat{v}_{I I L D}^{\beta_{2}}+\hat{v}_{I I L D} \frac{D_{L \mid X, X}}{\delta+\theta} \hat{v}_{I I L S}^{\beta_{2}}\right) \tag{11}\\
& A_{2 I I L D}=-\frac{1}{\beta_{2} \Delta_{L}}\left(-\left(\hat{v}_{I I L S} \frac{D_{L \mid Y, X}-D_{L \mid X, X}}{\delta+\theta}+\beta_{1} A_{1 I L L S S} \hat{v}_{I L S} \beta_{1}\right) \hat{v}_{I I L D}^{\beta_{1}}-\hat{v}_{I I L D} \frac{D_{L X X, X}}{\delta+\theta} \hat{v}_{I I L S} \beta_{1}\right) \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta_{L}=\hat{v}_{I L S}{ }^{\beta_{1}} \hat{v}_{I L D}{ }^{\beta_{2}}-\hat{v}_{I I L S}{ }^{\beta_{2}} \hat{v}_{I I L D}{ }^{\beta_{1}} . \tag{B13}
\end{equation*}
$$

Note that these two option coefficients are insensitive directly to changes in $\mathrm{D}_{\mathrm{L} / \mathrm{Y}}$, but to the initial stage L/XX and the difference between the market share in the initial and middle stage. The SO L S and SO L D increase/decrease with increases in the L's final market share in the total derivatives sensitivities table, which must be due to the L's threshold changes.

The leader's rival options (exercise determined by the follower, benefits the leader) is:

$$
\begin{equation*}
A_{1 I I L S S}=\left(\frac{\hat{v}_{I I F S}}{\delta+\theta}-\frac{f_{Y}}{r}\right)\left(D_{L \mid Y, Y}-D_{L \mid Y, X}\right) \hat{v}_{I I F S}-\beta_{1} \tag{13}
\end{equation*}
$$

Note that the option coefficient is insensitive directly to changes in $\mathrm{D}_{\mathrm{L} / X X}$ (as confirmed in the sensitivities Table 4), but only to the difference between the market shares in the final and middle stage. Note that this analytical expression shows the relevance of considering both the middle and final market share for the RO LSS value.

How could the leader encourage the follower to switch, that is move from the middle to final stage? One answer is perhaps by reducing the L MS in the final stage, and raising the L MS in the middle stage.

3. Numerical Evaluations

For the joint formulation there is a numerical solution for the thresholds 3-4-5-6, and analytical solutions for the option coefficients, 11-12-13 for the Leader, 7-8-9-10 for the Follower. From Table 1, the values of β_{1} and β_{2} for the base case are 1.667 and -1.333 , respectively.

Table 1: Base Case Parameter Values

| Definition | Notation | Value |
| ---: | ---: | ---: | ---: |
| Risk-free rate | r | 0.10 |
| Convenience yield | δ | 0.03 |
| Market depletion rate | θ | 0.04 |
| Market price volatility | σ | 0.30 |
| λ | 0.40 | |
| Follower's divestment proportion | λ | 10.0 |
| Unadjusted periodic operating cost for policy \boldsymbol{X} | f_{X} | 1.0 |
| Unadjusted periodic operating cost for policy \boldsymbol{Y} | f_{Y} | 25.0 |
| Divestment value | Z | 32.0 |
| Switching investment cost to policy \boldsymbol{Y} | K | 0.50 |
| Leader's market share given both leader and follower pursue policy \boldsymbol{X} | $D_{L \mid X, X}$ | 0.50 |
| Leader's market share given both leader and follower pursue policy \boldsymbol{Y} | $D_{L \mid Y, Y}$ | 0.40 |
| Leader's market share given leader pursues policy \boldsymbol{Y} and follower policy \boldsymbol{X} | $D_{L \mid Y, X}$ | 0.0 |
| Leader's market share given leader exits and follower pursues policy \boldsymbol{X} | $D_{L \mid O, X}$ | 0.00 |

Note: The follower's market shares for the various policy assortments are obtainable from the leader's market share.

3.1 Thresholds and Coefficients

Using the base case values in Table 1, we present the numerical solutions for the leader's and follower's various thresholds and coefficients in Table 2. The thresholds in the joint formulation are always less than those under the NPV formulation, $\hat{v}_{I I L D}<\hat{v}_{I L D}, \hat{v}_{I I L S}<\hat{v}_{I L S}, \hat{v}_{I I F D}<\hat{v}_{I F D}$, and $\hat{v}_{I I F S}<\hat{v}_{I F S}$. Also, the leader is the first-mover since $\hat{v}_{I I F D}<\hat{v}_{I I L D}<\hat{v}_{I I L S}<\hat{v}_{I I F S}$. We observe that while $A_{2 I I L S S}$ and $A_{2 \text { IIFSS }}$ are both positive, $A_{2 \text { IIFDD }}$ is negative. This indicates that while the leader gains when the follower switches and the follower gains when the leader switches, the follower loses when the leader divests at a low v .

Table 2: Values for the Various Thresholds and Coefficients

	Leader			
	$\hat{v}_{\text {IILD }}$	4.524	$\hat{v}_{\text {IIFD }}$	Follower
DIVEST	$A_{2 I I L D}$	258.016	$A_{2 I I F D}$	334.144
	$\hat{v}_{\text {ILD }}$	10.500	$A_{2 I I F D D}$	-182.405
			$\hat{v}_{\text {IFD }}$	7.700
SWITCH	$\hat{v}_{\text {IILS }}$	6.948	$\hat{v}_{\text {IIFS }}$	10.206
	$A_{1 I I L S}$	0.6628	$A_{1 I I F S}$	0.0693
	$A_{1 I L S S}$	0.2828	$A_{1 I I F S S}$	0.5409
	$\hat{v}_{\text {ILS }}$	48.580	$\hat{v}_{\text {IFS }}$	53.900

3.2 How Important are the Rival and Strategic Options?

The relative importance of the option values in the value function depends on the level of v relative to the thresholds, since we assume the options prevail only over specific regimes. We assume that if an option is exercised by the firm, or its rival, the option no longer exists. For the leader value function, between the divest and switch threshold, there are only options to divest and switch. After the leader switches, the leader then obtains the value of the rival option of the follower switching only if v increases up to the follower's switching threshold.

Table 3 shows the value of the operations F Op PV and LF Op PV and each of the seven options where appropriate, over a v range from above the follower's switching threshold (hypothetically) to below the follower's divest threshold. The operating PV increases as v increases, affected by the leader's market share, 50% in the initial and final stage, 40% in the middle stage between the switching thresholds 6.94 and $10.2(\mathrm{v}=\{7$ to 10$\})$.

At the initial regime, between the leader's divest and switch thresholds $(\mathrm{v}=\{5$ to 6.5$\})$ the leader holds an option to divest SO D and an option to switch SO S. The SO D is quite large when v is low, indeed larger than the negative Op PV. Over 6.9, the rival RO L SS increases in significance until the follower switches, when then the market share reverts to 50%.

A manager or analyst looking at the value of a follower when $v=8$, would be misled by relying on the op $\mathrm{PV}=8.6$, ignoring the two options worth an additional 23.1. When $\mathrm{v}=6$, the negative opPV of -7.1 is offset by four options worth 25.9 for the follower. A leader manager assessing her firm's value when $\mathrm{v}=6$, as $\mathrm{opPV}=-7.1$, would be ignoring real options worth 36.8.

Table 3 shows that the strategic and rival options are quite significant over certain regimes. While a firm probably cannot influence a rival exercising the option to divest or switch, "watch the competition" can be a critical consideration.

Table 3: Decomposition of the Value Functions as Revenue (v) Changes ${ }^{5}$

Follower's Value Function as Function ofv, Across Regimes															
V	4.0000	4.5000	5.0000	5.5000	6.0000	6.5000	7.0000	7.5000	8.0000	8.5000	9.0000	9.5000	10.0000	10.5000	11.0000
Regime	L5	L3	12	12	12	12	12	12	12	12	12	12	12	11	11
F Value SUM	10.000	10.1117	12.3823	15.3715	18.8627	22.7504	26.7282	29.0370	31.6721	34.5718	37.6892	40.9878	44.3391	48.0000	51.5714
FOp PV		-35.7143	-14.2857	-10.7143	-7.1429	-3.5714	0.0000	4.2857	8.5714	12.8571	17.1429	21.4286	25.7143	70.0000	73,5714
sos		0.8496	1.0127	1.1871	1.3723	1.5682	1.7744	1.9906	2.2166	2.4523	2.6974	2.9518	3.2152		
SOD		44.9764	39.0818	34.4179	30.6478	27.5454	24.9538	22.7607	20.8840	19.2623	17.8489	16.6074	15.5096		
ROSS			7.9077	9.2691	10.7156	12.2449									
RODD			-21.3342	-18.7882	-16.7302	-15.0367									
InvestCost	10.0000													-22,000	-22.000
Leader's Value Function as Function of v, Across Regimes															
v	4.0000	4.5000	5.000	5.5000	6.0000	6.5000	7.000	7.5000	8.0000	8.5000	9.0000	9.5000	10.0000	10.5000	11.000
Regime	14	14	13	13	L3	13	12	12	12	12	12	12	12	11	11
LValue SUM	25.000	25.0000	25.5820	27.2203	29.6532	32.7029	36.4438	39.8837	43.7637	47.5830	51.4408	55.3363	59.2690	70.0000	73.5714
LOp PV	0.0000	0.0000	-14.285	-10.7143	-7.1429	-3.5714	36.000	38.8571	41.7143	44.5714	47.4286	50.2857	53.1429	70.0000	73.5714
ROSS							7.2438	8.1265	9.0494	10.0115	11.0122	12.0506	13.1261		
SOS			9.6899	11.3581	13.1307	15.0046									
SOD			30.1778	26.5765	23.6653	21.2698									
InvestCost	25.000	25.000					-7.000	-7.000	-7.000	-7.000	-7.000	-7.000	-7.000		

3.3 Sensitivity Analysis for Changes in the Leader's Market Share

Table 4 presents the percentage change in the thresholds and coefficients for the joint model due to a $.1 \%$ increase in the leader's market share.

Table 4: Sensitivity of Rival/Strategic Options to .1\% Increase in the Leader's Market Share

		Coefficient Values			Percentage Change			
	BASE	Initial	Middle	Final	Initial	Middle	Final	
β_{1}	1.6667	1.6667	1.6667	1.6667				
β_{2}	(1.3333)	(1.3333)	(1.3333)	(1.3333)				
vFD	4.3283	4.3283	4.3279	4.3299	0.0000\%	-0.0096\%	0.0356\%	
vFS	10.2062	10.2062	10.2109	10.2177	0.0000\%	0.0459\%	0.1129\%	
VLD	4.5238	4.5242	4.5234	4.5214	0.0092\%	-0.0090\%	-0.0539\%	
vLS	6.9480	6.9471	6.9455	6.9446	-0.0131\%	-0.0360\%	-0.0497\%	
A1IIFS	0.0693	0.0693	0.0697	0.0677	0.0000\%	0.5964\%	-2.2088\%	SOFS
A2IIFD	334.1445	334.1445	334.1110	334.2686	0.0000\%	-0.0100\%	0.0372\%	SOFD
A1IILSS	0.2828	0.2828	0.2816	0.2840	0.0000\%	-0.4271\%	0.4327\%	ROLSS
A1IILS	0.6628	0.6623	0.6631	0.6645	-0.0792\%	0.0424\%	0.2550\%	SOLS
A2IILD	258.0164	258.1973	257.9904	257.8600	0.0701\%	-0.0101\%	-0.0606\%	SOLD
A1IIFSS	0.5409	0.5417	0.5415	0.5415	0.1442\%	0.1111\%	0.1218\%	ROFSS
A2IIFDD	-182.4047	-182.6171	-182.4527	-182.4199	-0.1164\%	-0.0263\%	-0.0083\%	ROFDD
Δ_{F}	6.2886	6.2886	6.2951	6.2987	0.0000\%	0.1031\%	0.1599\%	
Δ_{L}	2.4481	2.4467	2.4462	2.4480	0.0000\%	-0.0791\%	-0.0062\%	

[^4]Increases in the leader's market share and the consequential decrease in the follower's market share could be interpreted as being attractive for the leader at the detriment to the follower, if one ignores the effect on the change of market share on the thresholds, and option values over the various regimes and revenue levels. A .1\% increase in the leader's initial market share increases the RO F SS and RO F DD by more than .1 percent, but does not affect the RO L SS. An increase in the leader's middle market share increases the RO F SS by more than .1 percent, but reduces the RO L SS by $.4 \%$. An increase in the leader's final share increases the RO F SS by more than . 1 percent, and increases the RO L SS by more than $.4 \%$. Thus, it is apparent that rival options can be affected by either the leader or the follower trying to change market share, over and beyond the effect on the PV of operations. The most significant changes are to the increases in the SO F S in the middle stage, and reduction in the final stage.

The tables below are a sample of the possible effects over $v=5,7$ and 12 , corresponding to the initial, middle and final stages.

Table 5 shows that an increase in the leader's initial market share (IMS) at low $\mathrm{v}(\mathrm{v}=5)$ makes the divestment opportunity leads to an earlier exercise (higher threshold), and also an earlier exercise (lower threshold) for the switch opportunity. It has, though, no impact on the follower's strategy since the divestment and switch opportunities only become available after the leader has divested and switched, respectively, except for the positive change in the follower's present accrued value when the leader divests because of the greater gain in market share.

Table 5: Thresholds as Function of Initial Market Share

Table 6: Leader's Values as Function of Initial Market Share (v=5)

Naturally, the leader's opPV decreases with increases in D L/XX at a low v. Perhaps it is less obvious that the value of the leader's strategic option SO LS declines with increases in $\mathrm{D} \mathrm{L} / \mathrm{XX}$. When v is low, between the leader's divest and switch thresholds, and operating profit is negative, increasing market share is hardly worthwhile.

Table 7: Follower Values as Function of Leader's Initial Market Share (v=5)

While the follower's divest and switch thresholds are not affected by changes in the leader's initial market share, the negative opPV is slightly decreased at $\mathrm{v}=5$, while the (negative) ROF DD increases slightly. The net effect of the leader increasing initial market share when v is low and between the
divest and switch thresholds is that the leader's total value slightly decreases, while the follower's total value slightly increases.

If the middle market share (MMS) (when $\mathrm{v}=7$ after switching for the leader) $D_{L \mid Y, X}$ increases, then there is an increase in the present value accruing to the leader. The switching opportunity for follower also becomes more attractive with a deferred threshold because the loss in the follower's market share becomes less. Also, there is an increase in the present value accruing to the follower when the leader switches because of the gain in the follower's market share.

Table 8: Thresholds as Function of L's Middle Market Share (v=7)

Table 9: Leader's Value as Function of L's Middle Market Share $\mathrm{v}=7$

VF		36.24	36.30	36.35	36.40	36.46	36.52	36.58	36.64	36.70	0.4580
PV L2		36.00	36.36	36.72	37.08	37.44	37.80	38.16	38.52	38.88	2.8800
ROLSS		7.24	6.94	6.63	6.32	6.02	5.72	5.42	5.12	4.82	-2.4220
PV		-7.00	-7.00	-7.00	-7.00	-7.00	-7.00	-7.00	-7.00	-7.00	0.0000
D LYX		0.400	0.404	0.408	0.412	0.416	0.420	0.424	0.428	0.432	
Leader's Values as Function of Middle Market Share											
8.00											
$7.00 \xrightarrow{\sim}$										39.00	
$6.00 \xrightarrow{ }$										38.00	
5.00 4.00	$4.00 \longrightarrow$				\cdots				\square	37.00	
3.00										37.00	
2.00										35.00	
1.000.00											
										34.00	
0.00	0.400	0.404	0.408	0.412	0.416	0.420	0.424	0.428	0.432		
L's Middle Market Share											
					olss	V L2					

The leader's opPV increases significantly as the L's middle market share increases (after the leader switches) but the rival ROL SS decreases, so the net value increases slightly.

Table 10: Follower Values as Function of L's Middle Market Share

While the follower's opPV remains at 0 (when $v=7$), the SO FS and RO F SS increase somewhat as the leader's middle market share increases, so the follower's net value increases surprisingly.

Table 11: Thresholds as Function of L's Final Market Share

As the leader's Final Market Share (FMS) increases, the switching threshold for the follower increases, naturally.

Table 12: Values as Function of Final Market Share (v=12)

Once both parties have switched, an increase in the leader's final market share, $D_{L \mid Y, Y}$, makes the leader's op PV more valuable, and that of the follower (without any more options) less attractive, following the Buzzell et al. (1975) guidelines. There are many more combinations of the level of v and change of one of the three market shares that could be illustrated ${ }^{6}$. In general, it is not usually reasonable to focus just on the change in the relative opPVs when accessing the relative value of changing market shares ${ }^{7}$.

4. Market Share Partial Derivatives

Some of the partial derivatives with respect to changing market share are relatively easy, others are very complex ${ }^{8}$.

Initial Market Share: We specify the analytical change given by the partial derivative for each option coefficient value arising from a change in the leader's market share $\mathrm{D}_{\mathrm{L} / \mathrm{xx}}$, when both the leader and the follower are using technology X. In the following, if the value is not zero, $\left|M_{d}\right| \neq 0$, then two items are presented, the analytical derivative for six option coefficients (across all of the three stages), and for

[^5]the rest its numerical value, since those expressions are typically long and complicated. If the determinant value is zero, $\left|M_{d}\right|=0$, then only the analytical derivative is equal to zero. The analytical expressions for the partials at the initial stage are only for the leader's two strategic options, divest and switch:
\[

$$
\begin{array}{r}
\frac{\partial A_{I I L S}}{\partial D_{L / X X}}=-\frac{-\frac{f_{X} \hat{v}_{L D}^{\beta_{2}}}{r}+\frac{f_{X} \hat{v}_{L S}^{\beta_{2}}}{r}+\frac{\hat{v}_{L D}^{\beta_{2}} \hat{v}_{L S}}{\delta+\theta}-\frac{\hat{v}_{L D} \hat{v}_{L S}^{\beta_{2}}}{\delta+\theta}}{\Delta_{L}} \\
\frac{\partial A_{I I I D}}{\partial D_{L / X X}}=-\frac{\frac{f_{X} \hat{v}_{L D}^{\beta_{1}}}{r}-\frac{f_{X} \hat{x}_{L S}^{\beta_{1}}}{r}-\frac{\hat{v}_{L D}^{\beta_{1}} \hat{v}_{L S}}{\delta+\theta}+\frac{\hat{v}_{L D} \hat{\hat{L}}_{L S}^{\beta_{1}}}{\delta+\theta}}{\Delta_{L}} \tag{15}
\end{array}
$$
\]

Other partial derivative values are calculated numerically ${ }^{9}$.

Table 13

[^6]Table 13 shows clearly that the effect of increasing market share when v is low is negative for the opPV for the leader until approaching the switching threshold 6.9, and the first derivative for the switching coefficient is increasingly negative, consistent with the less obvious observation regarding Table 6 that the strategic switching option value declines, while the strategic divestment option value increases. Is there any way for the leader to avoid reducing one option without reducing the other? Table 13 confirms that the follower's strategic options are not affected at all by changes in the initial market share, consistent with Table 7 and with (14) and (15).

The analytical expressions for the middle and final market share changes are only for the follower's strategic options, divest and switch.

Middle Market Share:

$$
\begin{gather*}
\frac{\partial A_{1 I I F S}}{\partial D_{L / X X}}=\frac{\hat{v}_{F D}^{\beta_{2}}\left(-\frac{f_{X}}{r}+\frac{\hat{v}_{F S}}{\delta+\theta}\right)}{\Delta_{F}} \tag{16}\\
\frac{\partial A_{2 I F D}}{\partial D_{L / X X}}=-\frac{\hat{v}_{F D}^{\beta_{1}}\left(-\frac{f_{X}}{r}+\frac{\hat{v}_{F S}}{\delta+\theta}\right)}{\Delta_{F}} \tag{17}
\end{gather*}
$$

Table 14

In Table 14, the interesting aspects at the middle stage are regarding the leader's RO L SS (benefiting from the follower switching, whereby the L's market share returns from 40% to 50%), and the follower's SO F S. The partial for the leader's rival option is increasingly negative, but the partial for the follower's strategic option S is increasingly positive, leading to overall value gains for the follower, and losses for the leader, as the MMS increases.

Final Market Share

$$
\begin{align*}
& \frac{\partial A_{l I I F S}}{\partial D_{L / Y Y}}=\frac{\hat{v}_{F D}^{\beta_{2}}\left(\frac{f_{Y}}{r}-\frac{\hat{v}_{F S}}{\delta+\theta}\right)}{\Delta_{F}} \tag{18}\\
& \frac{\partial A_{2 I F D}}{\partial D_{L / Y Y}}=-\frac{\hat{\hat{v}}_{F D}}{\hat{\beta}_{2}}\left(\frac{f_{Y}}{r}-\frac{\hat{v}_{F S}}{\delta+\theta}\right) \tag{19}\\
& 4_{F}
\end{align*}
$$

Table 15

Table 15 shows that in the middle stage, if the Leader is able to increase its final market share, while the value of the immediate operating net revenue is not changed, the RO L SS (benefit to the L when the F switches, mostly due to the reversion to $50 \%+\mathrm{MS}$) increases significantly, while the F's strategic option to switch becomes more negative. This is consistent with Table 12, where the L's value function increases as the L's FMS increases, when $\mathrm{v}=12$.

These approaches provide a rich format for interpreting the impact of market share changes on current and prospective decisions in a duopoly, which can be reconfigured as appropriate for different contexts and parameter values.

5. Summary and Conclusions

Should the leader always attempt to increase market share? What is the appropriate action in the initial regime for anticipating altering market share in the middle and final regimes? How can competitors affect the value (and exercise) of rival options?
(i) Should the leader or follower attempt to increase market share when revenue is below operating cost? The net present value approach is increasingly negative, presenting the case for perhaps reducing market share instead. But with different parameter values it is conceivable that the strategic divest option value could increase, but at a decreasing rate.
(ii) What happens when revenue is close to over the operating cost, slightly exceeding the leader's switching threshold? Almost surely the answer is positive (increasing the opPV), but watch for the effect that it reduces the rival follower switching, whose actions may well benefit the leader.
(iii) What is the appropriate action in the initial regimes, for anticipating altering market share in the middle and final regimes, or in the middle regime, for anticipating altering market share in the final regime? Answers here depend on the relative value of most of the options given the specific parameter values. Also, what is the assurance that a leader can alter market share in subsequent stages at a reasonable cost?
(iv) How can competitors affect the value (and exercise) of rival options? The three rival options, RO L SS benefiting from the follower switching, and RO F SS and F DD, benefiting from the
leader divesting or switching, have been clearly identified, along with the sensitivities for changing market share at the various stages. Even without affecting the value of these rival actions, watching the competition and quantifying the option value of potential benefits as parameter values change over the stages should demonstrate alert real option management skills.

Future research is likely to develop further configurations of this approach, empirical applications to the evolving duopolies, along with extensions to oligopolies and monopolistic competition. Hedging and trading some of these real options will be an exciting future activity. Perhaps there will be analytical or semi-analytical solutions for some more of these option coefficients.

References

1. Adkins, R., and D. Paxson, 2019. "Appropriate rescaling from an incumbent large-scale technology versus abandonment when revenue declines." European Journal of Operational Research 277, 574586.
2. Adkins, R., A. Azevedo and D. Paxson, 2022. "Get out or get down: Competitive strategies in declining industries." SSRN: 42877207.
3. Azevedo, A. and D. Paxson, 2014. "Developing real option games". European Journal of Operational Research 237, 909-920.
4. Bakke, I., S-E Fleten, L.I. Hagfors, V. Hagspiel and B. Norheim, 2016. "Investment in mutually exclusive transmission projects under uncertainty," Journal of Commodity Markets 3, 54-69.
5. Balliauw, M., P. Kort and A. Zhang, 2019. "Capacity investment decisions of two competing ports under uncertainty: a strategic real options approach," Transportation Research Part B Methodology 122, 249-264.
6. Bensoussan, A., S. Hoe, F. Yan and G., 2017. "Real options with competition and regime switching," Mathematical Finance 27, 224-250.
7. Bobtcheff, C., and S. Villeneuve, 2010. "Technology choice under several uncertainty sources." European Journal of Operational Research 206, 586-600.
8. Bobtcheff, C., and T. Mariotti, 2013. "Potential competition in preemption games." Games and Economic Behavior, 53-66.
9. Buzzell, R.D., B.T. Gale and R.G.M Sultan, 1975. "Market share-a key to profitability," Harvard Business Review 53, 97-106.
10. Décamps, J.-P., T. Mariotti, and S. Villeneuve, 2006. "Irreversible investment in alternative projects." Economic Theory 28, 425-448.
11. Dias, M.A.G, 2004. "Valuation of exploration and productive assets: an overview of real option models." Journal of Petroleum Science and Engineering 64, 93-114.
12. Dias, M.A.G. and J.P. Teixeira, 2010. "Continuous-time option games: review of models and extensions Part I: Duopoly under uncertainty", Multinational Finance 16, 63-82.
13. Hagspiel, V., K. Huisman, P. Kort and C. Nunes, 2016. "How to escape a declining market: capacity investment or exit?" European Journal of Operational Research 254: 40-50.
14. Huberts, N. F. D., K. Huisman, P. Kort, and M. Lavrutich, 2015. "Capacity choice in (strategic) real options models: A survey." Dynamic Games and Applications 5, 424-439.
15. Joaquin. D.C. and K. C. Butler, 2000. "Competitive investment decisions: A synthesis", Chapter 16 of Project Flexibility, Agency and Competition (M. Brennan and L. Trigeorgis, eds.), Oxford University Press, Oxford: 324-339.
16. Kong, J. and Y. Kwok, 2007. "Real options in strategic investment games between two asymmetric firms," European Journal of Operational Research 181, 967-985.
17. Kulatilaka, N. and E. Perotti, 1998. " Strategic growth options," Management Science 44, 10211031.
18. Leontiades, J., 1984. "Market share and corporate strategy in international industries," Journal of Business Strategy 5, 30-37.
19. Paxson, D., and H. Pinto, 2003. "Leader/follower real value functions if the market share follows a birth/death process", Chapter 12 of Real R\&D Options (D. Paxson, ed.), Butterworth-Heinemann, Oxford: 208-227.
20. Paxson, D., and H. Pinto, 2005. "Rivalry under price and quantity uncertainty." Review of Financial Economics 14, 209-224.
21. Paxson, D., and A. Melmane, 2009. "Multi-factor competitive internet strategy evaluation: Search expansion, portal synergies." Journal of Modelling in Management 4, 249-273.
22. Pindyck, R. and D. Rubinfeld, 2018. Microeconomics $9^{\text {th }}$ Edition, Pearson, London.
23. Roberts, K., 2003. "What strategic investments should you make during a recession to gain competitive advantage in the recovery?" Strategy \& Leadership 31, 31-39.
24. Siddiqui, A. and S-E Fleten, 2010. "How to proceed with competing alternative energy technologies: A real options analysis." Energy Economics 30: 817-830.
25. Sydsaeter, K., P. Hammond, A. Seierstad and A. Strom, 2005. Further Mathematics for Economic Analysis, Prentice Hall, London.
26. Tsekrekos, A., 2003. "The effect of first-mover's advantages on the strategic exercise of real options", Chapter 11 of Real R\&D Options (D. Paxson, ed.), Butterworth-Heinemann, Oxford: 185207.

Supplementary Appendix
A NPV Value Functions
B Derivation of Joint Solutions
C Decomposition of Value Functions
D Methodology of the Market Share Partial Derivatives
E Coefficient Derivatives at Three Stages
F Values at Initial Stage from Changing MMS

[^0]: ${ }^{1}$ a.azevedo@aston.ac.uk, corresponding author

[^1]: ${ }^{2}$ The NPV methodology and calculations are shown in Appendix A, subscript I indicates NPV, II Joint for the thresholds and option coefficients. L/XX is the leader's market share in regime 3 (line 3), L/YX is the leader's market share in regime 2 after the leader has switched, L/YY is the leader's market share in regime 1 (line 1) after both have switched, $\mathrm{F} / 0 \mathrm{X}=1$ is the follower's market share after the leader divests. A_{1} is the option coefficient for switching when v has increased, A_{2} the option coefficient for divestment when v has decreased, $\beta_{1,2}=$ $\left(\frac{1}{2}-\frac{r-\delta}{\sigma^{2}}\right) \pm \sqrt{\left(\frac{r-\delta}{\sigma^{2}}-\frac{1}{2}\right)^{2}+\frac{2 r}{\sigma^{2}}}$ are the positive/negative solutions for the quadratic equation assuming v follows a geometric Brownian motion with volatility s and drift $r-d$, where r is the riskless interest rate and d is the convenience yield. S, D denote the strategic options for when the firm switches/divests, SS, DD denote the rival options for when the rival switches/divests with the option values. The strategic options are sometimes indicated as the option coefficients times v^{bl} or $\mathrm{v}^{\mathrm{b} 2}$, such as SO FD (A2IIFD $\mathrm{v}^{\mathrm{b} 2}$), SO LD, SO LS, SO FS, and the rival options as RO FDD, RO FSS, and RO LSS.

[^2]: ${ }^{3}$ These are also the assumptions in Adkins et al. (2022), along with the derived solutions described in detail in Appendix B. There are many other possible configurations, with different consequences.

[^3]: ${ }^{4}$ Spreadsheets for the solutions for the NPV version (without options) and the joint formulation are available in the Supplementary Appendix A and B.

[^4]: ${ }^{5}$ Investment Cost is treated as a positive cash flow when the firms divest, and negative when the firms switch, net of salvage value. See Appendix C for an alternative graphic presentation of these value functions.

[^5]: ${ }^{6}$ Appendix F shows the effect at Stage 1 of changes in the L's Middle Market Share.
 ${ }^{7}$ Of course, this ignores the possibly irrecoverable expenditures (such as one-time advertisements) to obtain a permanent increase in the L's market share at any stage.
 ${ }^{8}$ The novel methodology for deriving these partial derivatives is described in Appendix D using the Implicit Function approach explained in Sydsaeter et al. (2005).

[^6]: ${ }^{9}$ All of the results are shown in the Supplementary Appendix Table E4, with comparisons of the partial derivatives using Mathematica and the approximate total derivatives assuming a $.1 \%$ change in the market share at each stage. Generally, all of these 27 sets of calculations are quite close, with slight differences curiously only in the middle and final stages for the SO L S and RO F DD as shown in Tables E2 and E3.

