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A real options model of the supply chain with revenue-sharing and volume flexibility 

 

 

Abstract 

 

We analyze a revenue sharing contract within a decentralized supply chain, extending prior works to a multiperiod setting under buyer production 

flexibility. We model a buyer’s capacity choice and utilization under external procurement, where quantities are obtained from a supplier firm. The 

supplier firm chooses a revenue sharing contract with the buyer by internalizing the impact this would have on buyer decisions relating to capacity, 

utilization choice and the final downstream price of the product. Our framework provides a valuation of the buyer and supplier firms under 

uncertainty and predictions on the optimal capacity choice of firms in downstream markets and the pricing policy of upstream firms in relation to 

buyer capacity constraints, the volatility and growth of downstream prices, and the elasticity of demand. We find that for a fixed revenue sharing 

contract a high volatility of downstream demand results in higher installed capacity by the buyer to account for future flexibility to adjust production 

which makes a given contract more valuable for both the buyer and supplier. We generally find however a higher revenue share claimed by the 

supplier when downstream demand is more volatile. In an extension of this framework we also show that suppliers could impose minimum order 

quantities to extract value from a buyer firm by limiting buyer’s production flexibility. We also consider the decisions of a vertically integrated firm 

showing that the gains from vertical integration are higher when volatility is high, that is, when production flexibility is more important. We show 

however that the optimum vertically coordinated production can be achieved in this decentralized multiperiod setup through a combination of 

wholesale pricing and revenue sharing.  
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1. Introduction 

 

Revenue sharing contracts are quite common in practice. Their popularity has spiked in recent years with the increase in sales via online marketplaces. 

Revenue sharing occurs in many different types of industries such as the airline industry (Fu and Zhang, 2010), video rental (Altug and van Ryzin, 

2014; Cachon and Lariviere, 2005; Giannoccaro and Pontrandolfo, 2004), newspapers (Gerchak and Khmelnitsky, 2003), electronics, e.g., Apple 

App Store, Google Play, or online market places such as Amazon.com (Bart et al., 2021). They are also used in franchising in sectors such as hotels, 

fast foods and automobile renters (Lal, 1990; Mathewson and Winter, 1985).  

Thanks to their popularity in the real world, these contracts have received considerable attention in the academic literature. A recent survey by Bart 

et al. (2021) summarizes the operating research literature on revenue sharing contracts which has analyzed two main types of contracts: a wholesale-

price contract with revenue sharing (Cachon and Lariviere, 2005), and a consignment contract with revenue sharing (Wang et al., 2004) which omits 

the wholesale price component. An important strand of this literature analyzes the channel performance of revenue sharing contracts in comparison 

with other types of contracts (Dana and Spier, 2001; Gerchak and Wang, 2004). Other studies investigate issues such as horizontal competition 

(Chakraborty et al., 2015; Kong et al., 2013; Krishnan and Winter, 2011; Wang and Shin, 2015; Yao et al., 2008), risk/loss-averse supply chains 

(Zhang et al., 2015), asymmetric information (Gerchak and Khmelnitsky, 2003; Xiao and Xu, 2018) or effort and cost sharing (Bhaskaran and 

Krishnan, 2009). Recent advances in this literature study revenue sharing contracts for supply chains of virtual products (Avinadav et al., 2015a and 

2015b, Tan and Carrillo, 2017), behavioral laboratory experiments (Katok and Wu, 2009), sustainable supply chains (Govindan and Popiuc, 2014; 

Hsueh, 2014) and carbon emissions (Yang and Chen, 2018). 

Most of the studies on revenue sharing propose a static framework with a one-period model and a fixed quantity to be ordered, neglecting the ability 

of the firms to adjust production depending on market conditions, i.e., production flexibility. Moreover, they focus on production quantities only, 

disregarding production capacities.1 Our paper extends these settings to multiple periods under uncertain demand and incorporates capacity choice 

and volume flexibility for the buyer, such that the quantity ordered can be adjusted depending on market conditions. Production flexibility is key 

especially during crises since firms can temporarily stop production to reduce losses. For example, energy-intensive firms in the UK have recently 

warned that they might stop production due to rising energy costs.2 Industry leaders have also warned about the risk of fallout across the entire 

supply chain, across manufacturing, consumer retail and other products. Moreover, several companies in Europe, and in particular in Spain, whose 

industry pays the highest energy price in Europe, in industries such as steel and non-ferrous metals, have already either temporarily shut down or 

reduced production.3,4  

Production flexibility has been analyzed in the context of a single firm within the real options literature (Hagspiel et al., 2016; Ritchken and Wu, 

2020; Sarkar, 2009, 2018). Our work is closely related to Hagspiel et al. (2016) who analyze optimal capacity investment decisions under production 

flexibility,to Sarkar (2018) who identifies a firm's optimal degree of operating leverage (DOL) under investment and production flexibility, and to 

                                                             
1 Two notable exceptions that analyze supplier capacity choice are Cachon and Lariviere (2001) and Wang and Gerchak (2003). 
2https://www.theguardian.com/business/2021/oct/08/energy-crisis-could-halt-factory-lines-industry-leaders-warn 

https://www.independent.co.uk/business/industry-leaders-warn-factories-could-stop-production-due-to-energy-costs-b1935081.html   
3 ArcelorMittal will carry out “short and selective stoppages” in several factories in Europe. Sidenor has stopped production at its largest plant for twenty days, 

while Fertiberia shut down one of its plants during October, while Ferroatlántica closed one of its four furnaces in Boo de Guarnizo and Asturiana de Zinc reduced 

its production by a few hours per day. For more details please see: https://thecorner.eu/news-spain/spain-economy/spanish-industry-starts-to-grind-to-a-halt-due-

to-the-price-of-energy-the-most-expensive-in-europe/98786/. 
4 Rong and Xu (2020) study revenue sharing contracts in the manufacturing industry such as steel, automobile or non-ferrous metals, but do not consider production 

flexibility. 

https://www.theguardian.com/business/2021/oct/08/energy-crisis-could-halt-factory-lines-industry-leaders-warn
https://www.independent.co.uk/business/industry-leaders-warn-factories-could-stop-production-due-to-energy-costs-b1935081.html
https://thecorner.eu/news-spain/spain-economy/spanish-industry-starts-to-grind-to-a-halt-due-to-the-price-of-energy-the-most-expensive-in-europe/98786/
https://thecorner.eu/news-spain/spain-economy/spanish-industry-starts-to-grind-to-a-halt-due-to-the-price-of-energy-the-most-expensive-in-europe/98786/
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Ritchken and Wu (2020) who introduce corporate debt in this framework and analyze the impact of production flexibility on leverage and capital 

structure. We extend this strand of the literature by adding the supplier firm. This allows us to analyze a revenue sharing contract in the supply chain, 

along with its price and production level implications, as well as its channel performance. Overall, we bridge the revenue sharing literature (e.g., 

Cachon and Lariviere, 2004; Gianoccarro and Potrandolfo, 2004) with the real options literature on production flexibility by proposing a unified real 

options framework to analyze a revenue sharing contract within a decentralized supply chain under buyer production flexibility. 

We model the decision making of the two parties in the supply chain as a Stackelberg (follower-leader) game, with the supplier being the leader and 

the buyer the follower. The buyer firm decides the optimal capacity to install and can costlessly adjust production over time with the capacity level 

as the upper bound. The supplier chooses the optimal revenue sharing ratio taking into account the effect that this will have on the buyer’s optimal 

choice of installed capacity and capacity utilization rate, as well as the effect of produced quantities on prices.  Our analysis quantifies the trade-offs 

involved in the supplier’s choice of the optimal revenue sharing ratio in the presence of capacity choice and production flexibility. On the one hand, 

a higher revenue share has a direct positive impact on supplier value. On the other hand, a higher revenue share for the supplier has a negative impact 

on buyer’s installed capacity and order quantities and causes a delay in buyer switching to full capacity which translate into a negative indirect effect 

on supplier value. However, lower order quantities also imply higher prices of the goods sold, which has a positive indirect effect on supplier value. 

We demonstrate that these trade-offs result in an optimal revenue sharing ratio which maximizes supplier’s value.  

We first analyze the optimal choice of buyer firms relating to capacity choice, utilization and end consumer prices when the supplier offers a one-

for-all (fixed) revenue sharing contract. This analysis provides guidance for the conditions under which a given and fixed revenue sharing contract 

will be more beneficial for the supplier.  Consider for example a large multinational producer (supplier) of a brand distributed to a buyer firm. We 

provide interesting new insights on how a fixed revenue sharing contract offered to buyers operating in different economic environments may affect 

their installed capacities, utilization (orders), downstream prices and eventually the value of the supplier firm.  For example, while intuition would 

probably suggest that offering a revenue sharing contract to a buyer may be harmful for the supplier if the buyer operates under a more volatile 

demand environment, we show that under volume flexibility higher volatility creates a more valuable operational flexibility option for the buyer 

firm and thus increases its optimal installed capacity. Thus, despite the fact that under higher volatility the buyer may not utilize the full capacity 

immediately, the future upside potential benefits both the buyer and supplier firm. We also investigate the impact of other model parameters (e.g., 

highlight the effect of elasticity which has important implications for different types of products between luxury versus necessities, downstream 

demand level and operating costs of buyer firms, etc.), showing their impact on capacities, utilization of capacity, prices and the values of the buyer 

and supplier firms.  

We then solve the Stackelberg (follower-leader) game in which the supplier chooses its revenue sharing terms taking into account buyer’s reaction 

in terms of capacity choice and utilization rate and their repercussions on downstream product prices. To continue with the earlier example, for a 

large multinational producer (supplier), our analysis provides insights on the specific revenue sharing contracts offered to the different buyers under 

alternative economic settings (e.g., more volatile demand, higher operating costs, etc.). We generally find that an increase in volatility will result in 

a higher claim of revenue share of the supplier firm. The optimal share of revenues also increases when the operating costs faced by the supplier 

firm are higher or when demand becomes more inelastic and decreases when the unit operating costs of the buyer are higher or when downstream 

demand growth is lower. We interestingly find that there may be relatively small variation in the share of revenues for other parameters, which is 

driven by the counterbalancing forces that an adjustment in the level of the revenue share causes on capacities, order quantities and prices. This has 

important implications for the design of optimal contracts for supplier firms. For example, we find no significant variation in the share of  revenues 

the supplier would claim when the level of downstream demand changes. This would imply for example that a large multinational producer 
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distributing to buyer firms operating under different levels of demand could offer a one-for-all revenue contract which can achieve similar benefits 

for the supplier as using specific revenue sharing contracts to the different buyers (which is probably costlier). 

We also extend the model to account for the common practice that suppliers impose minimum order quantities due to economies of scale in 

transportation and production setups (Awasthi et al., 2009; Burke et al., 2007). We quantify the negative impact on buyer’s value of these constraints 

and show that when the constraints become binding the buyer needs to install higher capacity and engage in higher utilization of quantities in 

production. These effects benefit the supplier despite the dampening effect that higher quantities have on the prices at which the goods are sold.    

Moreover, we investigate the channel performance of our decentralized pure revenue sharing contract by comparing the produced quantities and 

prices in the downstream market with those of a vertically integrated supply chain. We analyze the supply chain gain, defined as the percentage 

difference in total supply chain value between a centralized channel and a decentralized channel, and how it varies with model parameters such as 

volatility of demand, demand elasticity, retailer’s share of the costs, etc. We show that a vertically integrated firm retains higher capacity and 

utilization rates and sells at lower prices, in line with a double marginalization problem. The percentage supply chain gain from vertically integrating 

production ranges between 4%-22% for the parameters considered. The gains from vertical integration are relatively higher when demand uncertainty 

is higher, i.e., for environments where production flexibility is more valuable. We also find that the gains from vertical integration are higher when 

the unit costs of production for the buyer are higher and they decrease when the supplier’s unit cost decreases, when downstream demand becomes 

more inelastic or when demand growth is lower. As in the case of the optimal revenues sharing ratio, for certain model parameters the gains from 

vertical integration are almost invariant. For example, different levels of downstream demand do not appear to have a significant effect on the gains 

of vertical integration.    

Finally, we analyze a revenue sharing contract that can overcome the double marginalization problem by achieving coordination in the supply chain. 

In particular, we extend our pure revenue sharing contract to a two-parameters revenue sharing contract that includes, besides the share of buyer’s 

revenues captured by the supplier, a wholesale price paid by the buyer to the supplier. Under this contract, the optimal capacity choice and utilization 

rate of the buyer coincide with the optimal choice of a coordinated supply chain, so that coordination is achieved. We complement previous work 

(e.g., Cachon and Lariviere, 2004) by showing that under buyer production flexibility coordination with arbitrary profit division can still be achieved 

through a wholesale price contract with revenue sharing.  In designing this contract, we ensure that a win-win condition holds, i.e., both parties 

obtain a higher profit under the coordinating contract than under a pure revenue sharing contract, by tuning the contract parameters. However, a 

certain degree of cooperation between the parties would be needed to design such a contract. Our results thus extend Gianoccarro and Potrandolfo 

(2004)’s results to a multiperiod setting under uncertainty with capacity choice and volume flexibility, albeit in a two-stage supply chain.  

The rest of this paper is organized as follows. Section 2 describes the framework and the mathematical solution for the decentralized pure revenue 

sharing contract, as well as for the vertically integrated supply chain. Section 3 provides numerical sensitivity and our main results. Section 4 extends 

the framework to consider the case of minimum order quantities imposed by the supplier. Section 5 analyzes a two-parameters revenue sharing 

contract that coordinates the supply chain. Section 6 concludes.    

 

2. The model 

2.1. The model setup 

Τhe price of the good sold in the downstream market is p per unit of goods sold and  given by the iso-elastic inverse demand function: 
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                                                                                  𝑝 = 𝑥𝑞𝜀                                                                                                                                  (1) 

where ε is a measure of price sensitivity −1 < 𝜀 < 0 and x represents the demand shock. The elasticity of demand which is usually defined as the 

percentage sensitivity of quantity demanded to price changes is thus (
1

|𝜀|
). Thus, a higher |𝜀| implies a more inelastic demand.5 The demand shock 

x affecting the price per unit at which the buyer can sell the goods in the downstream market follows a Geometric Brownian motion: 

                                                                   
𝑑𝑥

𝑥
= 𝜇𝑑𝑡 + 𝜎𝑑𝑍                                                                                                                        (2) 

where 𝜇 is the expected rate of change, 𝜎 is the volatility and 𝑑𝑍 is a standard increment of a Weiner process. The demand shock x can be interpreted 

as the relative strength of the demand in the downstream market. We assume risk-neutrality, with r denoting the risk-free interest rate, and that r > 

μ such that there is a rate of return shortfall similar to a convenience yield δ = r – μ.  A higher δ (while keeping r constant) captures a lower rate of 

growth of the good’s demand in the buyer’s markets. We assume that the buyer of goods selects the optimal capacity Q (Nishihara et al., 2019). 

Specifically, we assume at t = 0 the buyer needs to incur a one-time investment cost of κ𝑄𝜂, where Q is the capacity of the goods (i.e., maximum 

units of goods that can be produced per unit time), 𝑄𝜂  is the amount of capital required to produce at that capacity (with 𝜂 > 1), and the cost of 

capital is $𝜅 per unit. The buyer firm faces both fixed costs of production c, as well as variable costs v. Due to variable costs, following the capacity 

choice the buyer selects the level of utilization of capacity q by maximizing its profits (see analysis that follows on determining the optimal q). The 

firm can either produce below full capacity, q<Q, in which case the level of production q varies with the demand shock x or at full capacity, with q 

= Q.  This type of flexibility is important in many settings including, among others, car manufacturing (Hagspiel et al., 2016). The buyer continuously 

purchases the quantity of input goods 𝑞  from the supplier which are paid in cash. For simplicity we assume that the buyer is a reseller of goods, i.e., 

the buyer acts as a retailer and it does not further process the goods.  We do not incorporate default timing since the buyer can adjust the volume of 

production to limit losses when demand is not favorable. Thus, adding the optimal timing of stopping production will likely not have any major 

impact unless fixed costs are significant. We provide the impact of fixed costs in our sensitivity analysis.     

The supplier continuously provides a quantity of input goods 𝑞  to the buyer which are paid in cash and incurs the cost of production of these goods, 

𝑐𝑆 per unit sold. We model the decision making of the two firms as a Stackelberg (leader-follower) game in which the supplier acting as the 

Stackelberg leader first chooses how much to charge the buyer by selecting its share of the revenue α obtained from each unit sold in the downstream 

market. This is the only choice variable for the supplier in the problem. In turn, the choice of α affects the capacity and utilization of capacity (i.e., 

production) decisions of the buyer and the price of goods in the downstream markets. 

2.2.  The model solution 

Since the supplier obtains a fraction α from the value of each unit sold this means that (1-α) remains to the buyer. The profits per dt interval for the 

buyer are then as follows: 𝜋 = ((1 − 𝛼)𝑝 − 𝑣)𝑞 − 𝑐 = (1 − 𝛼)𝑥𝑞𝜀+1 − 𝑣𝑞 − 𝑐.  Maximizing the profits with respect to q results in the optimal 

level of 𝑞 = (
(1−𝛼)𝑥(𝜀+1)

𝑣
)

−1/𝜀
 . It can be seen that 

𝑑𝑞

𝑑𝑥
> 0, 

𝑑𝑞

𝑑𝑣
< 0,

𝑑𝑞

𝑑𝛼
< 0 while  

𝑑𝑞

𝑑𝜀
 is indeterminate.6 These effects are intuitive. For example, a 

higher level of demand (x) will result in a higher utilization of capacity, while a higher level of variable costs results in a lower capacity utilization. 

                                                             
5 Since |𝜀| < 1 this implies that our focus is on 

1

|𝜀|
> 1, i.e., an elastic demand where an increase in prices by 1% causes a more than 1% decrease in quantity. In 

line with previous literature, demand is assumed elastic since if demand were inelastic profits would tend to infinity as the quantities tend to zero. The same iso-

elastic demand was used in Aguerrevere (2009), Dixit and Pindyck (1994), Dobbs (2004) and Silaghi and Sarkar (2020). For a review of the implications of 

different forms of demand functions on firms’ capacity choice see Huberts et al. (2005). Also note that since our model is cast in terms of 𝜀, where −1 < 𝜀 < 0, a 

higher 𝜀 implies a lower |𝜀| and thus a more elastic demand (
1

|𝜀|
 becomes higher). For example, 𝜀 = -0.6> 𝜀 = -0.7, but |𝜀| = 0.6 < |𝜀| = 0.7.  

6 The analytic expressions for all derivatives are shown in Appendix C.  
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In addition, when the share of revenues of the supplier increases this creates an incentive for the buyer firm to reduce the quantities ordered. Careful 

inspection of the expression 
𝑑𝑞

𝑑𝜀
 reveals that 

𝑑𝑞

𝑑𝜀
> 0 when the share of revenue demanded by the supplier is relatively low and/or the relative of the 

price to cost ratio (𝑥/𝑣) is high (indicating buyers with relatively high profit margins). On the contrary, when the supplier extracts a high revenue 

share and/or the buyer has little profit margins then the buyer reacts by reducing order quantities when demand becomes more elastic (i.e., 
𝑑𝑞

𝑑𝜀
< 0).  

As we will show later on, these same factors appear to influence whether the buyer is more profitable in more elastic or inelastic markets.  

The corresponding price is 𝑝 = 𝑥𝑞𝜀 =
𝑣

(1−𝛼)(𝜀+1)
 . Note that the price charged by the buyer firm adds a constant mark-up 

1

(1−𝛼)(𝜀+1)
> 1 over the 

variable cost  𝑣  (where 𝜀 > −1 is needed to ensure a positive mark-up). This mark-up increases as the share of revenue of the supplier increases 

thus highlighting the double marginalization effect in place. This mark-up also increases  as the price sensitivity ε (in absolute terms) increases (i.e., 

as the demand becomes more inelastic). We find that 
𝑑𝑝

𝑑𝑣
> 0, 

𝑑𝑝

𝑑𝛼
> 0, 

𝑑𝑝

𝑑𝜀
< 0.  Substituting prices and quantities into buyer profit we obtain 𝜋𝐵 =

𝐴 𝑥−1/𝜀 − 𝑐, where 𝐴 =  − (
𝑣𝜀

𝜀+1
) (

(1−𝛼)(𝜀+1)

𝑣
)

−1/𝜀
. In line with economic intuition, the buyer’s profits depend on parameters as follows: 

𝑑𝜋𝐵

𝑑𝑥
> 0, 

𝑑𝜋𝐵

𝑑𝑣
< 0, 

𝑑𝜋𝐵

𝑑𝛼
< 0. However, the impact of elasticity,  

𝑑𝜋𝐵

𝑑𝜀
 is indeterminate and depends on the share of revenues claimed by the supplier and the 

relative level of x relative to v. More thorough analysis of  
𝑑𝜋𝐵

𝑑𝜀
  shows that when the share claimed by the supplier is high and x relative to v is low, 

then  
𝑑𝜋𝐵

𝑑𝜀
< 0, but when the share claimed by the supplier is low and when x is sufficiently higher than v, then 

𝑑𝜋𝐵

𝑑𝜀
> 0. Thus, when the buyer 

operates with relatively high profit margins then its profitability is further enhanced by a more elastic demand (and vice versa). 

We observe that q increases with x (
𝑑𝑞

𝑑𝑥
> 0),  however it cannot increase beyond Q which is the maximum capacity level. Assuming that the 

maximum capacity level is reached at 𝑥 = �̅� then using the optimal quantities we find that 𝑄 = (
�̅�(1−𝛼)(𝜀+1)

𝑣
)

−1/𝜀
, which implies that the maximum 

capacity is reached at �̅� =
𝑣

(1−𝛼)(𝜀+1)𝑄𝜀. Note that the threshold where full capacity is reached depends on the variable cost of production v, the 

installed capacity Q,  the supplier’s share of the price α and the elasticity of demand ε, as follows: 
𝑑�̅�

𝑑𝑣
> 0, 

𝑑�̅�

𝑑𝑄
> 0, 

𝑑�̅�

𝑑𝛼
> 0 and 

𝑑�̅�

𝑑𝜀
  is indeterminate. 

Intuitively, a higher variable cost of production v, higher installed capacity Q, and higher supplier’s share of the price α results in the buyer postponing 

production at full capacity. A more elastic demand results in an acceleration of the buyer firm entering into full scale operations when the installed 

capacity is small, while when the installed capacity is large a more elastic demand results in the buyer postponing switching to full capacity.   

 There are two operating regions depending on whether 𝑥 < �̅� or  𝑥 ≥ �̅� as follows: 

Region 1:  𝑥 < �̅�:  𝑝 =
𝑣

(1−𝛼)(𝜀+1)
,  𝑞 = (

(1−𝛼)𝑥(𝜀+1)

𝑣
)

−1/𝜀
 and 𝜋𝐵 = 𝐴 𝑥−1/𝜀 − 𝑐, with 𝐴 =  − (

𝑣𝜀

𝜀+1
) (

(1−𝛼)(𝜀+1)

𝑣
)

−1/𝜀
 

Region 2: 𝑥 ≥ �̅�:  𝑝 = 𝑥𝑄𝜀, 𝑞 = 𝑄 and 𝜋𝐵 = (1 − 𝛼)𝑥𝑄𝜀+1 − 𝑣𝑄 − 𝑐. 

Since we assume that there is no working capital (e.g., inventory or credit) the profits are equivalent to cash flows. Following standard arguments in 

the real options literature (see Dixit and Pindyck, 1994) the buyer firm value 𝐵𝑖(𝑥) satisfies the following differential equations depending on the 

region of operation: 

                               𝑟𝐵𝑖(𝑥) = (𝑟 − 𝛿)𝑥𝐵𝑖
′(𝑥) +

𝜎2

2
𝑥2𝐵𝑖

′′(𝑥) + 𝜋𝐵𝑖 ,       𝑖 = 1,2.                                                                                      (3)              

where the last term denotes the cash flows received per dt. 
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The following proposition presents the buyer value in both regions. 

Proposition 1 (Value of the buyer firm) 

The buyer value is given by: 

Region 1, 𝑥 < �̅�:         𝐵1(𝑥) =
𝐴

𝑟+(
𝑟−𝛿

𝜀
)−0.5𝜎2(

1

𝜀
)(

1

𝜀
+1)

𝑥−1/𝜀 −
𝑐

𝑟
+ 𝛺1𝑥𝛽1                                                                                                              (4) 

Region 2, 𝑥 ≥ �̅�:          𝐵2(𝑥) =
(1−𝛼)𝑥𝑄𝜀+1

𝛿
−

𝑐+𝑣𝑄

𝑟
+ 𝛺2𝑥𝛽2,                                                                                                                                (5) 

where                             𝛽1 =
1

2
−

(𝑟−𝛿)

𝜎2 + √(
(𝑟−δ)

𝜎2 −
1

2
)

2

+
2𝑟

𝜎2 > 1                                                                                                                     (6a)       

                                        𝛽2 =
1

2
−

(𝑟−δ)

𝜎2 − √(
(𝑟−δ)

𝜎2 −
1

2
)

2

+
2𝑟

𝜎2 < 0                                                                                                                  (6b) 

and 𝛺1 and 𝛺2 are determined from the following boundary conditions: 

                                       𝐵1(�̅�) = 𝐵2(�̅�)     (Value-matching)                                                                                                                     (7) 

                                       𝐵′1(�̅�) = 𝐵′2(�̅�)   (Smooth-pasting)                                                                                                                     (8)     

Proof: The particular solutions in equations (4) and (5) are obtained by applying the differential equation in (3) the particular solution 𝐵𝑖(𝑥) = 𝐴0 +

𝐴1𝑥 + 𝐴2𝑥−
1

𝜀 .  𝛺1and 𝛺2 are obtained by applying (7) and (8) respectively using equations (4) and (5) (see Appendix A for the detailed expressions).   

The term 𝛺1𝑥𝛽1 captures the adjustment in value when the buyer moves to full capacity in region 2, while the term 𝛺2𝑥𝛽2  captures the option to 

reduce the utilization of capacity below full capacity at level q<Q. 

At time zero the value of the buyer firm is given by: 

                                                         𝐵1
𝑁𝑒𝑡(𝑥) = max𝑄  {𝐵1(𝑥) − κ𝑄𝜂}      , if 𝑥 < �̅�,                                                                                               (9) 

else, if 𝑥 ≥ �̅�, the value of the buyer firm is given by: 

                                                            𝐵2
𝑁𝑒𝑡(𝑥) = max𝑄  {𝐵2(𝑥) − κ𝑄𝜂}         for 𝑥 ≥ �̅�,                                                                                      (10) 

Since �̅� depends on Q¸ to find the optimal capacity we run various levels of capacity based on a dense grid of Q values where we apply (9) or (10) 

depending on the region being 𝑥 < �̅� or 𝑥 ≥ �̅�. Then the maximum value among buyer values among all grid levels defines the optimal capacity, as 

well as the operating region since it determines �̅�  where the firm operates.   

We next move to the supplier. When the buyer is in region 1 (below full capacity), the supplier firm has the following profits per period 𝜋𝑆 =

(𝛼𝑝 − 𝑐𝑆)𝑞 = 𝛼𝑥𝑞𝜀+1 − 𝑐𝑆𝑞. The optimal quantity level is given by the buyer’s optimization which resulted in 𝑞 = (
(1−𝛼)𝑥(𝜀+1)

𝑣
)

−1/𝜀
 (for 𝑥 < �̅� ) 

and the corresponding price is 𝑝 = 𝑥𝑞𝜀 =
𝑣

(1−𝛼)(𝜀+1)
 . Thus, the profit per dt for the supplier is: 𝜋𝑆 = 𝛣𝑥−1/𝜀 where: 

𝛣 = (
𝛼𝑣

(1 − 𝛼)(𝜀 + 1)
− 𝑐𝑆) (

(1 − 𝛼)(𝜀 + 1)

𝑣
)

−1/𝜀

 

The comparative statics for the supplier are as follows: 
𝑑𝜋𝑆

𝑑𝑥
0 is indeterminate, 

𝑑𝜋𝑆

𝑑𝑐𝑠
< 0, 

𝑑𝜋𝑆

𝑑𝛼
 is indeterminate, 

𝑑𝜋𝑆

𝑑𝑣
 is indeterminate and 

𝑑𝜋𝑆

𝑑𝜀
 is 

indeterminate. Supplier’s profits increase with the demand shock as long as the supplier’s operating cost 𝑐𝑠 is relatively low to allow for positive 
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margins and they decrease with supplier production costs. The overall effect of the downstream variable costs on supplier’s profit depends on which 

of the following two effects dominate. On the one hand, increasing variable costs reduces quantities ordered which has a negative impact on supplier 

profit. On the other hand, it also increases the price which positively affects supplier profit. Increasing supplier’s revenue share has similar opposite 

indirect effects on supplier profits, in addition to a direct positive effect.7 Finally, the effect of elasticity depends on parameter values, as in the case 

of the buyer. 

 For 𝑥 > �̅�, the buyer produces at full capacity, 𝑞 = 𝑄 and the corresponding price is 𝑝 = 𝑥𝑄𝜀, and    𝜋𝑆 = (𝛼𝑝 − 𝑐𝑆)𝑄 = 𝛼𝑥𝑄𝜀+1 − 𝑐𝑆𝑄. 

The supplier value satisfies the following differential equation: 

                                                     𝑟𝑆𝑖(𝑥) = (𝑟 − 𝛿)𝑥𝑆𝑖
′(𝑥) +

𝜎2

2
𝑥2𝑆𝑖

′′(𝑥)
+ 𝜋𝑆𝑖 , 𝑖 = 1,2                                                                                     (11) 

The following proposition derives the value of the supplier.  

Proposition 2 (Value of the supplier firm) 

Region 1, 𝑥 < �̅�:    𝑆1(𝑥) =
𝐵

𝑟+(
𝑟−𝛿

𝜀
)−0.5𝜎2(

1

𝜀
)(

1

𝜀
+1)

𝑥−1/𝜀 + 𝛺1
𝑠𝑥𝛽1                                                                                                                     (12) 

Region 2, 𝑥 ≥ �̅�:     𝑆2(𝑥) =
𝛼𝑥𝑄𝜀+1

𝛿
−

𝑐𝑆𝑄

𝑟
+ 𝛺2

𝑠𝑥𝛽2,                                                                                                                                        (13) 

where the solutions for 𝛺1
𝑠 and 𝛺2

𝑠 are determined from equations  

                                                                    𝑆1(�̅�) = 𝑆2(�̅�)     (Value-matching)                                                                                             (14) 

                                                                     𝑆′1(�̅�) = 𝑆′2(�̅�)   (Smooth-pasting )                                                                                           (15)      

 

Proof: The particular solutions in equations (12) and (13) are obtained by applying the differential equation in (11) the particular solution 𝑆𝑖(𝑥) =

𝐴0 + 𝐴1𝑥 + 𝐴2𝑥−
1

𝜀 .  𝛺1
𝑆 and 𝛺2

𝑆 are obtained by applying (14) and (15) respectively using equations (12) and (13) (see appendix A).   

Note that the condition in equation (15) is a continuity (not an optimality) condition since the supplier value depends on the optimal choice of 

capacity of the buyer as described in equations (9) and (10) which also define the optimal threshold �̅�.  

Finally, for comparison, we calculate the value of the firm if there is vertical integration. The vertically integrated profit per period in region 1 

(unconstrained) is as follows: 𝜋𝑉 = (𝑝 − 𝑣 − 𝑐𝑆)𝑞 − 𝑐 = 𝑥𝑞𝜀+1 − (𝑣 + 𝑐𝑆)𝑞 − 𝑐.  Maximizing the profits with respect to q results in the optimal 

level of 𝑞𝑉 = (
𝑥(𝜀+1)

𝑣+𝑐𝑆
)

−1/𝜀
  and the corresponding price is 𝑝𝑉 = 𝑥𝑞𝑉

𝜖 =
𝑣+𝑐𝑆

(𝜀+1)
 . Substituting this into profit we obtain 𝜋 = 𝐴𝑉 𝑥−1/𝜀 − 𝑐 where 𝐴𝑉 =

 − (
(𝑣+𝑐𝑆)𝜀

𝜀+1
) (

(𝜀+1)

𝑣+𝑐𝑆
)

−1/𝜀
. A comparison of the vertically integrated firm with the non-coordinated profits of the buyer shows that the share of revenues 

of the supplier does not affect the optimally produced quantities nor the downstream prices. However, now the cost of production of these goods 𝑐𝑆 

enters the picture; the higher the cost 𝑐𝑆, the lower the produced quantities and the higher the price in the downstream market.  

                                                             
7 In  Appendix C we show that 

𝑑𝜋𝑆

𝑑𝑣
< 0 and 

𝑑𝜋𝑆

𝑑𝛼
< 0 when 𝑐𝑠 is relatively small. Intuitively this implies that the effect of reduced quantities on the profitability of 

the supplier is more important than price increases when the supplier has high profit margins (implied by lower 𝑐𝑠).  
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Assuming that the maximum capacity level is reached at 𝑥 = �̅�𝑉  then using the optimal quantities we find that 𝑄𝑉 = (
�̅�𝑉(𝜀+1)

𝑣+𝑐𝑆
)

−1/𝜀
 which implies 

that the maximum capacity is reached at �̅�𝑉 =
𝑣+𝑐𝑆

(𝜀+1)𝑄𝑉
𝜀 . Note that the threshold where full capacity is reached depends on the variable cost of 

production v, the cost of production of the input good 𝑐𝑆,  the price sensitivity of demand ε, the installed capacity 𝑄𝑉 as follows: 
𝑑�̅�𝑉

𝑑𝑣
> 0, 

𝑑�̅�𝑉

𝑑𝑐𝑆
>

0,
𝑑�̅�𝑉

𝑑𝜀
 is indeterminate and 

𝑑�̅�𝑉

𝑑𝑄𝑉
> 0.  

The value of the vertically integrated firm satisfies the following differential equation: 

                                                   𝑟𝑉𝑖(𝑥) = (𝑟 − 𝛿)𝑥𝑉𝑖
′(𝑥) +

𝜎2

2
𝑥2𝑉𝑖

′′(𝑥)
+ 𝜋𝑉𝑖 , 𝑖 = 1,2                                                                                   (16) 

The following proposition derives the value of the vertically integrated firm.  

Proposition 3 (The value of the vertically integrated firm) 

Region 1, 𝑥 < �̅�𝑉 :         𝑉1(𝑥) =
𝐴𝑉

𝑟+(
𝑟−𝛿

𝜀
)−0.5𝜎2(

1

𝜀
)(

1

𝜀
+1)

𝑥−1/𝜀 −
𝑐

𝑟
+ 𝛹1𝑥𝛽1                                                                                                   (17) 

Region 2, 𝑥 ≥ �̅�𝑉 :          𝑉2(𝑥) =
𝑥𝑄𝑉

𝜀+1

𝛿
−

𝑐+(𝑣+𝑐𝑆)𝑄𝑉

𝑟
+ 𝛹2𝑥𝛽2,                                                                                                              (18) 

where  𝛽1   and 𝛽2 are given by (6a) and (6b).             

and 𝛹1 and 𝛹2 are determined from the following boundary conditions: 

                                                       𝑉1(�̅�𝑉) = 𝑉2(�̅�𝑉)     (Value-matching)                                                                                                (19) 

                                                      𝑉′1(�̅�𝑉) = 𝑉′2(�̅�𝑉)   (Smooth-pasting)                                                                                               (20)      

 

Proof: The particular solutions in equations (17) and (18) are obtained by applying the differential equation in (16) the particular solutions 𝑉𝑖(𝑥) =

𝐴0 + 𝐴1𝑥 + 𝐴2𝑥−
1

𝜀 .   𝛹1and  𝛹2 are obtained by applying (19) and (20) respectively using equations (17) and (18) (see Appendix A). 

At time zero the value of the vertically integrated firm is given by: 

                                                         𝑉1
𝑁𝑒𝑡(𝑥) = max𝑄𝑉

 {𝑉1(𝑥) − κ𝑄𝑉
𝜂},          if 𝑥 < �̅�𝑉,                                                                       (21) 

else, if 𝑥 ≥ �̅�, the value of the vertically integrated  firm is given by: 

                                                    𝑉2
𝑁𝑒𝑡(𝑥) = max𝑄𝑉

 {𝑉2(𝑥) − κ𝑄𝑉
𝜂},         for 𝑥 ≥ �̅�𝑉,                                                                            (22) 

Since �̅�𝑉 depends on 𝑄𝑉¸ to find the optimal capacity we run various levels of capacity based on a dense grid of 𝑄𝑉 values and check whether 𝑥 < �̅� 

in which case apply (21), else we apply (22). Then the maximum value among firm values among all grid levels defines the optimal capacity, as 

well as the operating region (since it determines �̅�𝑉 ) where the firm operates.   

2.3. Interactions between supplier and buyer firm 
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In this section we provide a quantification of the trade-offs involved for the supplier firm when choosing the share of revenue taking into 

consideration the interactions with the buyer firm. In the region where the buyer operates unconstrained, the supplier’s profits are8: 

                                                                           𝜋𝑆 = (𝛼𝑝 − 𝑐𝑆)𝑞                                                                                                                            (23) 

By using total differentiation of the supplier profits we obtain the following: 

                                                              
𝑑𝜋𝑆

𝑑𝑎
= 𝑝𝑞⏟

>0

+ 𝛼𝑞
𝑑𝑝

𝑑𝛼⏟
>0

+ (𝛼𝑝 − 𝑐𝑆)
𝑑𝑞

𝑑𝛼⏟
<0

                                                                                                  (24) 

Equation (24) shows that the supplier faces the following trade-offs when deciding to increase its share of revenues α. On the positive side, increasing 

α increases the revenue gained if quantities and prices are held fixed (first term) and increases the revenues due to higher prices (second term). On 

the negative side however, increasing α has an adverse effect on profits due to lower order quantities by the buyer (third term). Similar trade-offs 

hold when firms are in region 2 (buyer operates at full capacity) and equations (23) and (24) hold, albeit q is replaced for Q and only numerical 

comparative statics (not analytical) are available.     

In addition to the above direct effects on profits there are also some non-linear effects that complicate the supplier’s decision. These effects relate to 

the switching options that the buyer has between partial and full utilization of capacity and the level of its capacity choice.  Although it is not possible 

to identify fully these non-linearities, we note some insights. First, we found earlier that 
𝑑�̅�

𝑑𝑎
> 0 which implies that the higher the revenue share 

claimed by the supplier the longer the delay of the buyer switching to full capacity. In addition, 
𝑑𝑄

𝑑𝑎
< 0 which shows that capacity is reduced when 

the supplier claims a larger revenue share. The combination of the above direct and indirect trade-offs determines the choice of the optimal revenue 

share offer that the supplier makes to the buyer firm.   

3. Numerical analysis 

We next provide sensitivity results and the implications of the model relating to the optimal revenue sharing offer of the supplier and the capacity 

and utilization of capacity of the buyer, as well as the prices of goods in the downstream markets. We assume the following base case parameters: 

𝑥 = 10, 𝜎 = 0.2, 𝑣 = 1, 𝑐 = 0, 𝑐𝑆 = 1, 𝜀 =  −0.7, 𝑘 = 3, 𝜂 = 2, 𝑟 = 0.05, 𝛿 = 0.03. Our base parameters used for r, δ and σ are in line with other 

real options models (e.g., Mauer and Sarkar, 2005 and Hackbarth and Mauer, 2011).  η is the same as in Nishihara et al. (2019). A positive k alongside 

η determines an optimal capacity level for the buyer. The elasticity parameter 𝜀 is similar to Aguerrevere (2009) and Dobbs (2004).9 We initially set 

𝑐 = 0 to avoid cases of negative profits when the volume of production is zero (we analyze 𝑐 > 0 in our sensitivity analysis).  The relative level 

between 𝑥  and 𝑣  is set to allow to retain positive values for both the supplier and buyer firms at various revenue sharing levels. Throughout the 

                                                             
8 Note that taking the derivative of the supplier’s profits with respect to α is equivalent to taking the derivative of the particular solution of the supplier with respect 

to α. Indeed, we have that  𝜋𝑆 = 𝛣𝑥−1/𝜀, while the particular solution for the supplier in region 1 is 
𝐵

𝑟+(
𝑟−𝛿

𝜀
)−0.5𝜎2(

1

𝜀
)(

1

𝜀
+1)

𝑥−
1

𝜀. Formally, one can take the derivative 

of the supplier function in Proposition 2 which depends also on the flexibility of the buyer to switch between operating regions. These effects are incorporated in 

𝛺1
𝑠𝑥𝛽1 and 𝛺2

𝑠𝑥𝛽2 in Proposition 2, however due to the non-linearities involved the expression of the derivative with respect to α is complicated. Instead, we try to 

gauge the effects by breaking down the direct revenue effects and the effect of switching between regions below.  
9 Aguerrevere (2009) uses ε = -0.625 and Dobbs (2004) an ε = -0.5.  Note that the choice of ε values are restricted so that 𝑟 + (

𝑟−𝛿

𝜀
) − 0.5𝜎2 (

1

𝜀
) (

1

𝜀
+ 1) > 0 so 

that the particular solution in region 1 of Proposition 1 remains positive. Hagspiel et al. (2016) and Sarkar (2009) use a linear demand function and they also need 

to impose some constraints to maintain positive values on particular solutions. Specifically, they need to assume a high r and small μ and σ to maintain positive 

values for the particular solutions. 
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analysis we run a dense grid search for optimal capacity choice with increments of Q of 0.01. Similarly, for the share of revenues of the supplier we 

run a dense grid search with increments of α of 0.01.  

3.1 Baseline results 

Figure 1 shows supplier values as a function of the supplier claimed share of revenues α.  The figure highlights our first important result regarding 

the existence of an optimal revenue sharing ratio, which is summarized  as follows:10  

[Insert Figure 1 here] 

Result 1. There is an optimal sharing level α that maximizes the value of the supplier. The optimal sharing level α balances: a) the direct positive 

impact of a higher α on supplier revenues, b) the negative impact of a higher α on buyer’s optimal capacity, c) the positive impact on prices due to 

lower quantities ordered, and d) a negative effect caused by a delay in the buyer firm moving to full capacity.  

In order to better understand the forces involved in determining Result 1, i.e., the optimal level α, Table 1 Panel A shows how the main variables of 

the model change as the share of revenues claimed by the supplier (α) changes. The bold line shows the optimal pricing (revenue sharing) choice for 

the supplier firm. We observe that when the share of revenues of the supplier is low, the buyer selects a high capacity level and a high utilization 

rate. Actually, when  𝛼 ≤ 0.3 the buyer starts operations at full capacity (Region 2). As 𝛼 increases, the buyer reduces both the optimal capacity 

level and the optimal production level. The low quantities produced result in an increase in the price of the final good sold. For the supplier, an 

increase in 𝛼 thus implies the following trade-offs which confirm the insights discussed in Altug and van Ryzin (2014). On the one hand, there is a 

direct positive effect, since the supplier is capturing a larger fraction of the revenues. Moreover, we have an additional indirect positive effect due 

to the resulting increase in the price, which increases per unit profit. On the other hand, we have an indirect negative effect since quantities sold 

decrease, which decreases net revenues. In addition, the buyer postpones entering into full capacity for higher α (notice that �̅�  increases with α). For 

small increases in 𝛼 the positive effect dominates. However, at relatively large values of 𝛼 the negative impact of low quantities dominates the 

positive effect of a higher per unit profit. Hence, we obtain an optimal level of 𝛼.     

 

[Insert Table 1 here] 

 

3.2 Fixed revenue sharing contract 

To understand how different economic conditions affect buyer’s optimal selection of capacity and its utilization rate for a given revenue sharing 

contract, we first run sensitivity results with respect to model parameters for a given α (we use α = 0.4).11 This analysis is important to understand 

how different types of buyer firms and their decisions affect supplier value when a one-for-all fixed contract is offered by the supplier to different 

buyer firms. For example, the analysis of this section can answer the question of whether a supplier value is hampered or improved when a buyer 

operates in different volatility of downstream demand environments.   

                                                             
10 This result is general as can be seen in other sensitivity results we have run.  
11 We use a value of 0.4, instead of 0.79, the optimal α value for the benchmark parameter values, because it allows us to better illustrate the entire model including 

both regions, below and at full capacity.  
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Figure 2 shows the effect of volatility which highlights some interesting real options effects relating to operational flexibility. A higher volatility 

creates a more valuable operational flexibility option for the buyer firm in varying the level of production. A higher volatility thus increases the 

optimal capacity choice and despite the delay in moving to full capacity (�̅� increases), the values of both the buyer and supplier improve. This is 

beneficial for both the buyer and the supplier since both count on the option to switch to full capacity when demand is favorable which is more 

valuable when volatility is high (while on the downside both firms are protected from losses due to volume flexibility, i.e., the ability to reduce 

production). At low enough volatility the firm starts at full capacity (see case of low volatility equal to only 8%), but operates at the lowest capacity 

and highest price levels. An increase in volatility from this low level of volatility increases capacity, however, the firm does not utilize all capacity 

and hence the firm moves to region 1 (below full capacity).12 Further increases in volatility do not change q and p (firm continues in region 1) despite 

the higher installed capacity. A larger volatility thus makes it more likely for the firm to move from region 2 (full capacity) to region 1 (this is despite 

the increase in the threshold �̅�).  

[Insert Figure 2 here] 

We have investigated the effect of all parameters with extensive sensitivity analysis and their effects are summarized in the following results.  

Result 2a (Buyer effect). The buyer value has the following directional effects with respect to model parameters: it increases with 𝑥, 𝜎 and 𝑟, 

decreases with 𝑣, 𝑘, 𝜂, 𝑐 and 𝛿, has a U-shape with respect to absolute value of 𝜀 and is invariant to 𝑐𝑆.  

Result 2b (Supplier effect). The supplier value has the following directional effects with respect to model parameters: it increases with 𝑥, 𝜎 and 𝑟, 

decreases with 𝑘, 𝜂, 𝛿, and 𝑐𝑆,  has a U-shape with respect to absolute value of 𝜀, an inverse U-shape with respect to 𝑣 and is invariant to 𝑐.  

Result 2c (Effect on capacity Q). The buyer’s capacity Q has the following directional effects with respect to model parameters: it increases with 

𝑥, 𝜎 and 𝑟, decreases with, 𝑣, absolute value of 𝜀, 𝑘, 𝜂, 𝛿, and is invariant to 𝑐 and 𝑐𝑠.  

Result 2d (Effect on utilization q). The buyer utilization of capacity q has the following directional effects with respect to model parameters: it 

increases with 𝑥, r and 𝜎 (flattens out for high r and σ), decreases with, 𝑣, absolute value of 𝜀, 𝑘, 𝛿, (remains flat for low δ and k) and is invariant to 

𝑐 and 𝑐𝑠.   

While all above effects have important implications for different economic settings, we emphasize some effects that may be less intuitive. Firstly, 

the aforementioned effect of volatility is at first a surprising result. However, this result stems from the importance of buyer production flexibility 

captured in our setting. Under more volatile demand environments the buyer firm installs more capacity in order to be able to react in future favorable 

scenarios. Our analysis can help explain, for example, why Tesla installed a significant capacity for the production of electric cars even when demand 

for electric cars remained highly uncertain (see Randal, 2021).      

Secondly, we highlight the effect of elasticity which has important implications for different types of products (e.g., luxury vs. necessities). A higher 

absolute value of ε implying a more inelastic demand, i.e., a lower 
1

|𝜀|
  (e.g., implying the product becomes more of a necessity) has a significant 

negative impact on both capacity and utilization (see Figure 3). Thus, at higher absolute value of ε the price increases due to the lower quantities 

produced. The overall impact on buyer and supplier value depends on which of the two effects (lower quantities or higher price) dominates and we 

                                                             
12 The downward jump in the price from the 8% volatility to 10% volatility reflects the change capacity and utilization from a region of lower capacity and 

production (utilization) q to a higher capacity and higher production q.   
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generally have a U-shape effect on values: for low absolute ε (more elastic demand) buyer and supplier values decrease since the impact on quantities 

is relatively more important than the impact on prices. However, this reverses for more inelastic demand levels (higher absolute ε).   

[Insert Figure 3 here] 

Some other parameters have very intuitive effects and are not shown for brevity. All sensitivities supporting Result 2 are shown in Appendix D. For 

example, higher initial demand level x or lower level of variable costs v result in an improvement in the value of the buyer and supplier firm and an 

increase in capacity (Q) and utilization (q). A higher cost for installing capacity k reduces the level of capacity of the buyer and has an adverse effect 

on both the buyer and supplier firm. A higher fixed cost of production for the buyer c does not change the buyer’s capacity or utilization and thus 

has no effect on the threshold �̅�, the price of goods sold in the downstream market, nor on supplier value. However, higher fixed costs reduce the 

buyer firm value because even when reducing the volume of production to zero in unfavorable demand states, the buyer still needs to incur a fixed 

operational cost. A higher δ which implies a reduction in demand growth adversely affects capacity levels (Q). This has a negative effect on both 

the buyer and the supplier values. A higher cs reduces only the supplier value and has no other impact on buyer’s policy or values. Finally, a higher 

r acts in the opposite direction of δ since it effectively implies a higher drift in demand. A higher η acts in the same direction as k since it implies 

higher costs of installing capacity.  

3.3. Optimal revenue sharing contract  

We now conduct sensitivity analysis to model parameters allowing the supplier to optimize its pricing policy by optimally selecting α. That is, the 

supplier firm anticipates buyer’s capacity and utilization decisions, and hence we solve a Stackelberg leader-follower type of game by optimizing 

supplier’s claim of revenue share (see section 2.3). There are counterbalancing forces in place when the supplier decides to change its share α in 

response to a parameter change since this causes a reaction to the buyer’s capacity and utilization.  Due to these counterbalancing forces there is 

relatively small variation in optimal α. For example, when σ increases from 10% to 50% the optimal α only increases by 3% (from 79% to 82%). 

We find that the above effects for σ are magnified for higher v. Table 2 illustrates the effect of volatility which highlights some interesting trade-offs 

that need to be considered by the supplier firm when adjusting α at different volatility levels. We demonstrate the results for a higher v compared to 

the base case since the effects are more pronounced and thus easier to illustrate. Similar directional effects hold for our base case parameters as can 

be seen in reported results in the Appendix E. 

[Table 2 here] 

For a given revenue share, a higher 𝜎 increases the capacity of the buyer which improves supplier value even if its share of revenues remains 

unchanged (see earlier discussion relating to Fig.2). Thus, the supplier’s decision of increasing α involves a trade-off. While increasing α has a direct 

positive effect on revenues, it also has a negative impact on order quantities due to lower capacity and utilization of the buyer. This negative impact 

is however also mitigated by the positive effect on prices of lower quantities produced. Despite the counterbalancing forces, as shown in the results 

of Table 2, the supplier will generally find preferable to increase its optimal claimed share for higher volatility. For example, when volatility increases 

from 10% to 20% the share of the supplier increases from 71% to 75%. Had the supplier not increased its share the buyer would choose an optimal 

capacity Q = 0.87, a utilization rate of 5.8% and the resulting price in the market would be 80.46. The supplier would then have a value of 150.36. 

Instead, we observe that it is optimal to increase its share from 71% to 75%, which despite the slight decrease in capacity and utilization (Q drops to 

0.78 and utilization to 5.3%) results in a higher supplier value of 151.15 since there is a higher resulting equilibrium price of 93.33.     
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The above trade-offs characterize how the supplier chooses optimal α when there is a variation in other model parameters. For example, at a higher 

demand level x the buyer would increase optimal capacity and utilization if α remained fixed. Thus, the supplier would face a similar dilemma in 

increasing α since it would have a counterbalancing effect on optimal capacity and utilization. We have found that for some parameters these 

counterbalancing forces create no discernible variation in α, while for others the effects show a clearer direction.  We provide the following result 

which summarizes the effects of model parameters on the optimal share of revenues where a clearer directional pattern could be determined. All 

sensitivity results are shown in the Appendix E.  

Result 3 (Optimal revenue sharing contract). The optimal share of revenues α increases with 𝜎, 𝑐𝑠, the absolute value of 𝜀 , 𝑟, and 𝜂  and decreases 

with 𝑣 and 𝛿. The optimal revenue sharing contract exhibits low variation to other model parameters.   

Result 3 has important implications for the design of optimal contracts for supplier firms. It suggests when there should be a significant adjustment 

in the claim of optimal share of revenues in response to different market conditions. For example, the results generally suggest that suppliers would 

require a higher optimal share for necessities (more inelastic) compared to luxury (more elastic) products, while they will tend to require a lower 

share of revenues when the variable costs of production of the buyer are high or when the downstream demand growth is smaller. Importantly, the 

result also shows that there is no significant variation in optimal α for other parameters and thus a one-for-all contract offered by the supplier to 

buyer firms may not be far from an optimal choice for the supplier in these situations. Thus, in cases where the supplier faces significant costs of 

discerning information (e.g., about the demand level in the buyer’s market), offering the same contract to all buyer firms will not be far from the 

optimal choice.  

3.4. Gains from vertical integration 

We now analyze the gains from vertical integration. In Table 1, Panel B we provide the solution with vertical integration for the base case parameters. 

We observe that integrating production of the input results in an improvement in capacity (Q) relative to the optimal solution with non-coordinated 

production of α = 0.79. The gain in overall value of integrating production relative to the sum of buyer and supplier values with no coordination is 

15.5%. We also note that the vertically integrated firm produces higher quantities and this results in a reduction in the price of the good offered in 

the market. We summarize the following main result: 

Result 4a. (Coordinated vs. non-coordinated production). Relative to the non-coordinated production, integration of production results in an 

improvement in capacity, a gain in overall value relative to the sum of buyer and supplier values and a lower price of the good offered in the market. 

Result 4a is in line with the double marginalization problem of disintegrating production where positive mark-ups are added in different stages of 

production resulting in higher prices (see Spengler, 1950 and Tirole, 1988, ch.4). However, our framework allows for further insights within a 

context of production flexibility. Due to the counterbalancing effect on buyer’s capacity and utilization that the supplier needs to consider for 

adjusting optimal α in response to changes in parameter values (discussed in the previous section), there is a small variation in gains from vertical 

integration. The gains from vertical integration for alternative model parameters for which we have obtained clearer directional effects are 

summarized in result 4b.  

Result 4b. (Gains from vertical integration). The gains for vertical integration are higher with higher 𝜎, 𝑣 and 𝑟 and lower δ, 𝑐𝑠 and lower absolute 

value of 𝜀. The gains are almost invariant to other model parameters.   

We note that there are generally higher gains from vertical integration when volatility is high, i.e., when operational flexibility is more valuable. 

However, due to counterbalancing forces involved in the choice of the supplier firm regarding α the gains are not substantially different and range 
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from about 16% for low volatility (σ = 0.1) to about 19% for very volatile demand (σ = 0.5). Also, a higher volatility is not generally beneficial for 

end consumers in a decentralized setting. This is because despite the higher capacity installed when operational flexibility is present, a possible 

lower utilization rate may actually result in prices being higher for end consumers.   

4. Minimum quantities ordered imposed by the supplier 

We now consider the case in which the supplier firm imposes a minimum order restriction 𝑄𝑚𝑖𝑛. Indeed, in practice suppliers usually impose a few 

restrictions such as minimum order quantities due to economies of scale in transportation and production setups (Aswathi et al., 2009; Burke et al., 

2007). Just like before, the buyer also has capacity constraints with a maximum capacity Q which is reached at �̅� =
𝑣

(1−𝑎)(𝜀+1)𝑄𝜀. Assuming that the 

minimum quantity level is reached at 𝑥 = �̅�𝑚𝑖𝑛 then using the minimum quantity 𝑄𝑚𝑖𝑛 = (
�̅�𝑚𝑖𝑛(1−𝑎)(𝜀+1)

𝑣
)

−1/𝜀
 implies that the minimum capacity 

is reached at �̅�𝑚𝑖𝑛 =
𝑣

(1−𝑎)(𝜀+1)𝑄𝑚𝑖𝑛
𝜀.13 

There are now three operating regions as follows: 

Region 1: 𝑥 < �̅�𝑚𝑖𝑛, 𝑝 = 𝑥𝑄𝑚𝑖𝑛
𝜀
, 𝑞 = 𝑄𝑚𝑖𝑛 and 𝜋𝐵 = (1 − 𝛼)𝑥𝑄𝑚𝑖𝑛

𝜀+1 − 𝑣𝑄𝑚𝑖𝑛 − 𝑐. 

Region 2:  �̅�𝑚𝑖𝑛 < 𝑥 < �̅�:  𝑝 =
𝑣

𝜀+1
,  𝑞 = (

𝑥(𝜀+1)

𝑣
)

−1/𝜀
 and 𝜋𝐵 = 𝐴 𝑥−1/𝜀 − 𝑐, with 𝐴 =  − (

𝑣𝜀

𝜀+1
) (

(1−𝛼)(𝜀+1)

𝑣
)

−1/𝜀
 

Region 3: 𝑥 ≥ �̅�:  𝑝 = 𝑥𝑄𝜀, 𝑞 = 𝑄 and 𝜋𝐵 = (1 − 𝛼)𝑥𝑄𝜀+1 − 𝑣𝑄 − 𝑐. 

The buyer firm value 𝐵𝑖(𝑥) satisfies the following differential equation within regions: 

𝑟𝐵𝑖(𝑥) = (𝑟 − 𝛿)𝑥𝐵𝑖
′(𝑥) +

𝜎2

2
𝑥2𝐵𝑖′′(𝑥) + 𝜋𝐵𝑖 , i=1,2,3                                                                    (25)           

where the last term denotes the cash flows received under that region.  

Proposition 4 (Value of the buyer and optimal capacity choice with minimum order quantities) 

The buyer value is given by: 

Region 1, 𝑥 < �̅�𝑚𝑖𝑛 𝐵1(𝑥) =
(1−𝑎)𝑥𝑄𝑚𝑖𝑛

𝜀+1

𝛿
−

𝑐+𝑣𝑄𝑚𝑖𝑛

𝑟
+ 𝛺1𝑥𝛽1                                                          (26) 

Region 2, �̅�𝑚𝑖𝑛 < 𝑥 < �̅�:         𝐵2(𝑥) =
𝐴

𝑟+(
𝑟−𝛿

𝜀
)−0.5𝜎2(

1

𝜀
)(

1

𝜀
+1)

𝑥−1/𝜀 −
𝑐

𝑟
+ 𝛺2𝑥𝛽1 + 𝛺3𝑥𝛽2                (27)                              

Region 3, 𝑥 ≥ �̅�:          𝐵3(𝑥) =
(1−𝑎)𝑥𝑄𝜀+1

𝛿
−

𝑐+𝑣𝑄

𝑟
+ 𝛺4𝑥𝛽2,                                                               (28)    

and 𝛺1, 𝛺2, 𝛺3, 𝛺4 are determined from the following boundary conditions: 

𝐵1(�̅�𝑚𝑖𝑛) = 𝐵2(�̅�𝑚𝑖𝑛)     (Value-matching between region 1 and 2)                                                     (29) 

𝐵′1(�̅�𝑚𝑖𝑛) = 𝐵′2(�̅�𝑚𝑖𝑛)   (Smooth-pasting between region 1 and 2)                                                     (30) 

𝐵2(�̅�) = 𝐵3(�̅�)     (Value-matching between region 2 and 3)                                                                 (31) 

𝐵′2(�̅�) = 𝐵′3(�̅�)   (Smooth-pasting between region 2 and 3)                                                                 (32) 

                                                             
13 In principle one could add also an abandonment threshold for the buyer which when reached it stops production altogether. This is feasible but we do not expect 

it will add further insights. Note also that we are assuming 𝑄𝑚𝑖𝑛 < 𝑄 so that �̅�𝑚𝑖𝑛 < �̅�. Nevertheless, in extreme cases the minimum order quantity required by the 

supplier could be so high that it might affect the buyer’s optimal capacity choice such that 𝑞 = 𝑄 = 𝑄𝑚𝑖𝑛 . We illustrate this case numerically. 
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Proof: Similar to the proof of Proposition 1. 

At time zero the value of the buyer firm is given by: 

𝐵1
𝑁𝑒𝑡(𝑥) = max𝑄  {𝐵1(𝑥) − κ𝑄𝜂}      , if 𝑥 < �̅�𝑚𝑖𝑛,                                                   (33)                                                 

𝐵2
𝑁𝑒𝑡(𝑥) = max𝑄  {𝐵2(𝑥) − κ𝑄𝜂}      , for �̅�𝑚𝑖𝑛 < 𝑥 < �̅�                                           (34) 

𝐵3
𝑁𝑒𝑡(𝑥) = max𝑄  {𝐵3(𝑥) − κ𝑄𝜂}       , 𝑥 ≥ �̅�                                                             (35) 

Since �̅�  and �̅�𝑚𝑖𝑛 depend on Q and 𝑄𝑚𝑖𝑛 to find the optimal capacity we run various levels of capacity based on a dense grid and check which of 

the three regions apply to calculate the net value of the buyer. Then the maximum value among buyer values among all grid levels defines the optimal 

capacity, as well as the operating region where the firm starts to operate.   

The value of the supplier is derived in a similar way. The following proposition derives the value of the supplier.  

Proposition 5 (Value of the supplier firm with minimum order quantities) 

Region 1, 𝑥 < �̅�𝑚𝑖𝑛,     𝑆1(𝑥) =
𝑎𝑥𝑄𝑚𝑖𝑛

𝜀+1

𝛿
−

𝑐𝑆𝑄𝑚𝑖𝑛

𝑟
+ 𝛺1

𝑠𝑥𝛽1,                                                              (36) 

 

Region 2, �̅�𝑚𝑖𝑛 < 𝑥 < �̅�:    𝑆2(𝑥) =
𝐵

𝑟+(
𝑟−𝛿

𝜀
)−0.5𝜎2(

1

𝜀
)(

1

𝜀
+1)

𝑥−1/𝜀 + 𝛺2
𝑠𝑥𝛽1 + 𝛺3

𝑠𝑥𝛽2                                          (37) 

Region 3, 𝑥 ≥ �̅�:     𝑆3(𝑥) =
𝑎𝑥𝑄𝜀+1

𝛿
−

𝑐𝑆𝑄

𝑟
+ 𝛺4

𝑠𝑥𝛽2,                                                              (38) 

where the solutions for 𝛺1
𝑠, 𝛺2

𝑠, 𝛺3
𝑠 and 𝛺4

𝑠 are determined from the following boundary conditions: 

𝑆1(�̅�𝑚𝑖𝑛) = 𝑆2(�̅�𝑚𝑖𝑛)     (Value-matching between region 1 and 2)                                                  (39) 

𝑆′1(�̅�𝑚𝑖𝑛) = 𝑆′2(�̅�𝑚𝑖𝑛)   (Smooth-pasting between region 1 and 2)                                                   (40)  

𝑆2(�̅�) = 𝑆3(�̅�)     (Value-matching between region 2 and 3)                                                              (41) 

𝑆′2(�̅�) = 𝑆′3(�̅�)   (Smooth-pasting between region 2 and 3)                                                             (42) 

Proof: Similar to the proof of Proposition 2. 

In Table 3 we investigate numerically the effect of minimum order quantities imposed by the supplier. For 𝑄𝑚𝑖𝑛 = 0, we obtain our base case 

framework in which there were no minimum requirements for the quantities ordered. Indeed, comparing the values obtained for 𝑄𝑚𝑖𝑛 = 0 in Table 

3 with those in bold in Table 1 corresponding to an optimal α of 0.79, we can see that they coincide.  

[Insert Table 3 here] 

As the minimum order quantity increases buyer value decreases while the supplier value increases. For 𝑄𝑚𝑖𝑛 = 0.5 the constraint is not binding at 

the current level of x, the buyer chooses both a capacity and a utilization level above the minimum order quantity. The quantity produced is between 

the minimum order quantity and the capacity level, i.e., 𝑄𝑚𝑖𝑛 < 𝑞 < 𝑄 (region 2). Although not binding at t = 0, the constraint on minimum quantities 

𝑄𝑚𝑖𝑛 = 0.5 may become binding subsequently if demand drops below  �̅�𝑚𝑖𝑛 . Thus, we observe a slight decrease in the value of the buyer due to 

the imposed constraint.  As the minimum order quantity increases further to 𝑄𝑚𝑖𝑛 = 1 the constraint becomes binding at t = 0 and the buyer produces 

the minimum order quantity, which is below full capacity. Therefore, the firm is in region 1, 𝑞 = 𝑄𝑚𝑖𝑛<Q. For even higher values of the minimum 
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order quantity such as 1.5 or 2, the constraint affects not only the quantities produced by the buyer, but also its capacity. In this case, the buyer firm 

decides to set up an optimal capacity level equal to the minimum order quantity, 𝑞 = 𝑄 = 𝑄𝑚𝑖𝑛.  

In sum, the minimum order quantity provides a tool for the supplier to improve its value over the buyer. We summarize the following result.  

Result 5. (Minimum order quantity). When the supplier has the ability to impose minimum order quantities, then it can reduce the buyer’s ability 

to choose capacity and its production flexibility and extract more value from the buyer firm.  

Result 5 highlights the importance of using minimum order quantities as a mechanism suppliers can use to extract value from a buyer. Results in 

Table 3 suggest that supplier value increases with minimum order quantities for a fixed revenue share ratio α, so that the supplier would set the 

highest minimum order quantities possible. However, in practice buyer market power or other market conditions likely balance out these effects so 

that in practice one observes an optimal 𝑄𝑚𝑖𝑛 exists that allows for a minimum positive buyer value.14 As an alternative to the case above where the 

supplier has a fixed α and chooses minimum order quantities, the supplier may impose a fixed 𝑄𝑚𝑖𝑛 > 0 (justified for example by the fact that it 

allows him to maintain some economies of scale in production) and then optimize its share α. We find that the higher the minimum order quantity 

imposed, the more the supplier can increase its claim on revenues without jeopardizing a reduction in sales below a certain level. For example, when 

𝑄𝑚𝑖𝑛 = 0 (no constraints) we found that the optimal α is 79%, while for 𝑄𝑚𝑖𝑛 = 0.4 the optimal α is 82%. For an even higher 𝑄𝑚𝑖𝑛, we find that 

the supplier can increase α further since a minimum order quantity is guaranteed.  

 

5. Coordination in the supply chain 

Previous literature on revenue sharing has proposed revenue sharing contracts as a coordination mechanism in the supply chain (Cachon and 

Lariviere, 2005; Giannoccaro and Potrandolfo, 2004, among others). In particular they propose contracts that can be described by two parameters: a 

wholesale price w charged by the supplier to the buyer and a share of the buyer revenues α obtained by the supplier. Such contracts are shown to 

coordinate the supply chain, that is, to reach the maximum supply chain profit under vertical integration. 

Our model can be extended to incorporate a whole price charged by the supplier to the buyer.  Such a revenue sharing contract can be shown to also 

achieve coordination in the supply chain in our framework under buyer production flexibility. In the rest of this section we derive the contract that 

can coordinate the supply chain similarly to previous literature. 

We modify the benchmark model by assuming that the supplier receives not only a fraction α of the buyer revenues, but also a wholesale price w 

per unit. Regarding notation, we will use the upper index c to denote buyer and supplier values under the coordinated case. 

The profits per dt interval for the buyer are then as follows: 𝜋𝐵
𝑐 = ((1 − 𝛼)𝑝 − 𝑤 − 𝑣)𝑞 − 𝑐 = (1 − 𝛼)𝑥𝑞𝜀+1 − (𝑤 + 𝑣)𝑞 − 𝑐. Maximizing the 

profits with respect to q results in the optimal level of 𝑞 = (
(1−𝛼)𝑥(𝜀+1)

𝑤+𝑣
)

−1/𝜀
. 

The supplier firm has the following profits per period 𝜋𝑆
𝑐 = (𝛼𝑝 + 𝑤 − 𝑐𝑆)𝑞 = 𝛼𝑥𝑞𝜀+1 + (𝑤 − 𝑐𝑆)𝑞. 

                                                             
14 We could, for example accommodate a reservation value for the buyer depending on its market power that determines an equilibrium 𝑄𝑚𝑖𝑛. 
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Summing the profits of the buyer and the supplier we obtain the vertically integrated profit per period: 𝜋𝑉 = (𝑝 − 𝑣 − 𝑐𝑆)𝑞 − 𝑐 = 𝑥𝑞𝜀+1 −

(𝑣 + 𝑐𝑆)𝑞 − 𝑐.  Maximizing the profits with respect to q results in the optimal level of 𝑞𝑉 = (
𝑥(𝜀+1)

𝑣+𝑐𝑆
)

−1/𝜀
.   

Hence, to achieve channel coordination, we need that the optimal order quantity chosen by the retailer q corresponds to the order quantity that 

optimizes the SC total profit 𝑞𝑉. This happens if the supplier offers the retailer a wholesale price equal to:   

𝑤 = (1 − 𝛼)(𝑣 + 𝑐𝑆) − 𝑣 = 𝑐𝑆 − 𝛼(𝑣 + 𝑐𝑆) < 𝑐𝑆                                                                      (43) 

Therefore, under the revenues sharing contract, the supplier offers the buyer a wholesale price lower than its marginal cost 𝑐𝑆 , but in exchange 

receives a fraction 1 − 𝛼 of the buyer’s revenue. 

From equation (43) we can see that 𝑤 + 𝑣 = (1 − 𝛼)(𝑣 + 𝑐𝑆), that is, the total payment of the buyer consisting of wholesale price paid to supplier 

plus its own variable costs represents a fraction 1 − 𝛼 of the total variable costs of the whole supply chain. Thus, the buyer shares both the revenues 

and variable costs of the supply chain in the same proportion. Since under the coordination contract the buyer will choose the same quantity as the 

supply chain, 𝑞 = 𝑞𝑉 and 𝑝 = 𝑝𝑉 , we can express the buyer’s profits as a function of the total supply chain profit: 𝜋𝐵
𝑐 = (1 − 𝛼)𝜋𝑉 − 𝛼𝑐.15 Thus, 

the revenue sharing contract makes the buyer’s profit function an affine transformation of the supply chain’s profit function . 

Assuming that the maximum capacity level is reached at 𝑥 = �̅� then using the optimal quantities we find that 𝑄 = (
�̅�(𝜀+1)

𝑣+𝑐𝑆
)

−1/𝜀
, which implies that 

the maximum capacity is reached at �̅� = �̅�𝑉 =
𝑣+𝑐𝑆

(𝜀+1)𝑄𝜀. 

We have two operating regions for the buyer depending on whether 𝑥 < �̅� or  𝑥 ≥ �̅� as follows: 

Region 1:  𝑥 < �̅�:  𝑝 = 𝑝𝑉 =
𝑣+𝑐𝑆

𝜀+1
,  𝑞 = 𝑞𝑉 = (

𝑥(𝜀+1)

𝑣+𝑐𝑆
)

−1/𝜀
 and 𝜋𝐵

𝑐 = (1 − 𝛼)𝐴𝑉  𝑥−1/𝜀 − 𝑐  

Region 2: 𝑥 ≥ �̅�:  𝑝 = 𝑥𝑄𝜀, 𝑞 = 𝑄 and 𝜋𝐵
𝑐 = (1 − 𝛼)𝑥𝑄𝜀+1 − (1 − 𝛼)(𝑣 + 𝑐𝑆)𝑄 − 𝑐. 

Similar to the benchmark model, the buyer firm value 𝐵𝑖
𝑐(𝑥) satisfies the following differential equations depending on the region of operation: 

𝑟𝐵𝑖
𝑐(𝑥)(𝑥) = (𝑟 − 𝛿)𝑥𝐵𝑖

𝑐′(𝑥) +
𝜎2

2
𝑥2𝐵𝑖

𝑐′′
(𝑥) + 𝜋𝐵𝑖

𝑐 , 𝑖 = 1,2.                                                           (44)              

Proposition 6 (Value of the buyer firm under a coordinating contract) 

The buyer value function is given by: 

Region 1, 𝑥 < �̅�:         

𝐵1
𝑐(𝑥) =

(1−𝛼)𝐴𝑉

𝑟+(
𝑟−𝛿

𝜀
)−0.5𝜎2(

1

𝜀
)(

1

𝜀
+1)

𝑥−1/𝜀 −
𝑐

𝑟
+ Ω1

𝑐𝑥𝛽1                        (45)                         

Region 2, 𝑥 ≥ �̅�:        

                                                             
15Substituting 𝑤 + 𝑣 = (1 − 𝛼)(𝑣 + 𝑐𝑆)  into the buyer’s profit  𝜋𝐵

𝑐 = ((1 − 𝛼)𝑝 − 𝑤 − 𝑣)𝑞 − 𝑐 , we get 𝜋𝐵
𝑐 = (1 − 𝛼)𝑝𝑞 − (1 − 𝛼)(𝑣 + 𝑐𝑆)𝑞 − 𝑐 =

 (1 − 𝛼)(𝑝 − 𝑣 − 𝑐𝑆)𝑞 − 𝑐 = (1 − 𝛼)𝜋𝑉 − 𝛼𝑐. 
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𝐵2
𝑐(𝑥) =

(1−𝛼)𝑥𝑄𝜀+1

𝛿
−

𝑐+(𝑣+𝑐𝑆)𝑄

𝑟
+ Ω2

𝑐 𝑥𝛽2,                                     (46) 

and Ω1
𝑐  and Ω2

𝑐  are determined from the following boundary conditions: 

𝐵1
𝑐(�̅�) = 𝐵2

𝑐(�̅�)     (Value-matching)         (47) 

𝐵1
𝑐′(�̅�) = 𝐵2

𝑐′(�̅�)   (Smooth-pasting)      (48)     

Proof: The particular solutions in equations (45) and (46) are obtained by applying the differential equation in (44) the particular solution 𝐵𝑖
𝑐(𝑥) =

𝐴0 + 𝐴1𝑥 + 𝐴2𝑥−
1

𝜀 .  Ω1
𝑐  and Ω2

𝑐  are obtained by applying (47) and (48) respectively using equations (45) and (46) (see Appendix B).   

As with profit functions, we can also express the value functions of the buyer as a function of the supply chain value, and it can be shown that a 

similar relationship holds as in the following corollary. 

Corollary 1: The buyer’s value function is an affine transformation of the supply chain’s value function under a coordinating contract: 

𝐵1
𝑐(𝑥) = (1 − 𝛼)𝑉1(𝑥) −

𝛼𝑐

𝑟
                  (49)                                     

𝐵2
𝑐(𝑥) = (1 − 𝛼)𝑉2(𝑥) −

𝛼𝑐

𝑟
,                  (50) 

Proof: It follows directly from Ω1
𝑐 = (1 − 𝛼)Ψ1and Ω2

𝑐 = (1 − 𝛼)Ψ2 (see Appendix B).                             

Therefore, the buyer will also choose the same optimal capacity as the vertically integrated supply chain, 𝑄 = 𝑄𝑉 .  

In a similar fashion it can be shown that: 

𝑆1
𝑐(𝑥) = 𝛼𝑉1(𝑥) +

𝛼𝑐

𝑟
  and 𝑆2

𝑐(𝑥) = 𝛼𝑉2(𝑥) +
𝛼𝑐

𝑟
. 

Hence, if the revenue sharing contract satisfies the condition given in equation (43) for the wholesale price, then it will achieve channel coordination 

regardless of the value of α, which should however belong to the interval (0,1).  

Nevertheless, this revenue sharing contract that coordinates the supply chain will only be accepted by the two parties if they both obtain higher 

values under this contract compared to the uncoordinated case. Hence, the value of α has to satisfy a win-win condition (Giannoccaro and 

Potrandolfo, 2004): 𝜋𝐵
𝑐 ≥ 𝜋𝐵  and 𝜋𝑆

𝑐 ≥ 𝜋𝑆.                                                                                                                                        

The first inequality is equivalent to (1 − 𝛼)𝜋𝑉 − 𝛼𝑐 ≥ 𝜋𝐵 , which implies: 

𝛼 ≤
𝜋𝑉−𝜋𝐵

𝜋𝑉−𝑐
                                                                                      (51) 

The second inequality is equivalent to 𝛼(𝜋𝑉 + 𝑐) ≥ 𝜋𝑆, which implies: 

𝛼 ≥
𝜋𝑆

𝜋𝑉+𝑐
                                                                                            (52) 

Combining equations (44) and (45) we obtain: 

𝛼 ∈ [
𝜋𝑆

𝜋𝑉+𝑐
,

𝜋𝑉−𝜋𝐵

𝜋𝑉−𝑐
]                                                           (53) 
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A revenue-sharing contract (𝑤, 𝛼) that satisfies equations (43) and (53) will thus not only coordinate the supply chain, but also be preferred by both 

the buyer and the supplier. We illustrate this case numerically in Figure 8. We can see that the 𝛼 that coordinates the supply chain lies in the interval 

(0.72, 0.86), with a corresponding wholesale price ranging between (-0.71, -0.43). Note that the coordinating wholesale price is actually negative. 

Indeed, from equation (43) it follows that the wholesale price will be negative, i.e., 𝑤 < 0, whenever 𝛼 >
𝑐𝑆

𝑣+𝑐𝑆
. For our parameter values 

𝑐𝑆

𝑣+𝑐𝑆
=

0.5, thus it follows that the wholesale price will be negative whenever the supplier captures more than half of the revenues. This is in line with the 

results of Cachon and Lariviere (2004). A negative wholesale price implies that the supplier is actually subsidizing the buyer. Intuitively, if the 

buyer's share of the channel's cost is high, then the buyer has already a low profit margin before the supplier takes a slice of revenue. If the supplier 

wants to claim a large share of revenue, it must subsidize the buyer's acquisition of product. As Cachon and Lariviere (2004) argue, if we want to 

rule out a negative wholesale price, then a positive cost for the buyer establishes a floor on buyer profit under coordinating contracts. 

[Insert Figure 4 here] 

 

The ultimate contract design, the actual contract parameters chosen by the two parties, will depend on the relative bargaining power of the supply 

chain parties. However, as pointed out by Giannoccaro and Potrandolfo (2004), it is important to stress that the implementation of this contract 

requires a certain degree of cooperation among the supply chain parties during the contract design phase. 

 

6. Conclusion 

In this paper we bridge the revenue sharing literature with the real options literature on production flexibility. We propose a unified real options 

framework to analyze a revenue sharing contract within a decentralized supply chain under buyer production flexibility and demand uncertainty. 

We find that the double marginalization problem is exacerbated under buyer production flexibility. Indeed, a pure revenue sharing contract exhibits 

losses of around 4%-22% for the parameters considered compared to a vertically integrated supply chain, with lowest losses when the buyer firm 

operates at full capacity.   

We contribute to the literature by analyzing a multiperiod setting under uncertainty and buyer production flexibility and by providing a valuation of 

both the buyer and supplier firm. Our findings provide guidance to managers of suppliers on the design of optimal revenue sharing contracts. In 

addition, we show how to incorporate minimum order quantity constraints which capture many real-world supplier requirements. We quantify the 

impact of minimum order quantity constraints on buyer’s capacity choices, capacity utilization and prices in the downstream markets. Moreover, we 

extend prior work by showing that a coordinating contract which combines a wholesale pricing and revenue sharing exists in a multiperiod setting 

under uncertainty and production flexibility. However, such a contract would require a certain degree of cooperation between the buyer and supplier.  

Our setting has overlooked several issues which could be addressed in future research. First, we focus on a single buyer and single supplier. It would 

be interesting to investigate how competition in either the upstream or downstream markets affects the design of the revenue sharing contract under 

buyer production flexibility. Second, we have focused on a two-stage supply chain with buyer production flexibility. Future work could enrich the 

framework to consider a three-stage supply chain. Finally, we have assumed that the buyer pays the goods in cash. However, since trade credit is 

also commonly used in supply chains, it would be interesting to analyze how the use of trade credit affects supplier’s optimal share of revenues and 

buyer’s production and capacity decisions. 
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Figure 1. Optimal share of supplier 

 

  

 

Notes: Parameters used r = 0.05, δ = 0.03, σ = 0, 𝑣 = 1, 𝑐 = 0, 𝑐𝑠 = 1, x = 10, κ = 3, η = 2, 𝜀𝐵 = −0.7. 

  



25 
 

Figure 2. Sensitivity with respect to volatility σ 

 

 

Notes: Parameters used r = 0.05, δ = 0.03, 𝑣 = 1, 𝑐 = 0, 𝑐𝑠 = 1, x = 10, κ = 3, η = 2, 𝜀𝐵 = −0.7, 𝛼 = 0.4. 
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Figure 3. Sensitivity with respect to price elasticity ε 

 

 

Notes: Parameters used r = 0.05, δ = 0.03, σ = 0.2. 𝑣 = 1, 𝑐 = 0, 𝑐𝑠 = 1, x = 10, κ = 3, η = 2, 𝛼 = 0.4. 
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Figure 4. A two-parameters coordinating contract (wholesale price and revenue sharing) 

 

Notes: Parameters used r = 0.05, δ = 0.03, σ = 0.2, 𝑣 = 1, 𝑐 = 0, 𝑐𝑠 = 1, x = 10, κ = 3, η = 2, 𝜀𝐵 = −0.7. 
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Table 1. Sensitivity with respect to the share of revenues of the supplier (α) 

Panel A: Non-cooperative values 

α �̅� Region 𝑩𝑵𝒆𝒕(𝒙) Supplier Q q 
 

(q/Q) 
Price 
(𝒑) 

0.2 45.03 2 288.648 42.25 3.18 3.18 1.00 4.45 
0.3 47.93 2 243.28 89.80 2.88 2.88 1.00 4.77 
0.4 51.65 1 199.56 133.60 2.56 2.32 0.90 5.56 
0.5 56.38 1 157.73 172.78 2.24 1.78 0.80 6.67 
0.6 62.75 1 118.12 205.54 1.89 1.30 0.69 8.33 
0.7 77.78 1 81.213 229.48 1.52 0.86 0.57 11.11 

0.79 111.11 1 50.89 239.84 1.17 0.52 0.44 15.87 
0.8 116.67 1 47.732 239.68 1.12 0.48 0.43 16.67 
0.9 233.33 1 19.095 223.42 0.67 0.18 0.27 33.33 

         
   

Panel B: Vertical integration 

�̅�𝑽 Region 𝑽𝑵𝒆𝒕(𝒙) 𝑸𝑽 𝒒𝑽 (𝒒𝑽/𝑸𝑽) Price ( 𝒑𝑽) Gain 

14.75 1 335.87 3.11 1.78 0.57 6.67 15.5% 

 

Notes: We assume the following base case parameters: 𝑥 = 10, 𝜎 = 0.2, 𝑣 = 1, 𝑐 = 0, 𝑐𝑆 = 1, 𝜀 =  −0.7, 𝑘 = 3, 𝜂 = 2, 𝑟 = 0.05, 𝛿 = 0.03. In 

Panel A, we show values varying α (share of supplier in revenues). Panel B shows the optimal values under vertical integration. Gain is calculated 

as the (𝑉𝑁𝑒𝑡(𝑥)– (𝐵𝑁𝑒𝑡(𝑥)+Supplier))/( 𝐵𝑁𝑒𝑡(𝑥)+Supplier). Q increments of 0.01. 

 

 

 

Table 2. Optimal revenue sharing contract for different levels of volatility of demand and the gains from vertical integration 

 

σ α �̅� Region 𝑩𝑵𝒆𝒕 Supplier Q (q/Q) 
Price 
(𝒑) 

0.1 0.71 40.12 1 39.06 128.07 0.37 0.137 80.46 

0.2 0.75 78.43 1 37.45 151.15 0.78 0.053 93.33 

0.3 0.77 101.45 1 39.82 174.89 1 0.037 101.45 

0.4 0.79 123.28 1 41.23 198.97 1.16 0.028 111.11 

0.5 0.8 140.19 1 43.83 220.86 1.3 0.023 116.67 
 

Notes: We assume the following base case parameters: 𝑥 = 10, 𝜎 = 0.2, 𝑣 = 7, 𝑐 = 0, 𝑐𝑆 = 1, 𝜀 =  −0.7, 𝑘 = 3, 𝜂 = 2, 𝑟 = 0.05, 𝛿 = 0.03. Gain 

is calculated as the (𝑉𝑁𝑒𝑡(𝑥)– (𝐵𝑁𝑒𝑡(𝑥)+Supplier))/( 𝐵𝑁𝑒𝑡(𝑥)+Supplier). Q increments of 0.01. 
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Table 3. Various level of minimum order quantities with fixed revenue share ratio α 

𝑸𝒎𝒊𝒏 Region �̅�𝒎𝒊𝒏 𝒙 �̅� 𝑩𝑵𝒆𝒕 Supplier Q Q Price (p) α 

0 2 0 10 17.72 50.89 239.84 1.17 0.52 15.87 0.79 

0.5 2 9.77 10 17.72 50.00 242.82 1.17 0.52 15.87 0.79 

1 1 15.87 10 17.72 47.18 250.26 1.17 1.00 10 0.79 

1.5 1 21.08 10 21.09 42.30 267.39 1.50 1.50 7.53 0.79 

2 1 25.79 10 25.79 34.18 284.20 2.00 2.00 6.16 0.79 
 

Notes: We assume the following base case parameters: 𝑥 = 10, 𝜎 = 0.2, 𝑣 = 1, 𝑐 = 0, 𝑐𝑆 = 1, 𝜀 =  −0.7, 𝑘 = 3, 𝜂 = 2, 𝑟 = 0.05, 𝛿 = 0.03. The 

share of revenues α is fixed as in the base case at 0.79. Q is optimally chosen (increments of search 0.01).  

 

 


