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1. Introduction 

Negative environmental phenomena, such as global warming, pollution, or depletion of 

natural resources are often associated with production externalities. Environmental 

regulation may then be needed in order to cope with this market failure. However, the 

regulation itself may inflict welfare losses by changing the market structure of regulated 

industries. 

A significant strand of the literature on environmental policy has focused on 

how regulation may affect the industry equilibrium under different endogenous market 

structure assumptions. The main finding in these studies is that the internalization of 

the external damages generated by production externalities depends on the degree of 

market competition. This is because the regulator must take into account the welfare 

losses that under imperfect competition may be due to  output distortions and 

suboptimal market entries.1 Yet, so far, in this literature the analysis has been developed 

only using static models, abstracting thus from the consideration of the dynamic nature 

of the process leading to the industry equilibrium and of the role played by market 

uncertainty and irreversibility.  

In order to start filling this void, in this paper, we set up a model analyzing the 

industry equilibrium under perfect competition in a dynamic setup where market 

demand is stochastic and entry is irreversible.  Production entails pollution, generating 

an external damage for society which is assumed increasing and convex in the market 

output. We include regulation by considering the following two polar policy 

instruments for emission control: (i) a quantity control exerted by introducing a cap on 

market output; (ii) a price control exerted by imposing an emission tax. We determine 

the optimal entry strategy set by private firms acting in a decentralized setting under 

both policies and then the cap level and the tax rate maximizing welfare. We compare 

the two policies from a welfare-maximizing perspective and find that: (i) the tax policy 

strictly dominates the cap policy; (ii) the optimal tax secures the complete 

internalization of the external damage associated with production.  

Our analysis finds a solid basis in the literature on irreversible investment under 

uncertainty (see Dixit and Pindyck, 1994, for a thorough illustration of theory and 

                                                 
1See, for example, Spulber (1985) Katsoulacos and Xepapadeas (1995, 1996), Requate (1997), Lee 

(1999), Lahiri and Ono (2007), and the survey by (Millimet et al., 2009).  
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applications). In one of the more important studies in this literature, Leahy (1993) has 

shown, in a decentralized competitive setting, that firms invest (in order to enter the 

market) sequentially. In addition, he also shows that, due to the uncertainty 

characterizing future profits and the irreversibility of the investment decision, they 

invest only when the output price is above the sum of user cost of capital and uncertainty 

premium. In a similar model set-up, the same result is obtained by Bartolini (1995) 

which considers the implications of a cap on the market output for firms’ market entry 

and welfare However, the welfare analysis therein is not conclusive since the level of 

the cap is taken as exogenous and no external damages associated with firms’ 

investment and production are explicitly considered. This gap has been filled by Di 

Corato and Maoz (2019) where an external damage linearly increasing in the market 

output is included in the welfare objective and the cap is set endogenously. They show 

that a welfare-maximizing cap policy can only take one of the following two forms: (i) 

immediately banning further market entries by setting the cap at the current level of 

market output; or (ii) to have no cap at all. The choice depends on the level of 

uncertainty charactering the firm’s profits. In fact, when the output price triggering 

firms’ entry is, due to the consideration of the uncertainty, above the social marginal 

cost of production, no cap should be introduced as further entries raise welfare. In 

contrast, when the uncertainty premium is too small to counterbalance the external 

damage, banning further market entries is optimal because these entries would occur at 

a price below the social marginal cost. The linearity of the external damage in the 

market output is of course crucial for this bang-bang result. In contrast, in our model 

we take the alternative but rather standard assumption that the external damage is an 

increasing and strictly convex function of the market output. Consequently, in our 

model, an optimal finite cap may also emerge.   

As in Bartolini (1995), we find that the presence of a cap does not affect the 

optimal entry strategy set at firm level, which remains identical to the one set in the 

absence of regulation. We then identify the circumstances in which a finite cap is 

optimal from a welfare-maximizing perspective. We show that the key element is the 

gap between the marginal external damage and the marginal surplus gain associated 

with a new entry. If at the current level of market output, in response to new market 

entries, the external damage grows more than the surplus, a ban on further entries 

should be imposed. Otherwise, a finite cap above the current level of market output 

should be set. We find that the cap is increasing in the level of market uncertainty. This 
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confirms, once again, the counterbalancing effect that, in the presence of an external 

damage, the uncertainty premium may have.  

The analysis of the tax policy is straightforward. In this case, the model by 

Leahy (1993) applies perfectly since the introduction of an emission tax is increasing 

the cost of production. Market entries are sequential but occur later (in expected terms), 

compared to the case where the industry is not regulated. This is because the price 

threshold triggering market entries is increasing in the cost of production. We then 

determine the tax rate maximizing welfare and find that at each time period it must be 

set equal to the marginal external damage associated with the market output in that time 

period. This implies that at each new entry, as the market output increases, the tax rate 

increases as well. This in turn implies that, as the market output increases, new entries 

become less likely since the price threshold triggering them increases as well.  

When comparing a cap policy with a tax policy, an evident trade-off emerges. 

With quantity control, we have a temporal evolution of the market output which is 

bounded by the cap but the policy does not affect the timing of market entries. In 

contrast, with price control, there is no limit to market entries but the policy affects the 

timing of market entries by delaying them in expected terms.  

For a regulator maximizing welfare, a market entry is desirable as far as the 

associated surplus gain covers its marginal social cost. In our set-up, there is always a 

time point where this condition is met. Therefore, the ideal policy should be one able 

to delay market entries so that they occur at the “right” time from the regulator’s 

perspective. We show that this is feasible only via price control by equating at each 

time point the tax rate to the marginal external damage. This allows a complete 

internalization of the external damage when setting the entry strategy at firm level and, 

consequently, firms enters the market following a first-best time trajectory. In contrast, 

a cap policy, even though it can limit the external damages without delaying market 

entries, causes society the loss of potential welfare gains since no further entries are 

allowed once the cap has been reached. We show that this loss is higher than the one 

due to delayed market entries under the tax policy and then conclude that the tax policy 

dominates the cap from a welfare-maximizing perspective one.     

The paper remainder is as follows. In Section 2, we present our model set-up. 

In Section 3, we determine the industry equilibrium under no policy intervention. In 

Section 4, we introduce the two instruments for emission control and determine the 

optimal entry strategy under each policy. We determine the optimal cap and the optimal 



4 

 

tax rate, compare the associated welfare levels and discuss our findings. Section 5 offers 

some additional remarks on the results, and Section 6 concludes. 

 

2. The basic model 

Within a continuous time setting, we consider a competitive industry comprised of a 

large number of identical firms that producing a certain good. Their individual size, dn, 

is infinitesimally small with respect to the market and they are all price takers.2 

At each time point 0t , the demand for this good is given by: 

 

(1)   ttt QXP  , 

 

where Pt and Qt are the price and quantity of the good, respectively,  tQ  is a 

deterministic component of the market demand with   0tQ  and   0' tQ  for any 

0tQ , and   0lim 


t
Q

Q
t

 . The term Xt, is a demand shift factor that evolves 

stochastically over time according to the following Geometric Brownian Motion: 

 

(2)  
tttt dZXdtXdX   , 

 

where  is the drift parameter,  is the instantaneous volatility, and dZt is the increment 

of a standard Wiener process uncorrelated across time and satisfying 

    dtdZEdZE tt 
2

,0  at each time point. 

Each firm rationally forecasts the future evolution of the whole market. Market 

entry is free and an idle firm can enter the market at any time. By entering the market, 

the firm commits to permanently offer one unit of the good at each t. This implies that 

the market output, Qt, equals the number of active firms in the industry. Producing one 

unit of the good has a cost equal to M > 0. 

Production entails a negative externality, i.e. pollution, generating an external 

damage for society. For simplicity, we assume one unit of emissions for each unit of 

the produced good. This implies that aggregate emissions equal the market output Qt. 

                                                 
2 Firms of infinitesimally small size is a standard assumption in models investigating the competitive 

equilibrium in a dynamic setting. See for instance Jovanovic (1982), Hopenhayn (1992), Lambson 

(1992), Leahy (1993), Dixit and Pindyck (1994, Ch. 8), Bartolini (1993, 1995) and Moretto (2008). 
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Further, no abatement technology exists. The external damage caused by these 

emissions is a function of their aggregate level, denoted by D(Qt). We take the standard 

assumptions that   00 D ,  QD ,   0' tQD  and   0'' tQD  for any 0tQ , implying that 

the external damage is positive, increasing and convex in the market output. 

Last, firms are risk-neutral profit maximizers and discount future payoffs using 

the interest rate r.3 As standard in the literature, we assume that r >  to secure that the 

firm's value is finite. 

 

3. Industry equilibrium under no policy intervention 

Let start by considering a scenario where no emission control policies pollution are 

present. Under our model setup, a firm contemplating market entry is facing the same 

situation as the investors in Leahy (1993). Therefore, in the following, we use Leahy's 

analysis in order to determine the optimal entry strategy.4 

At each time point, an idle firm has to decide whether to enter the market or not. 

By assumption, a firm entering the market commits to permanently produce one unit of 

the good at a cost equal to M. The present value of the associated flow of production 

costs, i.e. rM / , can be viewed as the irreversible investment that a firm must undertake 

in order to enter the market. As future revenues are uncertain, market entry will occur 

when the expected profitability of such investment is sufficiently high. 

Let  QXV ,  be the value of an active firm given the current levels of X and Q. 

The standard no-arbitrage analysis in Appendix A shows that 

 

(3)     
 

r

M

r

QXP
XQYQXV 






 ,
, , 

 

where 1  is the positive root of the quadratic equation 

 

(3.1)    02

2
122

2
1  rxx  . 

 

                                                 
3 Note that introducing risk aversion would not change our results, but merely require the development 

of the analysis under a risk-neutral probability measure. See Cox and Ross (1976) for further details. 
4 In the following, we will drop the time subscript for notational convenience. 
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In (3),  the term  
 

r
M

r

QXP




,
 represents the expected present value of the flow 

of the firm's future profits conditional on Q remaining forever at its current level. 

Therefore, the first term,   XQY  , accounts for how future market entries reduce the 

value of the firm. This is because the market output Q increases as new firms enter the 

market and, consequently, the firm’s profit lowers.  

Two boundary conditions are required for finding the threshold function  QX *

triggering market entry. The first one is the Value Matching Condition: 

 

(5)     0,* QQXV , 

 

and the second one is: 

 

(6)     0,* QQXVX . 

 

Condition (5) is a standard zero-profit condition at the entry, that is, the value 

of an idle firm, which is null under free entry, must equal the value of an active one. 

Condition (6) concerns instead the evolution of the demand shift, Xt, over time (see 

Dixit and Pindyck, 1994, Ch. 8, pp. 252-260). Each time the process  0, tX t  hits the 

threshold X *(Q) a new firm enters the market and the price of the good, P(Q), lowers 

since the supplied market output has increased. Thus, X *(Q) is an upper reflecting 

barrier regulating the process  0, tX t  by keeping its level over time below X *(Q). 

 

Proposition 1: Entry in a perfectly competitive market occurs every time the process

 0, tX t  hits the barrier: 

 

(7)   
 
 Q

r
QX r

M



 


ˆ
*

, 

 

where 11ˆ
1

1 


 . 

Proof:  Follows from applying (3) in (5) and (6).           
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The threshold X *(Q) is an increasing function of Q since the larger the market 

output, the stronger the competition due to the higher the number of active firms and, 

ceteris paribus, the higher the expected profitability required for entering the market.  

Note that, by the Marshallian rule, a firm should enter the market as long as 

   
r

MrQXQP  )( . Hence, the term 0
1

1 
  is the wedge by which the entry price 

should be adjusted in order to take the uncertainty and irreversibility into account (see 

Dixit and Pindyck, 1994, Ch. 5, Section 2).  

Last, note that   0/ 2* dQdX  since   0/* dQdX  and 0/  dd . This means 

that the higher the demand volatility, the higher the threshold triggering firm’s entry, 

which implies that market entry is delayed in expected terms. 

 

4. Industry equilibrium under policy intervention 

The optimal entry strategy based on Eq. (6) does not account for the external damage 

associated with the flow of emissions that production entails once the firm has entered 

the market. In this section, we consider two policies for the reduction of the external 

damage: i) a cap on aggregate emissions and ii) an emission tax on each unit of 

emissions. We first determine the industry equilibrium under each policy and then the 

level of the cap and the tax rate, respectively, maximizing welfare. 

 

4.1 Industry equilibrium and welfare under a cap on aggregate emissions 

Assume that the government sets a cap on aggregate emissions. In our model, this is 

equivalent to setting a cap, QQ  , on the market output and, consequently, the number 

of firms active in the industry since, by assumption, we have one unit of emissions for 

each unit of production. Further, assume that entry/emission licenses are distributed 

when the cap is announced. Each license allows producing one unit of output and their 

number is equal to difference between the cap, Q , and the current level of market 

outputmarket quantity, Q. We abstract from how the licenses are distributed since for 

our purposes their distribution has no other implications than providing to each firm 

owning a license the right to enter the market.5 

 

                                                 
5 Note that, as shown by Bartolini (1995), the government may fully extract producer’s surplus through 

a competitive auction of the licenses. 
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4.1.1 The optimal entry strategy 

The analysis of the firm's optimal entry under rationing is technically similar to the 

analysis in Section 3. The relevant difference between the two cases is that under 

licensing the option to enter is an asset having a positive value that the firm gives up by 

entering the market. Thus, alongside the function  QQXV ,,  which represents the value 

of an active firm, we define the function  QQXF ,,  which stands for the value of the 

option to enter the market. A standard no-arbitrage analysis, similar to the one 

conducted in Appendix A for determining  QQXV ,, , yields: 

 

(8)      XQQHQQXF  ,,, , 

 

(9)       
r

M

r

QXP
XQQYQQXV 






 ,
,,, , 

 

where  QQH ,  is to be found alongside the threshold  QQX ,*  by imposing the 

following  Value Matching Condition: 

 

(10)       QQQQXFQQQQXV ,,,,,, **  , 

 

and Smooth Pasting condition: 

 

(11)       QQQQXFQQQQXV XX ,,,,,, **  . 

 

By Condition (10), we require that the value of the option to enter, that is, the implicit 

cost of market entry, equals the value of an active firm, that is, the implicit return 

associated with market entry. Condition (11) secures optimality by imposing that the 

marginal cost of market entry equals its marginal return.1 Let recall that, as shown by 

Dixit (1993), Condition (10) holds for any entry threshold and merely reflects a no 

arbitrage assumption, while Condition (11) is an optimality condition which holds only 

at the optimal threshold. 
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Proposition 2: Entry in a perfectly competitive market under a cap on aggregate 

emissions QQ   occurs every time the process 0, tXt  hits the barrier: 

 

(12)     
 

 Q

r
QXQQX r

M



 


ˆ
, ** . 

 

Proof: Follows from applying (8) and (9) in (10) and (11).         

 

Notably, the threshold function (12) does not depend on Q  and is equal to the 

threshold function (6) determined under no policy intervention. The relevant difference 

here is that X *(Q) applies only until the cap Q  is reached. The same result is found by 

Bartolini (1995) which explains it by highlighting the crucial role played by the 

presence of entry licenses. In fact, since there is no threat of being preempted by others, 

firms holding a license may optimally exercise their option to invest. Otherwise, if 

entries are not rationed, firms will gradually enter the market by (12) only up to a certain 

time point, then a competitive run will start and the cap will be instantly reached (see 

Bartolini, 1995, Section 5). 

 

4.1.2 Welfare and the optimal cap 

Once determined the industry equilibrium, in this section we determine the cap level 

maximizing welfare. This optimal level will trade off the welfare gains associated with 

lower emissions and the corresponding losses, in terms of surplus, due to a lower 

quantity of the good available on the market. 

Following a procedure similar to the one conducted in Appendix A for 

determining the value of an active firm, the expected discounted social welfare, given 

the current levels of X, Q and Q , is: 

 

(13)         
r

QD
dq

r

M

r

qXP
XQQCQQXW

Q

 












0

,
,,,



 , 

 

where the expected present value of the impact on welfare associated with future market 

entries, the second term represents the expected present value of the net surplus flow 

associated with the current level of market output Q, that is, the surplus resulting from 
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the supply of those units minus their production cost, while the third term is the present 

value of the flow of external damages associated with the current level of market output 

Q. 

At X *(Q) the following Value Matching Condition must hold: 

 

(14)     0,,* QQQXWQ . 

 

Condition (14) is a standard boundary condition stating that at each market entry 

the marginal welfare gain must equal the marginal welfare loss.   

Further, at QQ  we must impose that: 

 

(15)    0, QQC . 

 

The intuition behind Condition (15) is immediate. In (12), the term   XQQC ,  

captures the welfare associated with future increases of the market output. No such 

changes are possible if Q has reached the cap Q  and then the term  QQC ,  must be null 

at QQ  . 

 Based on (13), (14) and (15) we show in Appendix B that: 

 

(16)     
  





Q

Q

dqqX
r

qDM
QQC

 *')1ˆ(
, . 

 

Differentiating  QQC ,  with respect to Q  yields: 

 

(17)         



 QX

r

QDM
QQCQ

*')1ˆ(
, . 

 

We denote the price at which entry occurs by P*. From (1) and (12) it follows that: 

 

(18)         
r

MrQQXP   ˆ**  

 



11 

 

Applying (18) in (17) and rearranging terms, yields: 

 

(19)        
















 



 QX

r

QDM

r

P
QQCQ

*
* '

, . 

 

Proposition 3:  

(a) If the current level of market output, Q, is sufficiently large so that 
 

r

QDM

r
P '* 





 

then it is optimal to set the cap at the current Q, i.e., to immediately ban any further 

market entry. 

 

(b) otherwise, if the current level of market output, Q, is sufficiently small so that 

 
r

QDM

r
P '* 





 then the optimal level of the cap, denoted by *Q , is the root of the 

following equation: 

 

(20)  
 

r

QDM

r

P ** '


 
, 

 

Proof: Follows from (19) taken together with D”(Q) > 0 for any Q > 0.                    

 

Based on Proposition 3 and (13), in the case where the optimal cap is at the 

current Q, the expected discounted social welfare is equal to: 

 

(21)   
   

dq
r

qDM

r

qP
QXW

Q

cap 






 



 

0

'
,


, 

 

otherwise, when the optimal cap is  *Q , the expected discounted social welfare is: 

 

(22)   
 

 
 

















*

*

')1ˆ(
,

Q

Q

cap dq
qX

X

r

qDM
QXW




 

       
   

.
'

0
 







 





Q

dq
r

qDM

r

qP


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By Propositions (2),  a new firm enters the market every time the process  0, tX t  hits 

the threshold X *(Q) until the cap Q  is reached. Thus, the reflecting barrier X *(Q) 

regulates the process  0, tX t  only up to Q . This implies that, until Q  is reached, the 

price of the good,  QP , remains below 
*P . This happens since when a new firm enters 

the market, the supplied market output increases and the price of the good lowers. Once 

Q  has been reached, the process  0, tX t  is unregulated and the price of the good 

moves freely over time and may, depending on the circumstances, also exceed the 

barrier level 
*P . Figure 1 shows these dynamics. 

 

 

Figure 1: Price dynamics under a cap on aggregate emissions 

 

By Proposition (3), if 
 

r

QDM

r
P '* 





, a ban deterring any further market entry is 

optimal. This is because the expected present value of the flow of surplus added by the 

firm entering the market, i.e. 
r

P*

, does not cover the present value of the flow of social 

costs, i.e. 
 

r

QDM '
, associated with the production of one more unit of the good. 

Otherwise, having a cap at a level higher than the current market output, i.e. *QQ  , is 

optimal. In fact, note that  in this case, since  QD'  is increasing in Q, 
 

r

QDM

r
P '* 





 

for any 
*QQ  . Therefore, market entries are beneficial for welfare. Firms will then be 
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allowed to enter the market until the market output 
*Q  is reached and where 

 
r

QDM

r

P ** '


 
. 

Implicit differentiation of (20) yields that: 

 

(23)  
 

0
1

1

''

1
*

*





QDdM

Qd
, 

 

where the inequality follows from   0'' QD  and  > 1. Thus, the higher the production 

cost the larger the optimal cap and therefore the larger the market size that the regulator 

is going to allow for. The reason for that is that the larger M, the higher the price that 

triggers entry for any given Q and the higher the expected welfare gains in terms of 

surplus, gains that are high enough to compensate for the external damage generated. 

Implicit differentiation of (20), also yields: 

 

(24)  
   

0
1''

1
22*2

*









 d

dM

QDd

Qd
, 

 

where the inequality follows from   0'' QD ,  > 1 and 0
2






d

d
. Thus, the higher the 

demand uncertainty the larger the optimal cap and the larger the market output that the 

regulator is going to allow for. The reason is that a higher 
2  leads, via its effect on 

the option wedge ̂ , to a higher entry threshold for any given Q and therefore the 

expected welfare gains associated with a market entry are high enough compensate for 

the external damage generated. 

Last, note that 

 

(25)  


*

2
lim Q


, 
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which means that for a sufficiently high level of uncertainty, the expected welfare gains 

are so high that setting a finite cap, *Q , is not optimal. 

 

4.2 Industry equilibrium and welfare under an emission tax 

Assume that the government levies a tax 0  per unit of emissions. As above, in our 

model, we have one unit of emissions for each unit of production. Hence, taxing 

emissions is equivalent to taxing output. 

 

4.2.1 Optimal entry strategy 

The analysis of the industry equilibrium under emission taxation is technically identical 

to the one conducted in Section 3. The only difference is that here the cost for producing 

one unit of output is equal to M +. Hence: 

 

Proposition 4: Entry in a perfectly competitive market under an emission tax occurs 

every time the process 0, tX t  reaches the barrier: 

 

(26)   
 

 
 QX

Q
r

M
r

QX ***

ˆ

, 










 . 

 

Proof: Follows from repeating the proof of Proposition 1, this time with a private 

marginal cost equal to M + .                         

 

By (26), the entry threshold is increasing in the tax rate τ, which implies, in 

expected terms, that market entries are slower than in the case where a cap is introduced. 

Following the discussion above, the introduction of an emission tax 0  raises 

the price triggering entry at a level equal to: 

 

(27)  *** )(ˆ P
r

M
rP 





 , 

 

for any Q .  
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By Proposition 4, Equation (26) implies that with an emission tax the expected 

welfare gains at the entry are higher than the ones under a cap policy. However, since 

   QXQX *** ,  , these higher gains occur later in expected terms and would be lower 

once discounted back to   QXXt *:0  . Further, under a tax policy there is no limit 

to market entries. Therefore, there is a level of the market output  *~
QQ  , where 

 

(28)  
r

QDM

r

P )('** 


 
, 

 

for any QQ
~

  with Q
~

 solving the equation 

 

(29)  
r

QDM

r

P )
~

('** 


 
. 

 

This means that, when compared to the cap policy, the higher gains in terms of 

expected welfare accruing when QQ
~

  will be followed by losses when QQ
~

 , losses 

that are not incurred under the cap policy as in that case entries stop at .*Q  

In the light of these considerations, let proceed to the next section where the 

optimal tax rate is determined. 

 

4.2.2 Welfare and the optimal tax rate 

The expected discounted social welfare, given the current levels of X and Q, is: 

 

(30)     
   

r

QD
dq

r

M

r

XqP
XQCQXW

Q

 












0

,
,,,


  . 

 

By setting the tax rate τ the government affects the timing of market entry 

because of the direct effect that the tax rate has on the entry threshold. The two 

boundary conditions for finding the optimal tax policy are the following Value 

Matching Condition: 
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(31)     0,,** QQXWQ  , 

 

and Smooth Pasting condition: 

 

(32)     0,,** QQXWQX  . 

 

As in Section (3), Condition (31) is not an optimality condition but merely a no-

arbitrage condition that holds for any entry threshold, not necessarily the optimal one. 

In contrast, Condition (32) is an optimality condition that leads to the entry threshold 

which is optimal from the regulator’s perspective and to the tax rate that leads to this 

optimal threshold. 

Applying (30) in (31) and (32) yields that the socially optimal threshold 

satisfies: 

 

(33)   
 

 

 Q
r

QDM
r

QX





'ˆ

, ***




 , 

 

which leads to the following proposition regarding the socially optimal tax: 

 

Proposition 5: The welfare maximizing tax rate is: 

 

(35)   QD'*  , 

 

Proof: Follows directly from comparing (26) and (33).      

 

Eqs. (30) in (31) and (32) also yield that under the regulator’s optimal policy: 

 

(36)        






 **** ,

'
)1ˆ(, QX

r

QDM
QCQ  
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A boundary condition in the regulator’s problem is that at QQ  the following limit 

holds: 

 

(37)    0,lim 


QC
Q

. 

 

The intuition behind Condition (37) is immediate. In (30), the term    XQC ,  

captures the welfare associated with future increases of the market output Q. No such 

changes are expected when Q    because in that case the entry threshold (26) goes 

to infinity since by assumption   0lim 


Q
Q

 . 

 Integrating (36) and applying (37) yields: 

 

(38)        



 

Q

dqqX
r

qDM
QC


 **** ,

'
)1ˆ(, .  

  

Applying (380 in (30) yields that the expected discounted social welfare when 

the tax rate is optimally set is equal to: 

 

(39)     

  


















 




Q

tax dq
qX

X

r

qDM
QXW






***

*

,

'
)1ˆ(;,  

 

                  
   

dq
r

qDM

r

qPQ




 


 )
'

(
0 

  

 

Notably, by rearranging (26), one may easily show that 

 

(40)  
r

QDM

r

QDM

r

P )(')('ˆ
** 










, 

 

for any given Q. 

By (40), market entries are always beneficial since the expected present value 

of the flow of surplus added by a firm entering the market, i.e. 
r

P **

, covers always the 
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present value of the flow of social costs, i.e. 
 

r

QDM '
, associated with the production 

of one more unit of the good. This is because at each entry the barrier level **P  is 

adjusted upward by taxing at a tax rate *  increasing in Q (see Figure 2). Therefore, 

market entries occur always at a price which is sufficiently high to secure a positive 

contribution to welfare. 

  

 

 

Figure 2: Price dynamics under emission taxation 

  

Summing up, when comparing payoffs at the entry for any given Q, an emission 

tax secures always higher gains in terms of expected welfare with respect to the cap 

policy. However, one should keep into account that the entry process under emission 

taxation is slower in expected terms since    ***** ,,  QXQX  . This means that these 

higher gains, once discounted back, may be significantly lowered.  

Having this is in mind, let compare the expected discounted social welfare under 

the two policies. In Appendix C, we show that 

 

Proposition 6: From a welfare maximizing perspective, taxing emissions at a rate 

 QD'*   is strictly preferred to setting a cap 
*Q  on aggregate emissions since  

   ** ;,;, QQXWQXW captax   for any .* QQ   
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Last, it is worth checking the optimality of the entry strategy under the two policies 

from a first-best perspective. In this respect, a natural benchmark is represented by the 

optimal entry strategy that would be set by a welfare-maximizing planner. In this case, 

the expected discounted social welfare, given the current levels of X and Q, is: 

 

(41)     
   

r

QD
dq

r

M

r

XqP
XQCQXW

Q




 
0

)
,

(,


  

 

Denoting by  QX CP  the threshold for market entry and maximizing (27) subject to: 

 

(42)     0, QQXW CP

Q
 (Value Matching Condition), 

(43)     0, QQXW CP

QX
 (Smooth Pasting Condition), 

(44)    0lim 


QC
Q

, 

 

Yields: 

 

(45)   
 

 

 
   QXQX

Q

r

QDM
r

QX CP **** ,

'ˆ






 



, 

 

This allows us concluding that: 

 

Proposition 7: Taxing emissions at a rate  QD'*   is a first-best policy instrument 

while setting a cap 
*Q  on aggregate emissions is a second-best one. 

 

5. Final remarks 

Some final remarks are in order: 

 

1) assume that each firm has a productive capacity allowing to produce up to a certain 

amount of output. For simplicity, let us normalize that maximum amount to 1. Assume 

that the regulator announces a cap Q  on aggregate emissions and impose that each 

firm may produce not more than 10    units. As one may immediately see, 

introducing this variation in our model set-up would have no impact on our results. The 
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only thing that one should keep in mind is that in this case i) the number of active firms 

in the industry is equal to /Q  and ii) the maximum number of firms entering the 

market is equal to /Q ; 

 

2) Taxing emissions at the optimal rate implies that firms are taxed at a rate increasing 

in the market output. The principle of optimality of myopic behavior by Leahy (1993) 

applies also in this case. In fact, a competitive firm would keep entering the market as 

a myopic firm i) ignoring the truncation of the price process due to future market entries 

to the increase in the tax rate associated with those entries, and ii) assuming that they 

only hold an option to enter the market. As well-known, the first mistake implies an 

overestimation of the profitability of the market entry which should induce an earlier 

entry while the second one gives value to delaying entry. The two mistakes offset each 

other and the decision taken by a myopic firm is optimal.  

 

6. Conclusions 

In this paper, we have presented a model of endogenous market structure under 

uncertainty, with production externalities regulated by introducing a cap on market 

output or an emission tax. The main result is that the tax policy dominates the cap policy 

when aiming at the maximization of the welfare. Further, we show that the emission 

tax completely internalizes the external damage associated with pollution. We are 

aware that, concerning the complete internalization of the external damage, the 

assumption of perfectly competitive firms is crucial. It becomes then of interest, as 

potential lead for future research, extending the analysis in order to consider the impact 

that market power the ability to distort the output have on the degree of internalization 

and, potentially, on how the two policies should be ranked from a welfare-maximizing 

perspective.  

 

APPENDIX 

Appendix A – The value of an active firm 

In this Appendix, we present the derivation of the value function in (3), i.e.  QXV , . 

By a standard no-arbitrage argument (see e.g. Dixit, 1989),  QXV ,  is the solution of 

the following Bellman equation:  
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(A.1)      QXdVEMQXPdtXQVr ,),(,  ,  

 

which states that the instantaneous profit, MQXP ),( , along with the expected 

instantaneous capital gain,   QXVE , , from a change in X, must be equal to the 

instantaneous normal return,   dtQXVr  , .  

Applying Itô's lemma and rearranging, we can restate (A.1) as follows:  

 

(A.2)                  0,(,,,22

2
1  MQXPQXVrQXVXQXVX XXX  . 

 

As standard, a solution of (A.2) takes the form:  

 

(A.3)       
 

r

M

r

QXP
XQYXQZQXV 






 ,
, , 

 

where 0  and 1  are the roots of the quadratic equation:  

 

(A.4)  0)1(2

2
1  rxxx  . 

 

The term 
 

r
M

r

QXP




,
 represents the expected present value of the flow of profits 

conditional on Q remaining forever at its current level. Therefore, the first and second 

term on the RHS of (A.3) should capture the impact that changes in Q over time have 

on the value of the firm in expected terms.  

By the properties of the Geometric Brownian Motion, when X goes to 0 the 

probability of ever hitting the barrier triggering a new entry, i.e., X*(Q), and, 

consequently, an increase in Q, tends to 0. This leads to the following limit condition: 

 

(A.5)       0lim
0




 XQYXQZ
X

. 

 

Note that as  < 0, (A.5) holds only if   0QZ  for any 0Q . Hence, substituting 

  0QZ  into (A.3) gives (3). 
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Appendix B – Welfare maximization under a cap on aggregate emissions -  

Substituting the derivative of (13) with respect to Q in (14), applying (12), and 

rearranging terms, yields: 

 

(B.1)     
   




 QX
r

QDM
QQCQ

*')1ˆ(
, , 

 

Integrating (B.1) yields: 

 

(B.2)       
  






Q

Q

dqqX
r

qDM
QQCQQC

 *')1ˆ(
,, .  

 

The term   XQQC ,  in (13) captures the welfare associated with future 

increases of the market output. No such changes are possible if Q has reached the cap 

Q . Therefore, the following boundary condition holds at QQ  : 

 

(B.3)    0, QQC ,  

 

Substituting (B.3) in (B.2) yields: 

 

(B.4)     
  





Q

Q

dqqX
r

qDM
QQC

 *')1ˆ(
, .  

 

Appendix C – Proof of Proposition 6 

In this appendix, we prove Proposition 6 which states that welfare under emission 

taxation is larger than welfare under a cap on aggregate emissions. The proof is as 

follows: 

  

(C.1)     QXWQXW captax ,, *     

 

   =
 

  














Q

dq
qX

X

r

qDM





*** ,

'
)1ˆ(  
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 

 
 













*

*

')1ˆ(Q

Q

dq
qX

X

r

qDM



 

 

   > 
 

   
 




























*

*'

'
)1ˆ(

Q

Q

dq
qX

X

qDM

M

r

qDM


  

           

     
 

 
 

















*

*

')1ˆ(Q

Q

dq
qX

X

r

qDM



  

 

   = 
 

 
 

 
0

1

'
*

*
 
















Q

Q

dq
qX

X
qg

r

qDM



, 

 

where the first equality follows from (22) and (39), the first inequality follows from 

narrowing the range over which the first integral goes (as the integrand is positive), and 

from applying:  

 

(C.2)     
 QX

M

QDM
QX **** '

, 


  

 

which follows from (12) and (33). The second equality in (C.1) follows from applying 

1
11ˆ





 , rearranging terms, and defining: 

 

(C.3)   
   

1
''














 



qDM

M

qDM

M
qg . 

 

The second inequality in (C.1) follows from g(q) being positive for any q > 0 because 

  10
'


 qDM
M  which implies: 

 

(C.3)   
   

 
 

0
'

111
''



















qDM

M

qDM

M

qDM

M
qg   
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