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Abstract

Hydropower plants provide flexibility and storage to support the penetration of renewable

energy sources needed to meet climate goals. Investments to upgrade their capacity depend

on accurate valuation. Such strategic valuation in principle depends on long-term market price

movements, tactical capacity allocation, and capacity bids that respond to short-term price fluc-

tuations. Given the complexity of this holistic problem, hierarchical planning is commonplace,

where investment models simplify tactical capacity allocation decisions and ignore the value of

short-term production flexibility. We formulate a novel investment model that accounts for these

aspects. While our problem is complex, we show how a combination of price modeling, informed

by empirical analysis, and the use of reinforcement learning to solve for capacity allocation can

lead to insightful semi-analytical investment policies. In particular, these policies highlight that

capacity investment is supported at lower power prices when the short-term variability of these

prices increases, that is, when the value of short-term production flexibility is higher. A numer-

ical study based on real operational and market data shows that valuations from our model can

be computed efficiently. Our findings suggest that investment models enabled by reinforcement

learning that value the operational flexibility of production assets at long and short time scales

can significantly help promote additional capacity in hydro power. The tools we develop are

potentially relevant for analogous valuation of investments in other renewable energy production

assets.

1. Introduction

Hydropower plants with storage reservoirs are flexible and can help to integrate the increasing

amount of wind and solar. However, many hydropower plants rely on old technology from the large-

scale hydropower projects in the mid-20th century, which were designed to operate under different

market conditions (IRENA 2015, EIA 2017). In addition to an aging hydropower fleet, most of

the economically viable hydropower potential in developed regions, such as Europe, Canada, and

the United States, is already exploited. Thus, upgrading existing hydropower plants is becoming

increasingly relevant.

Investment in hydropower capacity is costly, and to support these decisions, accurate mathe-

matical models and methods for the calculation of operational revenues associated with investment

opportunities are crucial. Producers typically aim at maximizing the estimated market value of

their assets (Wallace and Fleten 2003, Nadarajah and Secomandi 2021). This involves the esti-

mation of the real options value of dynamically taking profit-maximizing decisions in response to

exogenous information (Dixit and Pindyck 1994, Duffie 2010), which means establishing production
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and investment policies in the presence of uncertain factors such as weather and risk-adjusted prices

(Dimoski et al. 2019). In addition, hydropower operators can utilize hourly variations in prices op-

erationally. Uncertainty in weather and prices, and the short time scale required to capture the

inherent flexibility that the producer has to respond to short-term price fluctuations, make capacity

valuation a complex problem.

Hierarchical planning provides a framework for decision making at different organizational levels.

Anthony (1965) classifies three categories: Strategic planning, tactical planning, and operations

control. At lower levels, detailed decisions determine day-to-day operations. At higher levels,

aggregate decisions determine resource utilization and expansion projects. This decoupling breaks

down complex and coupled problems into tractable optimization formulations that can be solved

for each level. Hierarchical planning has been widely used in applications such as manufacturing

and distribution of products, vehicle routing and scheduling, and production scheduling, among

other applications (Dempster et al. 1981). A notable characteristic of planning in the setting of

renewable energy production scheduling and capacity installment is the interaction with financial

markets and weather. Thus, the valuation of capacity is intimately tied to market and weather

dynamics.

In this work, we formulate the capacity upgrade problem as a Markov decision process (MDP).

The MDP accounts for detailed production decisions for the valuation of resources in the presence of

market and weather dynamics. Because of the high-dimensional state space, long time horizon, non-

convex action set, and non-linear cost structure, the MDP is computationally intractable. Based on

the structural properties of the MDP, we propose to solve the problem using reinforcement learning

combined with real options analysis to obtain insightful semi-analytical policies. Our analysis

shows that the integration of tactical planning and operations control significantly enhances the

resource value and thus affects long-term strategic planning policies. As a result, higher capacity

investments should be undertaken sooner if the short-term flexibility to respond to price fluctuations

is accounted for. We further analyse a situation where hourly prices vary more, and we find that

assumptions regarding hourly price variations have a substantial impact on capacity investment

policies.

1.1 Novelty and related work

We contribute to the growing literature on decision making in renewable energy from a price-taker

perspective (Fleten et al. 2007, Boomsma et al. 2012, Liu et al. 2019). Specifically, we study capacity

investments in existing hydropower plants. Related work include Bøckman et al. (2008) who analyze

investments in new small hydropower projects under long-term price uncertainty, assuming the

resource value is exogenously given, and Andersson et al. (2014) who combine production scheduling

and investment valuation. Compared to these works, our production scheduling and resource

valuation are considerably more sophisticated. In particular, we include the short-term operational

control aspect for better capturing the short-term flexibility. Furthermore, we provide bounds on

the value of the optimal production schedules, and we obtain semi-analytical investment policies

for hydropower plant upgrades, which allows us to analyze the effect of short-term price variations

on long-term capacity investments.

Our second contribution is to the literature on hierarchical planning (Anthony 1965, Bitran

and Tirupati 1993, Dempster et al. 1981, Lenstra et al. 1984). More specifically, we contribute

to the literature on hydropower reservoir management and production planning (Gjelsvik et al.
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2010, Shapiro et al. 2013, Löhndorf et al. 2013). Because of computational challenges, the reservoir

management problem is solved at different time scales, where the output of a seasonal problem,

i.e. tactical decisions, are used to estimate the end of horizon value of the short-term problem, i.e.

operations control (Wallace and Fleten 2003). We propose to formulate the combined short-term

and seasonal planning problem as an MDP for resource valuation, integrating tactical planning

and operations control. This accounts for both uncertainty in weekly prices and inflows, and the

flexibility to quickly ramp up and down production, which we show are both important features

when considering hydropower capacity investments.

Our third contribution is to the reoptimization literature for obtaining feasible and near-optimal

policies in multistage stochastic problems. The reoptimization heuristic has been extensively ap-

plied by energy storage practitioners and academic researchers (Lai et al. 2010, Wu et al. 2012,

Nadarajah and Secomandi 2018, Löhndorf and Wozabal 2021), and information relaxations and

duality theory is a popular approach for bounding the policy value (Brown et al. 2010). Lai et al.

(2010) find that the rolling intrinsic policy is near-optimal in gas storage applications, and Sec-

omandi (2015) provides theoretical support for this. However, in the application of hydropower,

there is exogenous factors that cannot be perfectly hedged, i.e. inflow, which may lead to poorer

performance of the reoptimization heuristic. The state-of-the-art algorithm for solving the seasonal

hydropower problem is stochastic dual dynamic programming (Pereira and Pinto 1991), which

has convergence guarantees under certain assumptions (Philpott and Guan 2008). However, in

our setting, the reoptimization heuristic is suitable for tackling the integrated tactical planning

and operations control MDP. We analyse numerically situations where the reoptimizaton heuristic

provides, or fails to provide, a near-optimal policy.

Our fourth contribution is to the real options literature on irreversible timing options (Dixit

and Pindyck 1994). We consider a one-time investment opportunity in production capacity, where

the capacity level is optimized upon commencement (Dangl 1999, Fleten et al. 2007, Hagspiel

et al. 2016, Huisman and Kort 2015). We study an existing hydropower plant, which means

that additional cashflows from operations start being generated after the investment. Often, the

relationship between capacity and production output is often subject to coarse approximations in

the real options literature on irreversible timing options. We show how a combination of price

modeling and the use of reinforcement learning for operations planning can lead to insightful semi-

analytical capacity investment policies.

1.2 Paper structure

The paper is structured as follows: In Section 2 we present the common industry planning approach

from the perspective of hydropower producers. In section 3 we present a capacity upgrade MDP.

The solution approach is presented in Section 4. Section 5 contains numerical results from case

studies. Finally, concluding remarks are provided in Section 6.

2. Industry practice through a hierarchical-planning lens

In this section, we overview the planning approach in the hydropower industry, illustrated in

Figure 1, based on our interactions with companies in this sector. While each company has its

own internal processes, which may vary, our goal is to focus on the core ideas and highlight the

heightened importance of valuation in this context.

Hydro power capacity upgrade decisions often involve net present value (NPV) analyses over
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Figure 1: Common industry practice for hydropower planning.

a horizon spanning about thirty years. This is illustrated in the upper level in Figure 1. In

particular, NPV calculations are performed for different capacity levels. The annual cash flow

estimates needed for these calculations correspond to an extrapolation of revenues either from a

representative week obtained by heuristically using short-term operational models that account for

short-term flexibility, or from a representative year using medium-term tactical planning models

that account for price and weather uncertainty. Long-term trends in prices and inflow of water are

considered by repeating the NPV analysis for several long-term market and climate scenarios. In

each case, the NPV is compared against an internal investment hurdle to determine if the capacity

should be upgraded and by what amount. The outcome of this strategic planning exercise is the

upgraded capacity of the plant, which is a critical input to the tactical planning phase.

The goal of tactical planning is to obtain an accurate estimate of the marginal (production)

value of water in the short-term, for instance, a week ahead. This is illustrated in the middle level

in Figure 1. This value is the expected price at which power generated from a unit of water can be

sold for in the market if the timing of this sale is optimized accounting for reservoir and production

capacities as well as inflow and price dynamics. The water value is expressed in monetary units

per MWh (e.g., $ per MWh or AC per MWh). To get an accurate estimate of the marginal value

of water, the tactical production decisions need to be planned over a 1-3 year horizon. Owners of

large reservoirs relative to annual expected inflows need a long time horizon to avoid end-of-horizon

effects on the near-term marginal value of water, while small reservoirs that quickly get emptied

need a shorter time horizon. The tactical planning phase accounts for uncertainty in prices and

inflows, partly at the expense of physical system details for computational tractability. Stochastic

models for uncertain prices are either based on the financial market or fundamental modelling, or a

combination. For inflows, producers may use up-to-date probabilistic weather forecasts for the near

future, before transitioning to a stochastic model that includes time of the year as a feature and

intertemporal effects. Given these models, tactical production decisions can be optimized, from

which the marginal water value at any point in time and state can be derived. This serves as the

end of horizon value for the short-term models. Therefore, week-ahead water values are typically

reestimated every week using updated forecasts for prices and weather. For more details on tactical

planning in hydropower, we refer to Gjelsvik et al. (2010) and Pérez-Dı́az et al. (2020).

The short-term model aims at providing decision support for day-to-day operations. This

is illustrated in the lower level in Figure 1. At this time scale, the decision problem is often
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considered as deterministic, which allows for a more precise description of the physical system.

Still, stochasticity in prices and inflows at a longer time scale enters through the estimated state-

dependent water values from the tactical planning level. The output from the short-term model is

used for constructing bids in the day-ahead market. Every day, individual producers submit bids to

the market operator in the form of price-volume pairs for each hour of the coming day. Therefore,

the short-term models are rerun daily based on updated information on weather and markets for

efficient use of water. This daily reoptimization means that the aggregated short-term operational

decisions do not necessarily correspond to the associated tactical decisions at the higher level. For

more details on short-term operational modeling in hydropower, see, e.g. Conejo et al. (2002) or

Belsnes et al. (2016).

The planning flow summarized above is an example of hierarchical planning in renewable energy

production and has several advantages that are well known in the standard use of such planning

in e.g. manufacturing and distribution of products, or job shop design and scheduling (Dempster

et al. 1981). It breaks down an otherwise coupled and challenging planning problem into smaller

manageable strategic, tactical, and operational sub problems, which has several advantages. First,

the decisions in each subproblem of the hierarchy can be modeled more accurately while still leading

to solvable optimization formulations. Second, the hierarchical approach facilitates planning at

different time scales. For instance, the strategic problem, which often is a one-time decision that

requires a planning horizon of several decades, determines the capacity upgrade amount and only

approximately captures the effect of day-to-day operations and tactical planning decisions through

the cash flow estimate of a representative week or year. Thus, the detailed planning of production

decisions at lower levels, which needs to be implemented at some future point in time, can be

postponed. These decisions can then benefit from the unfolding of information and up-to-date

forecasts regarding the market and inflow, which are unavailable at the time the long-term strategic

planning model is solved.

The hierarchical structure used in practice, however, can be improved from a valuation stand-

point, while retaining the flexibility it provides for operational decision making. This is easiest

to explain by focusing on investment planning. We focus on two main aspects which can be im-

proved from a valuation standpoint: First, the integration of approximate operations control and

medium-term capacity allocation for resource valuation, and second, the real options value asso-

ciated with the timing flexibility of capacity installments. As explained above, the water value

estimates obtained from solving the seasonal resource valuation problem are linked to capacity

constraints. However, if the operational flexibility on a shorter time scale is ignored during the

water value estimation, the value of possessing capacity may be underestimated. On the other

hand, the short-term problem needs an estimate of the marginal end-of-horizon water value. This

makes the integration of the short-term production model and seasonal resource valuation model

relevant from a valuation standpoint. Furthermore, there is managerial flexibility in the timing of

capacity installments. Thus, there may be an opportunity cost of installing an investment project

if acting according to the NPV and internal investment hurdle rule. This aspect has been addressed

in the academic literature by Bøckman et al. (2008). However, they consider pure strategic plan-

ning of new hydropower plants, assuming annual cashflows from a set of capacity alternatives are

exogenously given. We focus on the integration of the hierarchical levels for valuation of additional

capacity installments in existing hydropower plants. Finally, although we focus on the investment
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problem, the same idea also helps improve the water valuation by the proposed integration of the

short-term model and the seasonal planning model.

3. Hydropower capacity upgrade as an MDP

In this section, we present the hydropower capacity upgrade MDP. We first present the dynamics

of exogenous factors, before we describe the long-term optimal stopping and upgrade problem.

Next, we focus on the resource valuation, which determines the cashflows associated with capacity

upgrades. We propose two versions for the resource valuation; with and without the operations con-

trol aspect, i.e. short-term within-week flexibility. We formulate the problem in energy equivalents,

which means that capacities and volumes are already transformed into units of MWh (Arvanitidits

and Rosing 1970).

3.1 Data and stochastic model

Exogenous factors that affect hydropower planning are prices and inflows to the reservoir. We

denote the price and inflow at time t P r0,8q by St and Zt, respectively. We study a price-

taking hydropower operator that aims at maximizing the market value of the assets. Therefore,

we calibrate a stochastic model using futures prices on electricity. The price of these contracts is

based on the market expectations of the average price of electricity over some period of time. Thus,

the first step is to construct smooth synthetic futures curves. We do this by applying the method

by (Benth et al. 2007). The futures price data set is obtained from Montel (2021) and consists of

futures contracts traded in the period from 2012 to 2018 with maturities between 1 month and 5

years. Given historical synthetic weekly futures prices, we calibrate the two-factor stochastic model

lnSt “ ϕ1 cos

ˆ

2πt

θ

˙

` ϕ2 sin

ˆ

2πt

θ

˙

` χt ` ξt, (1)

dχt “ p´κχχt ´ λχqdt ` σχdzχ (2)

dξt “

ˆ

µξ ´ λξ ´
1

2
σ2
ξ

˙

dt ` σξdzξ, (3)

where dzχdzξ “ ρχξdt. The trigonometric functions account for seasonality, where θ is the number

of periods in one cycle, in our case 52 weeks. The stochastic factors account for long-term price

movements through a geometric Brownian motion and short-term price deviation through a mean-

reverting process (Schwartz and Smith 2000). The parameters ϕ1 and ϕ2 determine seasonal effects,

and κχ accounts for mean reversion in prices. Parameters λχ and λξ are risk premiums, and σχ
and σξ are volatility in short-term prices and long-term prices, respectively. The drift of long-term

log prices are given by µξ ´ λξ ´ 1
2σ

2
ξ , and the correlation between short-term and long-term prices

is ρχξ.

As described in the previous section, practitioners simulate prices either based on fundamental

models or market models. For the latter, the two-factor model that we apply is suitable. Monte

Carlo simulations can be obtained from the scheme

St “ exp

ˆ

ϕ1 cos

ˆ

2πt

θ

˙

` ϕ2 sin

ˆ

2πt

θ

˙

` χt ` ξt

˙

(4)

ξt`∆t “ ξt `

ˆ

µξ ` λξ ´
1

2
σ2
ξ

˙

dt ` σξ
?
∆tϵ1 (5)
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χt`∆t “ χte
´κχ∆t ´

λχ

κχ
p1 ´ e´κχ∆tq ` σχ

d

1 ´ e´2κχ∆t

2κχ
ϵ2, (6)

where ϵ1 is standard Gaussian and ϵ2 is Gaussian with mean ρχξϵ1 and variance 1´ρ2χξ. By letting

∆t “ 1
52 years, weekly prices can be simulated. For hourly prices, we need to estimate time-of-week

effects for the short-term operations control aspect. This time scale is too short to be observed

in the financial market. We therefore estimate the hourly price profile using historical spot price

data from NordPool (2021), which is the market operator in the Nordic countries. We use the spot

prices to estimate the expected deviation from the mean in each hour of the week. Typically, the

price during the day is above the weekly mean and prices during the night are below the weekly

mean. We denote the within-week price profile at time t by the vector αt. Thus, the price in each

hour of week t, given a simulated weekly log price mean lnSt, is given by lnSt ` αt. An example

of such a profile is provided in Section 3.4 where we illustrate the operations control aspect.

The inflow data set is supplied by a hydropower producer located in the western part of Norway.

The data set consists of weekly inflow observations in the period from 2009 to 2018. We use a similar

model as in Gjelsvik et al. (2010), which also is common among practitioners,

Zt “ max tpµ̄t ` σ̄tζtq , 0u (7)

dζt “ ´κζζtdt ` σζdzζ , (8)

where µ̄t is an estimated of the mean at time t, σ̄t an estimate of the standard deviation, and σζ
determines the volatility of inflow deviations from the mean. The reason for the normalization is

because inflows typically possess strong seasonal characteristics, both in mean and variance. The

stochastic factor in (8) accounts for inter-temporal effects through mean-reversion parameter κζ
and can be simulated as follows,

ζt`∆t “ ζte
´κζ∆t ` σζ

d

1 ´ e´2κζ∆t

2κζ
ϵ3, (9)

where ϵ3 is a standard Gaussian variable. As opposed to prices, there are no apparent time-of-week

effects for inflows. Therefore, we uniformly allocate the accumulated weekly inflow to each hour of

the week, which we elaborate on when we present the operations control aspect.

Throughout this section, we use Greek letters for stochastic variables and parameters of the

stochastic processes (parameters in (1)-(3), (7)-(8), and the price profile αt). We use bold letters

for vectors and denote the exogenous state vector at time t by ωt “ pχt, ξt, ζtq P R3
`. Furthermore,

we use lower case letters for decision variables and endogenous states and capital letters for derived

exogenous states (St and Zt) and for parameters of the decision model, which we introduce next.

3.2 Optimal stopping and upgrade decision

At any time t P r0,8q, additional production capacity can be installed. The plant has an initial

production capacity q0 and reservoir capacity R. We denote the one-time unknown upgrade time

by τ . The upgrade decision at time τ is a scalar denoted u P p0, R ´ q0s, where R is the maximum

reservoir capacity. Thus, the endogenous strategic state is
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qtpτ, uq “

#

q0 if t ă τ ,

q0 ` u if t ě τ .
(10)

Choosing u ą 0 entails an immediate cost

Kpuq “ AeBu, (11)

where the parameter A determines the cost of initiating capacity upgrade, and the parameter B

determines the relationship between cost and additional capacity. This cost function has been

used in the academic literature (Bøckman et al. 2008). In practice, it is difficult to specify and

estimate a cost function for capacity installments. However, some general features applies, such as

an increasing marginal cost of installing capacity. The goal is to find a strategic planning policy,

i.e. timing τ and capacity installment u. The optimal stopping problem with capacity upgrade can

be formulated as

Hpq0,ω0q “ max
τPr0,8q,uPpR´q0s

E
„

ż 8

0
γt1Vtpωt, qtpτ, uqqdt ´ γτ1Kpuq

ˇ

ˇ

ˇ
ω0

ȷ

, (12)

where γ1 “ e´r is the continuously compounded discount rate and r is the risk-free rate. The

capacity function qtpτ, uq is defined in (10) and the cost function Kpuq is defined in (11). The

decision when to upgrade and by how much requires an annual valuation of the resource (water)

as a function of time and capacity. This is denoted Vtpωt, qtq in (12). To obtain this valuation, we

solve a production scheduling problem over the interval rt, t ` ∆ts, where ∆t is an annual interval.

We explain this next.

3.3 Resource valuation and production decisions

We obtain the resource valuation Vtpωt, qtpτ, uqq in (12) at a given time t and a given capacity

installment at time t by solving a production scheduling problem for several capacity alternatives.

Thus, capacity is a parameter in the resource valuation phase. We therefore introduce Q :“ qtpτ, uq,

while keeping t fixed throughout this section. We first explain the resource valuation with weekly

decision periods without short-term flexibility.

Resource valuation without short-term flexibility: The resource valuation corresponds

to the tactical planning level in Section 2 and illustrated in Figure 1. This is often referred to as

medium-term hydropower scheduling in the academic literature (Flatabø et al. 1998, Gjelsvik et al.

2010). Decisions are made weekly, which we denote by index i P It “ r0, 1, ..., nIs, where I :“ ∆t

is a one-year horizon. To avoid end of horizon effects, the tactical planning horizon for resource

valuation is a multiple of n years. The endogenous tactical state in week i is the reservoir volume

lt,i P r0, Rs, and the decision is weekly production xt,i P Xt,iplt,i,ωt,iq. Executing xt,i in stage i

entails an immediate reward

rWt,ipxt,i,ωt,iq “ St,ixt,i, (13)

which is the product of price and production volume, i.e. revenue from electricity sales. Superscript

W abbreviates week and refers to the length of the decision period. The price St,i is defined in (1).
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When water is used for electricity generation, the reservoir volume gets updated as follows,

lt,i`1 “ fplt,i, xt,i,ωt,iq “ lt,i ´ xt,i ` Zt,i ´ zt,i i P It, (14)

where zt,i is spillage. Spillage happens if unexpectedly much inflow arrives at a given stage, which

cannot be stored because of the limited reservoir and/or production capacity. This transition

function ensures the energy balance in time. It states that the reservoir volume at stage i needs

to be the sum of the reservoir volume in stage i, lt,i, and incoming inflow Zt,i minus the sum of

production xt,i and potential spillage zt,i. The endogenous state update is illustrated in Figure 2. In

the upper level, the capacity gets updated. In the lower level, the capacity is kept fixed during the

resource valuation, which happens in the interval rt,∆ts. In the lower level, the reservoir volume

gets updated for a given upper level time t and capacity qt “ Q.

i

... ...

Strategic state update in continuous time

li li+1

Tactical state update in discrete time

qt qt+Δt

l0 l1 lI-1 lI =lt+Δt,0lt,0=

Figure 2: Illustration of the planning horizon. In the upper level, the capacity gets updated in
continuous time t P r0,8q. In the lower scale, the reservoir volume gets updated in discrete time
i P It.

The generation capacity Q determines the boundary of the feasible stage-i action set which is

given by

Xt,iplt,i,ωt,i;Qq “ t lt,i ´ xt,i ` Zt,i ´ zt,i ď R (15a)

xt,i ď lt,i ` Zt,i (15b)

xt,i ď Q (15c)

xt,i, zt,i ě 0u, (15d)

where constraint (15a) ensures that the reservoir volume is less than the maximum reservoir

capacity and constraints (15b)-(15d) are bounds on the maximum and minimum production and

spillage. The resource value in stage i and state plt,i,ωt,iq for capacity Q is given by a stochastic

dynamic program (SDP). We denote by V W
t,i plt,i,ωt,i;Qq and Wt,ip¨,ωt,i;Qq the value function and

continuation function of the SDP, respectively, at the weekly time scale. The SDP can be formulated

as

V W
t,i plt,i,ωt,i;Qq “ max

pxi,ziqPXt,iplt,i,ωt,i;Qq
rWt,ipxt,i,ωt,iq ` γ2Wt,iplt,i`1,ωt,i;Qq (16)

Wt,ip¨,ωt,i;Qq “ EpV W
t,i`1p¨,ωt,i`1;Qq|ωt,iq, (17)

with V Wplt,nI ,ωt,nI ;Qq “ 0 for each lt,nI , and where γ2 :“ e´r∆i with ∆i “ 1
52 and r is the risk-free

rate. The immediate reward rWt,ipxt,i,ωt,iq is defined in (13). Next, we present the resource valuation

with short-term flexibility to exploit within week variations in prices.
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Resource valuation with short-term flexibility: Finally, we account for the short-term

flexibility of the operations control aspect, often referred to as short-term hydropower shcedul-

ing in the academic literature (Flatabø et al. 1998, Borghetti et al. 2008, Belsnes et al. 2016). Our

approach in this section is different from the procedure we described in Section 2 where water values

from the tactical phase serve as end-of-horizon condition for the short-term operational problem.

Instead, we integrate the short-term operational aspect in the tactical planning phase. As explained

Section 2, producers submit price-volume pairs for every hour the next day to the market operator.

We approximate this process by introducing hourly decision periods j P J “ t0, 1, ..., Ju. We

augment the stage i decision vector and define the hourly decision vector yt,i “ tyt,i,j , j P J u for

week i. Similarly, for spillage we define vt,i “ tvt,i,j , j P J u. Furthermore, we introduce variables

mt,i “ tmt,i,j , j P J u for keeping track of the reservoir volume between hours of the week. As

explained in Section 3.1, the price for each hour j in week i and year t, given the price realization

St,i is obtained by a price profile αt,i “ pαt,i,j , j P J q, which determines the price in every hour

of the week. Thus, the log price in hour j is lnSt,i,j “ lnSt,i ` αt,i,j . For an illustration of αt,i,

see Figure 13 in Appendix B. The hourly inflow is obtained by uniform allocation of the (realized)

weekly inflow, Zt,i,j “ 1
JZt,i. The modified revenue in stage i becomes

rHt,ipyt,i,ωt,iq “
ÿ

jPJ
γj3yt,i,jSt,i,j , (18)

where γ3 discounts cashflows within a stage i, and superscript H abbreviates hour, which refers to

the decision granularity. The endogenous state update becomes

lt,i`1 “ fplt,i,yt,i,ωt,iq “ lt,i ´
ÿ

jPJ
yt,i,j `

ÿ

jPJ
Zt,i,j ´

ÿ

jPJ
vt,i,j i P It, (19)

which states that the reservoir volume in the next stage is the reservoir volume from the previous

stage plus the incoming inflow in every hour of the week minus the sum of production in each

hour of the week minus the potential spillage in each hour. The stage i action set in (15a)-(15d) is

modified to

Yt,iplt,i,ωt,i;Qq “ t mt,i,0 “ lt,i (20a)

mt,i,j`1 “ mt,i,j ´ yt,i,j ` Zt,i,j ´ vt,i,j j P J zt0u (20b)

mt,i,j ´ yt,i,j ` Zt,i,j ď R ` vt,i,j j P J (20c)

yt,i,j ď mt,i,j ` Zt,i,j j P J (20d)

yt,i,j ď
Q

J
j P J (20e)

yt,i,j , vt,i,j ě 0 j P J u. (20f)

The reservoir volume transition in (20b) is illustrated in the lower level in Figure 3. We em-

phasize that there still are only two levels where decisions are made: The upper strategic level for

capacity installments, and the lower tactical and operational level for production decisions which is

used for resource valuation. The important parameter/variable that links the levels of the hierarchy

is Q in (20e), which is a parameter in the lower resource valuation level, and a decision variable in

10



the upper strategic level. Our formulation is based on energy equivalents. Therefore, Q is measured

in units MWh per length of the decision periods. We specify it as MWh per week, which is why

capacity is allocated uniformly to hours of the week, as seen in the right hand side in (20e).

m0

i

... ...

Strategic state update in continuous time

... ...

Operational control

m1 mj mj+1 mJ-1 mJ

li

lt,i+1==lt,i

li+1

Tactical state update in discrete time

qt qt+Δt

l0 l1 lI-1 lI =lt+Δt,0lt,0=

Figure 3: Illustration of the planning hierarchy and time scales. In the upper level, the capacity
gets updated in continuous time t P r0,8q. In the middle scale, the reservoir volume gets updated
in discrete time i P It. The lowest scale illustrates the operations control aspect in discrete time
j P J . Subscripts for fixed indices are omitted in the figure.

We denote by V H
t,iplt,i,ωt,i;Qq and Ct,ip¨,ωt,i;Qq the value function and continuation function

of the SDP, respectively, with hourly decision periods. The SDP formulation becomes

V H
t,iplt,i,ωt,i;Qq “ max

pyt,i,vt,i,mt,iqPYt,iplt,i,ωt,i;Qq
rHt,ipyt,i,ωt,iq ` γ2Ct,iplt,i`1,ωt,i;Qq (21)

Ct,ip¨,ωt,i;Qq “ EpV H
t,i`1p¨,ωt,i`1;Qq|ωt,iq, (22)

with V H
t,nIplt,nI ,ωt,nI ;Qq “ 0 for each lt,nI , and where γ2 is the weekly discount rate. The immediate

reward is defined in (18). The relevant input to the upper level optimization problem in (12) is the

discounted accumulated expected revenues from the solution of the resource valuation MDP for a

fixed capacity installment Q at time t, i.e. Vtpωt, qtpτ, uqq :“ V H
t,0plt,0,ωt,0;Qq with Q :“ qtpτ, uq,

which fully specifies the optimal stopping and capacity installment MDP in (12). In our numerical

section, we consider both the SDP in (21)-(22) which includes short-term operational flexibility,

and the SDP in (16)-(17) which excludes short-term operational flexibility in resource valuation.

Computing the continuation function Ct,iplt,i,ωt,i;Qq is intractable. Therefore, we propose in

Section 4 approximations which allow us to obtain a feasible policy which we assess against a dual

bound (Brown et al. 2010). Before we proceed to the solution approach, we illustrate the added

value of including the stage-i intrinsic problem under resource valuation, which better captures the

value of storage and capacity to utilize short-term price variations operationally.

3.4 Illustration of resource valuation with and without operations control

We illustrate the short-term aspect by looking at first-stage decisions of problem (16)-(17) and

(21)-(22), respectively. We solve each problem near-optimally over a two-year horizon so that we

can analyse the first-stage decision for different capacity alternatives and different assumptions

regarding within-week prices. This is illustrated in Figure 4. The weekly price profile in year 0 and

week 0, S0,0 “ pexp plnSt,i ` αt,i,jq, j “ 1, 2, ..., 56q, is illustrated by the solid black line with black

points every third hour. The number of periods in the week is the number of hours of the week

168 divided by the number of hours in each block, which is 3 in this example. The dashed line is

the weekly price mean. Typically, during the day prices are above the weekly mean and during the

11



night they are below. During the weekend, prices tend to be below the weekly mean. The bars in

the lower panel are near-optimal production decisions in each case. The light shaded grey bars are

the first week production decision without short-term flexibility, i.e. x0,0, and the dark shaded bars

are the first week production decisions with short-term flexibility, i.e. y0,0 “ py0,0,j j “ 1, 2, ..., 56q.

Figure 4a illustrates the case with low production capacity. In this case, the producer generates

electricity the whole week if short-term flexibility is ignored, and receives the price 33.4 AC/MWh. In

terms of the marginal water value (MWV), this means that MWVă 33.4 AC/MWh. When including

short-term flexibility during resource valuation, the producer only produces at high-price periods.

In this case, MWV« 35.1 AC/MWh, which is the lowest price the producer generates electricity at in

the first week, illustrated by the dotted line in Figure 4a. Figure 4b illustrates the near-optimal first

week production decisions when having higher production capacity. Similar to the other case, the

producer produces the whole week if short-term flexibility is ignored. If the within-week flexibility

is accounted for, the producer requires higher prices for each unit of water produced. In the high

capacity case, MWV« 37.1 AC/MWh, which is the dotted line in Figure 4b. This illustrates how

capacity and assumptions on within-week prices affect valuation. In the next section, we present

our solution approach for the capacity upgrade MDP.
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(a) Low capacity.
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(b) High capacity.

Figure 4: Resource valuation with and without short-term flexibility. The black line with points
is the average price per three consecutive hours of the week. The light shaded bars are the near-
optimal first week production decisions without short-term flexibility, and the dark shaded bars are
the first week production decisions with short-term flexibility. The dashed line is the weekly mean
price, and the dotted lines are the marginal water values when incorporating short-term flexibility.

4. Solution approach

This section presents our solution approach for the capacity upgrade MDP in (12). We first impose

Assumption 1.

Assumption 1. Strategic decisions are unaffected by the level of the short-term factors.

This assumption has been tested empirically in the setting of long-term investments in energy

applications using oil futures in Schwartz and Smith (2000). We argue that in our setting, this

12



assumption is reasonable, since we consider a long planning horizon and short-term effects will

quickly diminish. In Appendix D we assess this assumption numerically.

The following proposition characterizes the behaviour of the stage-i value function and contin-

uation function, formulated in (21)-(22), in endogenous states, and is useful in designing a solution

approach for the capacity upgrade MDP.

Proposition 4.1. For a given pt, i,ωt,iq P r0,8q ˆ I ˆ R3
`, the functions V H

t,iplt,i,ωt,i;Qq and

Ct,iplt,i,ωt,i;Qq are concave in lt,i P r0, Rs and Q P rq0, Rs.

Proof. See Appendix A.1.

We need to estimate the resource value as a function of capacity. Our approach involves the

estimation of the resource value based on a discrete set of capacity alternatives, before employing

spline interpolation under the restriction that the overall fit is concave (Pya and Wood 2015),

according to Proposition 4.1. Next, we present the estimation of the resource value.

4.1 The reoptimization heuristic

For resource valuation, we apply the reoptimization heuristic (RH), which is popular among prac-

titioners for the management of commodity storage (Lai et al. 2010). An appealing feature of this

heuristic is that it straightforwardly can integrate tactical planning and operations control, which

is more difficult for other algorithms, such as e.g. stochastic dual dynamic programming, which is

common to apply for medium-term hydropower planning (Pereira and Pinto 1991, Gjelsvik et al.

2010). We use RH for obtaining operational policies for different capacity upgrade alternatives.

Therefore, we omit in this section the year index t.

Let Fi,ν denote the futures price at time i with time to maturity ν. The vector of hourly

futures prices is denoted Fi,ν “ pFi,ν,j , j P J q. The weekly futures price can be obtained from

our price model as the risk-neutral expectation Fi,ν “ EpSν |χi, ξiq, which is provided in Appendix

A.2. Furthermore, let Z̄i,ν,j “ EpZν |ζiq and Z̄i,ν “ pZ̄i,ν,j , j P J q denote the weekly inflow mean

and the vector of hourly expected inflows at time ν, respectively. The RH policy, π̂, is obtained by

solving intrinsic programs repeatedly. In stage i and state pli, ωiq, the RH model is given by

max
pyν ,vν ,mν , νPViq

ÿ

νPVi

ÿ

jPJ
γν2γ

j
3Fi,ν,jyν,j (23)

s.t. pyν ,vν ,mνq P X ILP
i pli, ωiq (24)

where Vi “ ti, i ` 1, ..., nIu is the set of periods from time i to the end of horizon nI, and the

decision vector yν contains hourly decisions in week ν. The feasible action set for the stage-i

intrinsic program is defined by

X ILP
i pli, ωiq “ t

lν`1 “ lν ´
ÿ

jPJ
yν,j `

ÿ

jPJ
Z̄i,ν,j ´

ÿ

jPJ
vν,j ν P ViztnIu (25a)

mν,j “ lν ν “ i (25b)

mν,j`1 “ mν,j ´ yν,j ` Z̄i,ν,j ´ vν,j ν P Vi, j P J ztJu (25c)

mν,j ´ yν,j ` Z̄i,ν,j ď R ` vν,j ν P Vi, j P J (25d)
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yν,j ď mν,j ` Z̄i,ν,j ν P Vi, j P J (25e)

yν,j ď
Q

J
ν P Vi, j P J (25f)

yν,j ,mν,j ě 0 ν P Vi, j P J (25g)

u.

Variables and parameters of the feasible action set of the intrinsic program are defined and ex-

plained in Section 3.3. The RH policy is defined by repeatedly solving intrinsic programs based on

sample paths from the stochastic model. Each time a problem is solved, the first-stage solution of

the stage i intrinsic program is implemented. Then the state gets updated, new information gets

revealed, and a new intrinsic program gets solved. In our setting, the first-stage decisions are the J

first hourly generation decisions. After solving for N sample paths, the lower bound estimate can

be found as the sample average of the accumulated discounted revenue by following the RH policy

along each sample path,

V π̂
0 pl0,ω0;Qq “

1

N

N
ÿ

n“1

ÿ

iPI

ÿ

jPJ
γiSn

i,jy
n
i,j , (26)

where Sn
i,j “ Fn

i,0,j , is the realized price in stage i and hour j, and pyni,j j P J q is the implemented

first-stage decisions when solving the intrinsic program in stage i and sample n. Proposition 4.2

states a property of the value of the RH policy, which simplifies the computation of the overall

policy of the optimal stopping problem in (12).

Proposition 4.2. The optimal solution of the stage-i intrinsic problem in (23)-(24) is independent

of ξi.

Proof. See Appendix A.2.

Proposition 4.2 entails that the performance of the RH policy can be written as

V π̂
0 pl0,ω0;Qq “ eξ0G0pl0, χ0, ζ0;Qq, (27)

Effectively, this means that the tactical and operations control policy, i.e. resource valuation, can

be computed for a fixed ξ0. The value of the RH policy can then be computed as the product

of the long-term level today and the function G0p¨, ¨, ¨;Qq which is concave in capacity Q, by

Proposition 4.1. Given a representative set of capacity alternatives and the performance of the

RH policy for each capacity alternative, we fit a smooth concave function to the data points

pQi, G0pl0, χ0, ζ0;Qkq, k P t0, 1, ...,Kuq, where K is a finite number of capacity alternatives. We

apply the framework by Pya and Wood (2015) for concave spline interpolation. This function serves

then as input to the optimal stopping problem in (12) which we solve analytically. This will be

explained next.

4.2 Characterization of the capacity upgrade policy

Under Assumption 1, only the continuous-time movement of the long-term equilibrium price drives

the value of the investment. Thus, the value of the option and an investment threshold, ξ˚, above

which immediate investment will be optimal can then be derived using Ito’s lemma and optimality
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conditions (Dixit and Pindyck 1994). As explained in the previous section, we approximate the

function Vtpωt, qtpτ, uqq in (12) by eξtGtpqtpτ, uqq. Under Assumption 1 and Propositions 4.2, the

optimal stopping and capacity installment problem in (12) can be written as

Hpq0, ξ0q “ max
τPr0,8q,uPp0,R´q0s

E
„

ż 8

0
γt1e

ξtGtpqtpτ, uqqdt ´ γτKpuq

ˇ

ˇ

ˇ
ξ0 “ ξ

ȷ

. (28)

In this representation of the hydropower capacity upgrade problem, only the long-term price enters

as an exogenous factor, and the resource value function is separated into the product of the long-

term price and a function that is concave in qtpτ, uq, according to Proposition 4.1. This function

represents the annual production output and short-term flexibility which is estimated by the RH

policy. Proposition 4.3 characterizes the strategic planning policy and the associated value. The

value in the waiting region, ξ ă ξ˚, consists of two terms. The first term represents the value of

potentially increasing capacity if the trigger is met, and the second term is the perpetual revenue

of current operations Gpq0q at the current capacity level q0. The value in the stopping region,

ξ ě ξ˚, is the perpetual operational revenue after installing additional capacity, Gpq0 ` uq, minus

the investment cost Kpuq. At the time investment occurs, the optimal capacity choice is where the

marginal cost of installing capacity equals the marginal capacity value, as stated in (33). Since we

do not have an explicit expression for u˚, we solve for D and ξ˚ for a fixed u and then evaluate

(33). If a convergence criteria is not met, we update our guess for u˚ in the direction given by the

sign of (33) and a specified magnitude. The magnitude of a move when guessing u˚ is halved every

time one moves past the solution until the convergence criterion is met. For reasonable starting

values, this numerical scheme converges towards the unique optimal solution of (32)-(33).

Proposition 4.3. The option value in (28) is given by

Hpq0, ξ0q “

$

’

’

&

’

’

%

D exp pξq
β1 `

Gpq0q exp pξq

ρ
if ξ ă ξ˚,

Gpq0 ` uq exp pξq

ρ
´ Kpuq if ξ ě ξ˚.

(29)

where ρ “ r ´ pµξ ´ λξq and

D “
1

β1ρ exp pξ˚q
pβ1´1q

pGpq0 ` uq ´ Gpq0qq , (30)

and β1 is the positive root of

1

2
βpβ ´ 1qσ2

ξ ` βpµξ ´ λξq ´ r “ 0. (31)

The investment trigger ξ˚ and capacity level u˚ are implicitly given by

exp pξ˚q “
β1

β1 ´ 1

Kpuqρ

Gpq0 ` uq ´ Gpq0q
(32)

exp pξ˚q

ρ

BGpq0 ` uq

Bu

ˇ

ˇ

ˇ

u˚
“

BCpuq

Bu

ˇ

ˇ

ˇ

u˚
. (33)

15



Proof. See Appendix A.3

4.3 Dual bound estimation

We compute dual bounds for the production policy which determines the resource value. For the

dual bound estimation, we relax the non-anticipativity constraints and solve deterministic perfect

information problems with dual penalties. Details and theory for dual bounds in stochastic dynamic

programs can be found in (Brown et al. 2010). Let ω̂n :“ tω̂n
0 , ω̂

n
1 , ..., ω̂

n
T u denote a vector of realized

stochastic variables in each stage i P I, and where each stage realization consists of J subperiods.

We define dual penalties

dpyν , ω̂
nq “ δ1

ÿ

νPV0

ÿ

jPJ
yν,j

´

F̂n
ν,j ´ F0,ν,j

¯

` δ2
ÿ

νPV0

ÿ

jPJ
yν,j

´

Ẑn
ν,j ´ Z̄0,ν,j

¯

, (34)

where coefficients δ1 and δ2 need to be estimated, and the price mean and inflow mean are F0,ν,j and

Z̄0,ν,j , respectively. We restrict the penalty coefficients to be stage-independent. For the estimation,

we define a two-dimensional grid and locate approximately which parameter values that lead to the

lowest upper bound. Once an area is located, we define a grid of finer granularity and perform a

local search up to one significant digit for each coefficient. We estimate the coefficients for a capacity

alternative where the gap between the perfect information upper bound and a lower bound obtained

by the RH policy is high. We obtain estimates δ1 “ ´0.8 and δ2 “ ´0.00005. An upper bound can

now be attained by solving deterministic problems for N Monte Carlo samples with the estimated

dual penalties, and then consider the sample average of revenues obtained from all paths. This

bound can then be used to assess the performance of the RH policy, which we demonstrate in our

numerical results.

5. Numerical results

In this section, we present the numerical results from a case study of a Norwegian hydropower

producer considering upgrading its facilities. We first present the instances before we present

results for the capacity upgrade study. We then examine the operational policy and analyse how

the operational pattern changes when the facility is upgraded and with assumptions regarding

short-term price variations.

5.1 Instances

Plant specific parameters, an estimate of the long-term equilibrium price, and the model parameters

of the long-term price dynamics are provided in Table 1. Other parameter estimates that are

used in the case study are provided in Appendix B. The reservoir capacity is 335 GWh, and the

initial generation capacity and annual average inflow are 8.3% and 24.7% of the reservoir capacity,

respectively. This means that about 1/5 of the annual inflow can be stored in the reservoir.

Furthermore, the generation station is already sufficiently large to avoid most water spillage in

flood periods. We aim to test the impact of changing within-week price variations on investment

policies. Therefore, we define in Table 2 three instances. The first instance is the case when using

weekly decision periods for resource valuation, αt,i “ 0. In the second instance, we incorporate

the short-term operations control aspect. In numerical experiments we assume that the within

week variation is independent of week and year. We estimate the within-week price profile αt,i to

historical spot price variations in the period from 2013-2018. We denote this estimate αbase. In the
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third instance, we scale the 2013-2018 variations by 1.5 to study the effect on investment policies if

the within-week price variations increase. We use 3-hourly decision periods, which means that the

vector αbase has 168/3 elements, similar to the illustrative example in Section 3.4. Estimates for

(log) hourly price deviations for all three instances, 0,αbase, and 1.5αbase are plotted in Figure 13

in Appendix B. Figures 4a and 4b illustrate αbase on real scale with the weekly mean 33 AC{MWh.

We run experiments using 2000 samples to compute lower bounds based on the RH policy and

upper bounds based on information relaxations and duality theory. The standard errors of the

lower and upper bounds are at most 0.53% and 0.24%, respectively.

Table 1: Case study parameters.

Value Relative to reservoir capacity

Reservoir capacity R 335 GWh 1.00
Initial generation capacity q0 27.9 GWh/week 0.08

Annual average inflow
ř52

i“1 µ̄i 1354 GWh/year 0.25
Equilibrium price exppξ0) 30.0 AC/MWh
Long-term drift µξ ´ λξ 0.012

Long-term volatility σξ 0.146

Table 2: Instances.

Instance Description Spot price data

αt,i “ 0 Weekly decision periods Zero variations
αt,i “ 1.0αbase 3-hourly decision periods Variations in 2013-2018
αt,i “ 1.5αbase 3-hourly decision periods 1.5 ˆ variations 2013-2018

5.2 The capacity upgrade policy

To estimate the cash flow associated with capacity upgrade alternatives, we estimate the resource

value V π̂
0 pl̄, ω̄;Qkq, where π̂ denotes the RH policy, under different capacity alternatives Qk, k “

1, ...,K ranging from the initial capacity q0 to one third of the reservoir capacity. The initial

reservoir state l̄ is the long-run reservoir volume. For details regarding the estimation of l̄, see

Appendix B. By Proposition 4.1 we can use an arbitrary long-term level ξ0 as initial condition for

the resource valuation. We use long-term means of short-term factors χt and ζt, which are zero,

as the initial conditions for the short-term factors. By doing so, we get an estimate of the annual

cashflow for each capacity alternative for a representative year and long-term equilibrium price

level.

Figure 5a shows the performance of the RH policies. The dotted lines are dual upper bounds

for each instance α “ 0,αbase, and 1.5αbase. The leftmost point, i.e. generation capacity q0 “ 0.08

relative to the maximum reservoir capacity, is the RH policy performance without upgrades. The

solid curves show the performance for a set of generation capacity upgrade alternatives between

0.08 and 0.33 of the reservoir capacity. We observe that the total expected accumulated revenue

improves when including operations control, and is higher when within-week price variations are

higher. Figure 5b shows the performance of the RH-policy for a representative year relative to the

long-term price exppξ0q. That is, the figure showsGpq0`uq as a function of q0`u for u P r0, 0.33´q0s.
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The lines are spline interpolations under the restriction that the overall fit is concave, according to

Proposition 4.1. These are estimated using the approach by Pya and Wood (2015). For consistent

resource valuation, we make sure that the initial and the average end of year 1 reservoir volume is

approximately equal. For details, see Appendix B.
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Figure 5: RH policy performances as a function of generation capacity.

Table 3 highlights the effect of within-week price assumptions on capacity installments. The

net present value (NPV) of continuing operations at the current capacity and current long-term

price exp pξ0q “ 30 AC{MWh is provided in the first row. By comparing this with the second row

where the investment occurs immediately, it is clear that the project should be undertaken in all

instances according to the NPV criterion. The third row reports the real options value, which takes

into account the opportunity cost of realizing the project. Capacity installments are reported in

the next two rows. The fourth row reports the capacity installments if investing now, and the fifth

row reports the capacity installment at the price trigger. The price trigger is reported in the next

row. Only the case with high within-week price variations invests immediately, since the trigger

is exp pξ˚q “ 22.0 ă 30.0 “ exp pξ0q. We observe that under 1.5αbase one will invest immediately

in 87.6% additional capacity, while under αbase one will invest in a lower capacity, 83.7%, with

85.0% probability in the next 10 years, as seen in the last row. Note that capacity installments are

reported as a percentage of the current capacity q0. Compared to the case α “ 0 one will invest

earlier and in significantly more capacity at a given price. The optimal capacity upgrade at the

price trigger is higher in α “ 0 compared to the other cases since the price trigger is much higher,

which means that the investment will be undertaken only with 1.3% probability over the next 10

years.

Figure 6 shows sensitivity of the investment trigger in σξ. The areas illustrate at which price it

is optimal to undertake the investment project. If the current price is below the light grey shaded

area, it is optimal to wait in all instances. If it is in the light gray area, it is optimal to invest

only in the 1.5αbase instance. In the grey area one will invest in both instances αbase and 1.5αbase,

and in the dark grey area one will invest in all instances. Investment triggers behave as expected,

in the sense that increased uncertainty increases the value of waiting and hence the price trigger
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increases.

Table 3: The investment policy and value under different assumptions regarding within week price
variations: 0, 1 and 1.5 times the variation the most recent 5 years. Values are reported in million
AC. Additional capacity installments are reported as a percentage of current capacity q0.

α “ 0 1.0αbase 1.5αbase

NPV (no investment) 5 039.7 5 219.0 5 294.8
NPV (investment) 5 231.5 5 711.9 6 009.3
Real options value Hpq0, ξ0q 5 256.3 5 712.1 6 009.3

Capacity upgrade (invest now) u˚pξ0q 71.3% 82.3% 87.6%
Capacity upgrade (at trigger) u˚pξ˚q 101% 83.7% 80.4%

Price trigger exp pξ˚q 93.3 AC/MWh 32.0 AC/MWh 22.0 AC/MWh
Investment probability (10 years) 1.3% 85.0% 100%
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Figure 6: Price trigger sensitivity. The shaded shows at which prices it is optimal to invest in each
of the instances.

Figure 7 shows the additional value generated by investing in u units of capacity at the price

trigger of the αbase instance, exp pξ˚q “ 32 AC/MWh, together with the cost of investing in capacity

u. The optimal capacity installment in each instance is where the marginal value of installing

capacity equals the marginal cost.

5.3 The operational policy

In this section, we take a closer look at operational policies, which determines the cashflow as-

sociated with capacity upgrade alternatives. Figure 8 illustrates the reservoir trajectories when

generation is constrained by the initial maximum generation capacity q0, and with different as-

sumptions regarding decision periods. The figures show that the behaviour in all instances is

similar. This is because the operational flexibility is limited. However, we observe that the per-
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Figure 7: Value of additional capacity exp pξq

ρ pGpq0 ` uq ´ Gpq0qq at price exp pξq “ 32, which is

the price trigger for the instance with αbase, as a function of capacity installment u. The red line
is the investment cost Kpuq “ A exppBuq.

centile bands are slightly broader in the instances αbase and 1.5αbase where the operations control

aspect is considered. Figure 9 shows the reservoir trajectories after a 70% capacity increase. In

this case, the differences are more prominent. For instance α “ 0 in Figure 9a we observe that

the producer prefers to have a full reservoir during the fall when the price expectation tends to be

higher than other parts of the year. For αbase and 1.5αbase in Figure 9b and 9c, respectively, the

reservoir trajectories show less variation and broader percentile bands as opposed to the case when

the operations control aspect is neglected. The effect can be explained as follows: In the instance

α “ 0 the producer values its water more in the future during weeks 35-45, since prices are expected

to increase due to seasonality effects and the weekly operational flexibility is sufficiently high after

the capacity increase. Thus, the producer chooses to produce nothing, or only the incoming inflow

during these weeks. In the instances αbase and 1.5αbase, the producer has within-week flexibility

to produce in parts of the week when prices are high, e.g. during daytime. Therefore, the producer

uses part of the water stored in the reservoir in most weeks throughout weeks 35-45, which leads

to a lower expected reservoir trajectory and a broader percentile band.

Figure 10 shows the average generation and average spillage for each of the three instances

over the two-year horizon used for the resource valuation. The graphs in Figure 10a illustrate that

the producer can not increase the production output much by investing in additional generation

capacity, only from about 8.2 to 9.0 over two years. The numbers are presented relative to the

reservoir capacity. This means that the additional value from capacity installments stems mostly

from the flexibility to exploit price variations. Figure 10b shows that the average spillage decreases

with capacity. The highest spillage happens in the instance α “ 0, while the instances αbase and

1.5αbase have less spillage since the reservoir is managed differently, as explained above.

Figure 11 shows optimality gaps for each instance. The solid lines are the percentage difference

20



0 10 20 30 40 50

0
10

00
00

20
00

00
30

00
00

Week

R
es

er
vo

ir 
vo

lu
m

e

50 percentile
10 percentile
90 percentile

(a) α “ 0

0 10 20 30 40 50

0
10

00
00

20
00

00
30

00
00

Week

R
es

er
vo

ir 
vo

lu
m

e

50 percentile
10 percentile
90 percentile

(b) αbase

0 10 20 30 40 50

0
10

00
00

20
00

00
30

00
00

Week

R
es

er
vo

ir 
vo

lu
m

e

50 percentile
10 percentile
90 percentile

(c) 1.5αbase

Figure 8: Reservoir trajectories before investment with maximum capacity q0.
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Figure 9: Reservoir trajectories after investment in maximum capacity u “ 0.70q0.
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Figure 10: Total average generation and spill as a function of capacity alternatives. The curves are
plotted relative to the maximum reservoir capacity.

between the upper bound with estimated dual penalties and the lower bound, i.e. the value of

the RH policy in each instance. The dotted lines are the gap compared to perfect information

upper bounds without dual penalties. We observe that the optimality gap based on the dual bound

is lower for the instances αbase and 1.5αbase. This can partly be explained by hourly variations

in prices which makes the RH-policy less aggressive towards the upper reservoir limit, and thus

manages spillage risk better. The instance α “ 0 obtains an optimality gap of at most 5.5%
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from the optimal policy value. The instances αbase and 1.5αbase obtain at most 3.0% and 2.6%,

respectively.
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Figure 11: Optimality gap for each instance using dual penalties δ1 “ ´0.8 and δ2 “ ´0.00005.
The dotted lines are perfect information bounds with zero dual penalty.

6. Conclusions

Accurate mathematical models for the calculation of cashflows associated with investments in hy-

dropower are important. Hydropower plants with storage reservoirs are flexible and can quickly

ramp up and down production. Consequently, hydropower producers can exploit hourly variations

in prices, which can support the integration of intermittent energy sources in the ongoing transition

to a more sustainable power system. Moreover, since weather and prices are uncertain, hydropower

producers need to plan production over several years to estimate their marginal water values. This

value is the expected price at which power generated from a unit of water can be sold for in the

spot market if the timing of this sale is optimized. In addition to weather and market dynamics,

the resource valuation depends on reservoir and generation capacity constraints. Therefore, the

valuation of generation capacity upgrades in hydropower plants with reservoirs is a complex opti-

mization problem. To handle the complexity of the problem, we revisit hierarchical planning. We

formulate the hierarchical planning problem as an MDP. We show how a combination of price mod-

eling, informed by empirical analysis, the MDP structure, and we use reinforcement learning for

operations planning can lead to insightful semi-analytical policies. Our analysis demonstrates that

assumptions on short-term price variations have a significant impact on the valuation of investment

projects in hydropower. Furthermore, our case study shows that if the short-term flexibility of the

hydropower producer is accounted for, the net present value of plant operations increases, while a

higher capacity is expected to be installed sooner.
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A. Proof of Propositions

A.1 Proof of Proposition 4.1

Proof. We omit the index t in the proof. No production results in zero value, hence V H
i pli,ωi;Qq ě

0, which implies Cipli`1,ωi;Qq ě 0. An upper bound is given by the maximum production in every

period:

Cipli`1,ωi;Qq “ γ2E
“

V H
i`1pli`1,ωi`1;Qq|ωi

‰

ď
Q

J

˜

ÿ

ν“Vi

ÿ

j“J
γν2γ

j
3Fi,ν,j

¸

ă 8,

where the set Vi is the set of time periods from stage i to I, and where the last inequality follows

by the martingale property of futures prices. Thus, the value function and continuation function

are finite. At stage I ´ 1 the continuation function is zero and thus concave. The value function at

stage I ´ 1 is given by

V H
I´1plI´1,ωI´1;Qq “ max

pyI´1,vI´1,mI´1qPYI´1plI´1,ωI´1;Qq
rHI´1pyI´1,ωI´1q (35)

This is a linear program where lI´1 and Q are upper bounds on the convex feasible action set

YI´1plI´1,ωI´1;Qq. Thus, concavity of V H
I´1p¨,ωI´1; ¨q follows from standard linear programming

results. By finiteness of the continuation function and the induction hypothesis, Cip¨,ωi; ¨q is

concave in li`1 P r0, Rs and Q P p0, R ´ q0s. It follows that for a convex set Yipli,ωi;Qq bounded

by li and Q, and a linear revenue function rHi pyi,ωiq, the value function V H
i p¨,ωi; ¨q is concave.

A.2 Proof of Proposition 4.2

Proof. The objective in (23) can be written as

ÿ

νPVi

ÿ

jPJ
γν2γ

j
3Fi,ν,jyν,j “

ÿ

νPVi

ÿ

jPJ
γν2γ

j
3EpSν |ξi, χiqyν (36)

“
ÿ

νPVi

ÿ

jPJ
γν2γ

j
3e

ξi`e´κνχi`Lpi,νqyν (37)

“ eξi

˜

ÿ

νPVi

ÿ

jPJ
γν2γ

j
3e

e´κνχi`Lpi,νqxν

¸

, (38)

where Lpi, νq are time-dependent parameters in the risk-neutral price expectation expression. The

expression for futures prices traded at time i with maturity at time ν is given by the expected price

in (1) under the risk-neutral measure,

Fi,ν “ EQpSν |χi, ξiq (39)

“ exp

ˆ

e´κχνχi ` ξi ` pµξ ´ λξqν ´ p1 ´ e´κχνq
λχ

κχ
(40)
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`
σ2
χ

2κχ

`

1 ´ e´κχν
˘

`
`

1 ´ e´κχν
˘ ρχξσχσξ

κχ

¸

. (41)

Thus, since eξi ą 0 in (38), the optimal solution of the stage-i intrinsic program is independent of

ξi.

A.3 Proof of Proposition 4.3

Proof. In this proof, we define p “ exp pξq for notational convenience. We derive the option value

and investment trigger p˚ for a fixed u. In the stopping region, p ą p˚, the value is given by

Hpq0, p;uq “ E
„

ż 8

0
γtptGtpq0 ` uqdt ´ Kpuq

ˇ

ˇ

ˇ
ξ0 “ ξ

ȷ

“
Gpq0 ` uqp

ρ
´ Kpuq. (42)

In the continuation region, p ă p˚, Bellman’s equation must hold. We obtain the differential

equation

rH ´
1

2
σ2
ξp

2H2ppq ´ pµξ ´ λξqpH 1ppq ´ pGpq0q “ 0. (43)

The general solution of this equation is of the form

Hppq “ Dpβ1 ` Epβ2 ` Ψppq, (44)

where β1 and β2 are the positive and negative roots of the fundamental equation

1

2
βpβ ´ 1qσ2

ξ ` β pµξ ´ λξq ´ r “ 0. (45)

The negative root must be disregarded to prevent the value to become infinitely large when the

price approaches zero. Thus, we need E “ 0. The particular solution takes the form

Ψppq “
Gpq0qp

ρ
, (46)

where ρ “ r ´ µξ ´ 1
2σ

2
ξ , which can be verified by inserting this into (43). Thus, the value in the

continuation region is of the form

Hppq “ Dpβ `
Gpq0qp

ρ
. (47)

In addition, H must satisfy

Hp0q “ 0 (48)

Hpp˚q “
Gpq0 ` uqp˚

ρ
´ Kpuq (49)

H 1pp˚q “
Gpq0 ` uq ´ Gpq0q

ρ
(50)
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Using (47) and solving for D and p˚, we get the expressions in Proposition 4.3. The optimal

capacity choice can now be found be maximizing (42) with respect to the capacity installment u.

Thus, the first-order condition gives the optimal capacity choice.

B. Parameter estimates

This section provides a description of the parameters and parameter estimates used in Section

5. For calibration of the inflow model, we use maximum likelihood estimation. Inflow data are

provided by the producer at the location we consider in the case study. For model calibration,

we collect spot data and futures contracts from Montel (2021) using futures contracts traded in

the period 2013-2018 with maturities ranging from 1 to 60 months from a synthetic forward curve

computed based on average-based forward contracts Benth et al. (2007). Furthermore, we get

hourly spot price data from NordPool (2021). The calibration was done using Kalman filtering and

maximum likelihood estimation (Goodwin 2020).
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Figure 12: Reservoir and inflow.

Figure 12a compares the starting reservoir volume with the expected end reservoir volume when

using the expected end reservoir volume (from the solution of an initial run) as the starting reser-

voir. We observe that the initial start and expected end reservoir are approximately the same for

each run and all capacity alternatives. Therefore, we conclude that one year of operations is suffi-

cient in capturing the steady-state operations. Although different instances have different starting

reservoirs, all capacity valuations uses approximately the same amount of water in expectation

since the expected end reservoir approximately maps the initial reservoir. This gives a fair value of

steady-state operations for all capacity alternatives.

Figure 12b shows the mean and standard deviation of inflow for each week of the year. We

observe that there are strong seasonal effects. There is an inflow peak during the spring, while the

inflow variance is highest during the fall. Figure 13 shows the average deviation from the weekly

mean for each hour of the week based on spot price data for the period 2012-2018.

28



Table 4: Parameters used in the case study.

State variables
lt [MWh] Reservoir volume
χt [AC{MWh] (log) Price deviation from long-term price
ξt [AC{MWh] (log) Long-term price
ζt [MWh] Inflow deviation from the mean
Values derived from states
Zt [MWh] Local inflow
St [AC{MWh] Spot price
Decision variables
xt and yt [MWh{period] Production
zt and vt [MWh{period] Spillage
mt [MWh] Reservoir constraints
qtrMWh{weeks Maximum production capacity
Parameters Estimate
r risk-free rate 0.02
R [MWh] Maximum reservoir volume 334 989
A Cost parameter 10 000 000
B Cost parameter 0.00012
ϕ1 [AC{MWh] (log) Price seasonality sine parameter -0.025
ϕ2 [AC{MWh] (log) Price seasonality parameter, shift 0.163
κχ [1] Short-term price mean reversion 1.217
λχ [AC{MWh] (log) Short-term price risk premium 0.042
µξ ´ λξ [AC{MWh] (log) Long-term risk-adjusted drift 0.012
ρχξ [1] Price factor correlation 0.034
κζ [1] Inflow mean reversion 52.0
σχ [MWh] (log) Volatility short-term price 0.467
σξ [MWh] (log) Volatility long-term price 0.146
σζ [MWh] Standard deviation inflow 6.32
µ̄t, t “ 1, . . . , 52 [MWh] Weekly historical local inflow mean Figure 12b
σ̄t, t “ 1, . . . , 52 [MWh] Weekly historical local inflow standard deviation Figure 12b
αt,i,j , j “ 1, . . . , 56 [AC{MWh] Average price pr 3 consecutive hours of the week Figure 13
Initial states
l0 [MWh] Initial reservoir Figure 12a
q0 [MWh{week] Initial capacity 27 916
χ0 [AC{MWh] Initial price deviation 0
ζ0 [AC{MWh] Initial inflow deviation 0
exp pξ0q [AC{MWh] Initial equilibrium price 30.0

C. Numerical assessment of price dynamics

To assess the assumptions on price dynamics by applying the model in Schwartz and Smith (2000)

to electricity price dynamics, we compare the model fit of our geometric Gaussian price model

with an alternative additive Gaussian price model, which has been proposed as alternative price

dynamics (Lucia and Schwartz 2002, Kleiven et al. 2021). The additive model can be written as

SA
t “ ϕA

1 cos

ˆ

pt ` ϕA
2 q

2π

k

˙

` χA
t ` ξAt , (51)

dχA
t “ ´κAχχ

A
t dt ` σA

χ dz
A
χ (52)

dξAt “ µAdt ` σA
ξ dz

A
ξ , (53)
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Figure 13: Hourly log price deviations from the log weekly mean, averaged over 3 consecutive hours.
For weekly decision periods α “ 0. The estimated average deviations in the period 2013-2018 is
αbase. The grey stapled line illustrates 1.5αbase.

where A abbreviates additive. In this section we assess the model fit of the additive model and

compare it to the logarithmic model in (2)-(3). We follow Schwartz and Smith (2000) and Kleiven

et al. (2021) for the derivation of risk-neutral multiplicative and additive processes, respectively.

In our setting, we search for a model that can capture futures curve dynamics and deterministic

time of week spot price behaviour. Thus, we need to assess the fit to futures contracts and hourly

spot prices. Similarly, for the price model we use, we define the additive model SA
t `αA

t for hourly

prices, where SA
t is the week mean price and αA

t accounts for time-of-week effects.

Latent state estimates for the additive and multiplicative model in (2)-(3) are plotted in Figure

14a and Figure 14b, respectively, together with the weekly average spot price. In Figure 14b short-

term deviations are plotted on log scale, while the long-term equilibrium level is exponentiated and

thus plotted on real scale. We observe that the lines χA
t ` ξAt in Figure 14a and exp pχM

t ` ξMt q

are close to each other, both providing good approximations of the spot price Ft. Figure 15a

shows hourly spot prices together with the weekly average price and the estimated latent states

from both models. Figure 15b shows the average spot price deviation from the weekly mean for

any hour of the week, together with 10-90 percentiles. In the estimation, we assume the latent

states of the additive and multiplicative models approximate the weekly average spot price and log

spot price, respectively, and we are left to estimate αj j P J . We then can do this by regressing

hourly deviations from the weekly spot price mean on the hour of the week (additive), or hourly

log deviations from the log mean (multiplicative). We assess the fit by reporting the root mean

square error (RMSE) between the point prediction of hourly prices for each model and the actual

hourly prices.

Table 5 reports the RMSE for the hourly spot price prediction from the regression model

with time-of-the-week effects in the first column. The additive model performs slightly better.

In the last three columns, we have reported the RMSE of model predictions and futures data.

Each column represents the average RMSE of short-term contracts (maturity in 1-12 months),
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medium-term contracts (maturity in 2-3 years), and long-term contracts (maturity in 4-5 years).

For this particular data set, the additive model provides a better fit to short-term contracts and

the long-term multiplicative model provides the better fit to long-term contracts. However, we

emphasize that the likelihood function is non-convex and sensitive to starting values, and using

slightly different data or starting values may lead to substantially different RMSE for both models.

We thus conclude that the models perform roughly at par.
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Figure 14: Filtered time series.

(a) Hourly spot price together with estimated latent
states and historical weekly price average.
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Figure 15: Hourly spot prices.

D. Numerical assessment of Assumption 1

We numerically assess the potential approximation errors by setting the initial states of short-term

factors to their long-term means. For simplicity, we normalize the production quantity, which

means that the price and the revenue generated by the investment are equivalent. For large ν, the

31



Table 5: Root mean square error. Data for the day-ahead market include hourly spot prices in the
period from 2013-2018. Data for the financial market include contracts with maturities 1, 2, 3, 4,
6, 8, 10, 12, 16, 20, 24, 30, 36, 48, and 60 months from synthetic forward curves, traded weekly in
the same period as spot prices.

Model Day-ahead Financial market

Hourly prices Short-term
contracts

Medium-term
contracts

Long-term
contracts

Multiplicative 4.29 1.70 1.75 0.99
Additive 4.24 1.61 1.58 1.73

expression for futures prices in (39)-(41) approximates to

F̂0,ν “ exp

˜

ξ0 ` µ˚
ξν ´

λχ

κχ
`

σ2
χ

2κχ
`

ρχξσχσξ
κχ

¸

, (54)

In order for the discounted price to be bounded as k grows, we need a risk free rate of return

r ą µξ ´ λξ. Otherwise, the investment will never occur. Figure 16 shows the percentage over-

and under estimation of the project value by assuming that investment decisions are unaffected

by short-term price deviations. The underestimation stems from not implementing a project that

would have generated higher revenue during the first years of the infinite project lifetime, because

of a high short-term state. The overestimation stems from possibly implementing a project that

will generate lower revenue during the first years because the short-term price is lower than the

equilibrium price level. Therefore, to assess the approximation error of Assumption 1 we calculate

şM
0 e´rνpF0,ν ´ F̂0,νqdν

şM
0 e´rνF0,νdν

, (55)

using a risk-free rate r slightly higher than the risk-adjusted long-term drift. We use M “ 1000 as

a proxy for the infinite lifetime. We have plotted the percentage difference in the interval r´1, 1s

for the short-term price factor in Figure 16. By looking at the historical estimates of the latent

short-term price factor in Figure 14b, the interval r´1, 1s contains the short-term states in the

period from 2013-2018. From Figure 16 we observe that the project value gets overestimated by

0.2% and underestimated by 0.45% for maximum and minimum price deviations in the interval

r´1, 1s, respectively.

Thus, we find Assumption 1 reasonable with respect to the short-term price deviations. Simi-

larly, we argue that this also is a reasonable assumption for inflow deviations from the mean, since

the inflows in our case study possess smaller serial correlations than short-term price deviations.

This can be seen by comparing the mean reversion coefficients κχ and κζ in Table 4. Therefore, we

exclude the level of exogenous short-term factors in the capacity upgrade formulation and set

lim
tÑ8

Epχt|χ0q “ 0, lim
tÑ8

Epζt|ζ0q “ 0, (56)

as initial conditions for the short-term exogenous factors for resource valuation to estimate the

annual revenue for a representative year.
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Figure 16: Potential approximating error stemming from Assumption 1
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