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Abstract

Real Options were firstly formulated using traditional financial option models, how-
ever in practice an investor can confront with exotic dynamics. Nowadays, approaches
based on simulations have been proposed for solving complex options. This paper
proposes an alternative appraisal based on a Continuous-state Markov Process Ap-
proximation (CMPA) for multivariate Real Option problems. We discuss the viability
of the proposal through a study case of a control chart decision (CCD). The proposal
is compared with widely used algorithms for CCD problems. The results show the
proposal versatility in problems where traditional algorithms can not be used or are
inefficient.

Keywords: Real Option, Markov Process, continous state, Control Chart, European
Option, American Option, Multivariate Option.

1 Introduction.

Real Options can be traced to Myers (1976), who first defined investments in
real assets as mere options. Hence, the real options approach emerges from the
idea of applying financial option appraisal theory to capital investment projects.
However, the financial options are based on contracts. Conversely, the real
options are intrinsic features of strategic within the investments which must
be identified and specified (Dixit and Pindyck, 1994). Several methods were
developed to value financial options but their direct applications in the real
options setting are conditioned to particular characteristics of each problem. In
practice, the underlying assumptions of traditional option valuation methods
often do not hold when assessing capital investment projects. In this sense,
the best-known approaches in optionvaluation, with several possible variants,
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are: differential equations (Black and Scholes, 1973), lattice methods (Cox et
al. 1979) and Monte Carlo simulation (Boyle, 1977).

The Black-Scholes approach has limitations to deal with real option problems
due to its basic assumption model is not often fulfilled. Therefore, there are
certain limitations to its applicability in the case of real options, for instance it
can only be used for not too exotic options. In practice, most real options could
have characteristics of American options coupled with several flexibilities and
restrictions. The lattice approach is much more robust than the Black-Scholes
method. Its simplicity and efficiency make it a proficient appraisal in many
real option problems. However, it still has some limitations, such as the the
possibility of direct application to any stochastic dynamic. Finally, the Monte
Carlo - based method, that could be considered the most versatile approach,
but always it has stochastic sampling error and lack of computational efficiency.
Besides all those ordinary approaches, a less traditional one is the Markov Chain
Approximation (Duan and Simonato, 1999). This approach can be viewed as
a generalization of the lattice methods by exploring other potential stochastic
dynamics in the variables than just some specific models. This appraisal trades
computational efficiency for versatility.

In this paper an alternative approach is analyzed, seeking to apply an inter-
mediate trade-off between the computational effort of the lattice methods and
the versatility of the Monte Carlo methods. This alternative is very similar to
lattice methods and Markov chain approximations with a significant difference:
we avoid the discretization of the stochastic variables by using an interpolating
or regressing procedure, thereby maintaining continuous stochastic variables;
the time is still discretized using numerical schemes applied to the correspond-
ing equations, which defines the stochastic dynamics of the problem. Therefore,
dynamic programming is applied in a typical way but considering infinite points
within the stochastic variable interval rather than a finite number of states. The
applicability of this approach is not limited by the number of variables or a spe-
cific stochastic model, but by the requirement to ensure the existence of a system
of stochastic differential equations with a unique solution that characterizes the
real option problem and a numerical discretization wich transforms the system
in a stochastic recursive equation such that each path has a density function
almost everywhere.

This paper presents the formulation of the proposed approach and its im-
plementation in a problem which considers one and two stochastic variables, as
well as European and American real options. The results and efficiency of the
proposed Continuous-state Markov Process Approximation (CMPA) method
is analyzed using a study case about a raising quality control chart problem
(Nembhard et al., 2002). We compared the numerical results of the proposed
method against the Black-Scholes formula, binomial method and simple Monte-
carlo simulation results for one variable European options, as well as, binomial
method and least square Monte Carlo (LSM) (Schwartz and Longstaff, 2001)
results for one variable American options, and finally, the pentanomial method
(Boyle, 1988) and simple Monte Carlo simulation results for two variable Eu-
ropean options, as well as, pentanomial method and least square Monte Carlo
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(LSM) results for two variable American options.
This paper is organized as follows; in section 2 we describes a real option

model for control charts; in section 3 we introduce the CMPA, a comparison
with the Markov Chain Approximation approach, a description and a simple
numerical example; section 4 shows two implementations. Finally, in section
5 we discuss and compare the performance of the proposal with traditional
algorithms. The comparisons show that the CMPA method is competitive and
versatile with respect to the others methods tested. These results encourage the
research in this direction.

2 Quality control charts real option formulation.

In this section we present and formulate the Control charts problem models
that will be used as study cases. Control chart is a statistical control that aims
to control the quality of a process (Nembhard et al., 2002), helping to find
cyclical problems that arise under unpredictable circumstances. Manufacturers
use control charts to account for any low quality production in the system,
since an over cost of not using control charts exists due to the scrapping by
final inspection, returns of defective parts by the consumer or the risk of a
reputation of bad quality service or product. Of course using control charts
has a cost as well, considering for instance equipments, software and operators
(Montgomery,2000). Within this work, the real option problem is based on the
hypothesis that there is an option for applying the control charts in order to
evaluate it for maximizing the profit that depends on market price and number
of sales. In this sense, market price and number of sales are taken into account as
uncertain, and therefore, are modeled according to proper stochastic processes.
First we consider the simplest model where only the number of sales is variable,
and then we go to the model of two variables.

2.1 Financial model with one variable.

Let be R (t) the total sales revenue of the product (the total amount of money
received) per time interval beginning at time t, which depends of the stochastic
variable number of product sales during a time interval beginning at time t
denoted by S1 (t) and the price of the product considered as a constant S2.
Then R (t) can be written as:

(2.1) R (t) = S1 (t)S2.

Assuming that the number of sales and the number of units produced per time
interval are equal, the total profit per time interval that begins at time t can be
defined as a subtraction between revenue and expenses:

(2.2) P (t) = R (t)− F − S1 (t)V ,

where F is the fixed production cost per time interval and V is the variable
production cost per unit of product. However, if from now on we consider
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a more complex model where there may be faults that produce losses and the
possibility of control charts, then we must redefine profit. Assuming as constant
the fraction of revenue which is lost if control charts are not applied the cost of
implementing control charts per time interval, denoted by g and K, respectively;
thus the profit without chart per time interval is formulated as:

(2.3) P̃ (t) = (1− g)S1 (t)S2 − F − S1 (t)V ,

and the profit with chart per time interval is represented as:

(2.4) P̂ (t) = S1 (t)S2 − F − S1 (t)V −K.

Hence, the profit D (t) by the mere application of controls charts per time
interval is the difference between equations (2.3) and (2.4) which reduces to:

(2.5) D (t) = P̂ (t)− P̃ (t) = gS1 (t)S2 −K.

2.2 Financial model with two variables.

The two stochastic variables model consider that the price of the product during
the interval time that begins at time t is also stochastic and denoted by S2 (t).
Therefore, the total sales revenue R (t) fulfills the following equation:

(2.6) R (t) = S1 (t)S2 (t).

Therefore, the two variable profits without chart per time interval represented
as:

(2.7) P̃ (t) = (1− g)S1 (t)S2 (t)− F − S1 (t)V .

The two variable profits with chart per time interval are expressed as:

(2.8) P̂ (t) = S1 (t)S2 (t)− F − S1 (t)V −K.

Finally, the two variable profits D (t) gain per time interval (Nembhard et al.,
2002):

(2.9) D (t) = gS1 (t)S2 (t)=K.

2.3 European Option model.

The next valuation arises from the underlying hypothesis wich considers that a
decision made in an individual interval does not have any effect on the subse-
quent intervals, i.e. all the possible decisions are reversible. Consequently, the
manufacturer can make a modification of the decision applying control charts
at any interval. For instance, if we assume that the manufacturer will elect to
use or not the charts every month during a year, then there are twelve decision
points and twelve exercise costs for each one. Following this hypothesis, the
real option problem can be modeled using a European option for each month
because the execution of the option to use the control chart for a period only
takes place at its corresponding desicion point, where each option expires at a
different time interval (at the desicion points). The final real option value is the
total sum of all European option values (Nembhard et al., 2002).
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2.4 American Option model.

In this case, we consider that the option will is exercised just once, and there-
after, the choice is going to be remained until the investment horizon. In other
words, if we choose to apply the control charts at some time, then the control
will be running till the maturity of our investment project. Therefore, through-
out the investment maturity, the option can be executed just one time, then we
have an American valuation model where a revenue R (t) is collected at each
discrete period (months in this case) until the option expiration. Under this
assumption, we need to define a total and unique exercise cost for the american
option. Then we determine KA as the total value cost K at the middle point
between the beginning and the expiration of the option (Nembhard et al., 2002):

(2.10) KA = K
(er∆t)

n+1−1

(er∆t−1)(er∆t)n/2
,

where there are n intervals.

3 The algorithm approach.

The idea of this approach is strongly inspired by the Markov chain approxima-
tion approach, but differs only in that it is considered an uncountable set of
states for each stochastic variable. So first we explain the fundamental idea of
the latter below. It is well known, that the binomial method attempts to approx-
imate the geometric Brownian motion dynamics considering discrete-time paths
that can only evolve in two possible states at each step (Wilmott et al. 1995),
assuming such approximation we proceed to calculate the value of the option
in each relevant state of each period backwards by the dynamic programming
given the appropriate Bellman equation (Bellman, 2003).

The markov chain approximation approach is more general, in that approach
we approximate the stochastic continous process St in an interval of stochastic
states [c1, c2] by discrete-time paths Xn (a markov chain) that may evolve into
any number of states in the state space {Ai} at each next step, to this end, it
is necessary to determine the conditional probability of the evolution of a path
from one state Ai at the step n to any other Aj in the next step n+ 1. Also it
is assigned an unique value ai to Xn if it belongs to the state Ai such that i 6= j
implies that ai 6= aj . This information is represented in the transition matrix
for a fixed step n to n+ 1 (if conditional probabilities keep constant in all steps
then there is an unique matrix for all steps, let suppose this is the case):

(3.1) Mi,j = P ((Xn+1 = aj) / (Xn = ai)).

If we consider a column vector V where Vi = v(ai) for v : R → R (a function
estimating the option value) and defining O := MV , then the next conditional
expectations takes the form:

(3.2) Oi = E (v (Xn+1) /Xn = ai).

The goal of (3.2) is estimating the next conditional expectation:
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(3.3) E
(
v
(
Stn+1

)
/Stn

)
(ω) ≈ E (v (Xn+1) /Xn = ai),

where Stn (ω) = ai for ω in the sample space Ω. CMPA approach takes all points
in [c1, c2] as states for a Markov proccess Pn : Ω × N → [c1, c2] approximating
St as much as it is required, a process like that is not a Markov chain because
there are uncountable states and instead of using (3.1) we consider f : [c1, c2]×
[c1, c2] → [0,∞) such that f (x, y) is the density function of Pn+1 if Pn = y.
Then the left term in (3.3) could be estimated as the expectation of v(Pn+1) if
Pn = ai and Pn+1 ∈ [c1, c2]:

(3.4) E
(
v
(
Stn+1

)
/Stn

)
(ω) ≈

´ c2
c1
v (x) f (x, ai) dx.

Obviously, the estimation improves when [c1, c2] tends to R. This unidimen-
sional example can be extended to multiple dimensions with the same concepts
and yet we have not described a real procedure for calculating option value
problems, we just compared both approaches.

3.1 Algorithm description.

For the sake of simplicity, within this article, the formulation takes into account
only Wiener processes. However, it is important to notice that this approach
can be easily extended to more general Levy processes. Let define the next
notations:

• The time variable t.

• A vector of n stochastic processes: X (t) =(X1 (t),X2 (t),...,Xn (t)).

• A vector of n stochastic differentials: dX (t) =(dX1 (t),dX2 (t),...,dXn (t)).

• A vector of m Wiener processes W (t) =(W1 (t),W2 (t),...,Wm (t)), with
the differentials: dW (t) =(dW1 (t),dW2 (t),...,dWm (t)) and a correlation
matrix ρ such that ρij = corr (Wi,Wj).

• A family of n functions fi : Rn+1 → R and a family of n ×m functions
gij : Rn+1 → R.

In addition, let define a system of stochastic differential equations with unique
solution as follows:

(3.5) dXi (t) = fi (t,X (t)) dt+
∑m
j=1 gij (t,X (t)) dWj (t).

Let be the system of recurrences from (3.5) by using a numerical scheme like
Euler-Maruyama or Milstein (Higham, 2001), in an uniform grid for time dis-
cretization:

(3.6) Xk+1
i = Fi

(
k,4t,Xk,4W k

)
,
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where k represents the number of steps, 4t the time discretization, Xk =
(Xk

1 (t),Xk
2 (t),...,Xk

n (t)) the discretizated vector of stochastic procesess in step
k, 4W k = W ((k + 1) .4t) −W (k.4t) and a family of n functions Fi : N ×
R2m+1 → R.

Suppose that there is a discrete option value V that depends on {Xi} and
the vector Y containing particular constants parameters from the problem (like
the free interest rate), then it is considered a Bellman equation of the form:

(3.7) V (Xa, ta) = maxi∈I(Xa)

{
Hi

(
Xa, Y,E

[
Vi
(
Xa+1, ta+1

)
�Xa

])}
,

where Hi : Rn+p+2 → R, ta = a4t, p is the dimension of Y , I (Xa) represents
all possible decisions on the state Xa, Vi is the option value choosing i and
E
[
Vi
(
Xa+1, ta+1

)
�Xa

]
is the conditional expectation of Vi under Xa. Then

we define the next function G : Rn × N× I (Rn)→ R:

(3.8) G (P, a, i) = E
[
Vi
(
Xa+1, ta+1

)
�Xa

]
(ω),

where ta = a4t, for any ω belonging to a sample space such that Xa (ω) = P
(because Xa is a Markov process) and we have:

(3.9) G (P, a, i) ≈
´

Ω
J (x1, ..., xn)Vi

(
x1, ..., xn, t

a+1
)
.dx1...dxn,

where J : Rn → R is the joint density of Xa+1 if Xa = P (using (3.6)) and
ΩP ∈ Rn is a [p1, q1]× ...× [pn, qn] region large enough for a good approximation
of the integral.

Like other algorithms for option valuing this approach applies dynamic pro-
gramming taking data from the step closer to time zero to approximate a step
immediately previous. Let be Ṽ is our approximation of V and suppose we know
a good approximation of the value of the function V

(
x, ta+1

)
(with ta+1 fixed)

in a region Ωa+1 ⊂ Rn. Then, we calculate (3.9) (with Ṽ
(
x, ta+1

)
) replaced

in (3.7) and thus estimate a new Ṽ (x, ta) in a set of previously selected points
{Pk} ⊂ Ωa+1. But to repeat the same procedure and obtain an estimation

of the function in the previous time Ṽ
(
x, ta−1

)
, we must have a estimation of

V (x, ta) in another region Ωa ⊂ Rn large enough. For that, we finally make an

interpolation or regression of the set of points
{
Pk, Ṽ (Pk, t

a)
}

using a predeter-

mined family of functions as basis. A recommended way to do this is through
a “local interpolation” where we must make a partition of Ωa = ∪αi and each
Vi : αi → R is approximated by an interpolation of Ṽi (x, ta) in βi∩{Pk}, where
αi ⊂ βi. The algorithm terminates when the backward procedure reaches a = 0.
The next pseudo code represents what is described above:
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Algorithm 1 CMPA

N = T
4t = number of iterations.

M =cardinality of {Pk}.
L =cardinality of I (X).

Discretizing the SDE (31) that model the problem.

Determining the joint density function of discrete variables in (32).

FOR i = 1 TO N

FOR j = 1 TO M

FOR k = 1 TO L

G̃ (Pj , i, k) =
´

Ωj
JPj (x1, ..., xn) Ṽk

(
x1, ..., xn, t

i
)
.dx1...dxn

Ṽ
(
Pj , t

i−1
)

= maxk∈I(X)

{
H
(
Pj , Y, k, G̃ (Pj , i, k)

)}
Interpolating or regressing

{
Pj , Ṽ

(
Pj , t

i−1
)}

.

3.2 A simple numerical example.

Before describing the algorithm we present a simple numerical example for a
simple American call option, independent from the main problem of this article.
We will choose the following parameters: riskless rate r = 0.05, strike price
K = 5, the asset initial value S0 = 10, the volatility σ = 0.3, the time T = 1
and the time discretization ∆t = 1

3 .
Assuming that the process followed by the underlying variable S in a risk-

neutral world is:

(3.10) dS = rSdt+ σSdW = (0.05)Sdt+ (0.3)SdW ,

where W is a Wiener process and 4Wn = W(n+1)4t −Wn4t, if we apply the
Euler-Maruyama method yields the following discretization:

(3.11) Sn+1 = Sn + rSn 4 t+ σSn MWn

= Sn +
(

1
60

)
Sn + (0.3)Sn MWn.

Observe that for a fixed Sn = x, Sn+1 has a normal distribution with mean

mx = x+
(

1
60

)
x and standard deviation dx = (0.3)x√

3
, which implies the following

density function:

(3.12) fx(y) =
(

1
dx
√

2π

)
e
−
(

(mx−y)2

2d2
x

)
.

Here we use the condition in time T: V (S3, 1) = max(S3−5, 0) to approximate
the option value function in the previous instant t = 2

3 and using the Bell-
man equation V (Sn, n4t) = max(Sn −K, e−r4tE

(
V
(
Sn+1,

n+1
3

)
/Sn

)
) back-

wards. Following the idea put forward earlier an estimation of the function
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using the next integral is performed in a finite number of values of Sn given by
{0.1, 12, 24, 36, 48}:

(3.13) E (V (Sn+1, (n+ 1)4 t) /Sn) (ω)

≈
´∞

0
V (y, (n+ 1)4 t) fx (y) dy.

Where ω is in a sample space Ω and Sn (ω) = x.
For ω such that S2 (ω) = 0.1, then mx = 0.1017 and dx = 0.0173:

(3.14) E (V (S3, 1) /S2) (ω) ≈
´ 76

0
max(y−5, 0).

(
1

dx
√

2π

)
e
−
(

(mx−y)2

2d2
x

)
.dy

= 0 ⇒V
(
0.1, 2

3

)
≈ max (0.1− 5, 0) = 0.

Remark. As the integrals are calculated using some numerical method, it is
considered a finite interval of integration [0, 76] accurate enough for our require-
ments.

For ω such that S2 (ω) = 12, then mx = 12.2 and dx = 2.0785:

(3.15) E (V (S3, 1) /S2) (ω) ≈
´ 76

0
max(y−5, 0).

(
1

dx
√

2π

)
e
−
(

(mx−y)2

2d2
x

)
.dy

= 12.1988 ⇒ V
(
12, 2

3

)
≈ max (12− 5, 11.9972) = 11.9972.

For ω such that S2 (ω) = 24, then mx = 24.4 and dx = 4.1569:

(3.16) E (V (S3, 1) /S2) (ω) ≈
´ 76

0
max(y−5, 0).

(
1

dx
√

2π

)
e
−
(

(mx−y)2

2d2
x

)
.dy

= 24.4 ⇒ V
(
24, 2

3

)
≈ max (24− 5, 23.9967) = 23.9967.

For ω such that S2 (ω) = 36, then mx = 36.6 and dx = 6.2354:

(3.17) E (V (S3, 1) /S2) (ω) ≈
´ 76

0
max(y−5, 0).

(
1

dx
√

2π

)
e
−
(

(mx−y)2

2d2
x

)
.dy

= 36.6 ⇒ V
(
36, 2

3

)
≈ max (36− 5, 35.9951) = 35.9951.

For ω such that S2 (ω) = 48, then mx = 48.8 and dx = 8.3138:

(3.18) E (V (S3, 1) /S2) (ω) ≈
´ 76

0
max(y−5, 0).

(
1

dx
√

2π

)
e
−
(

(mx−y)2

2d2
x

)
.dy

= 48.7582 ⇒ V
(
48, 2

3

)
≈ max (48− 5, 47.9523) = 47.9523.

Then we approximate the whole function V
(
S2,

2
3

)
in R by a regression in{

1, x, x2
}

, obtaining V (x, 2
3 ) ≈ −0.093 + 1.0076x − 0.0001x2 and repeat the

above procedure with the instant t = 1
3 :

For ω such that S1 (ω) = 0.1, then mx = 0.1017 and dx = 0.0173:

(3.19) E
(
V
(
S2,

2
3

)
/S1

)
(ω)

≈
´ 76

0
(−0.093+1.0076y−0.0001y2).

(
1

dx
√

2π

)
e
−
(

(mx−y)2

2d2
x

)
.dy = 0.0094

⇒ V
(
0.1, 1

3

)
≈ max (−4.9, 0.0093) = 0.0093.
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For ω such that S1 (ω) = 12, then mx = 12.2 and dx = 2.0785:

(3.20) E
(
V
(
S2,

2
3

)
/S1

)
(ω)

≈
´ 76

0
(−0.093+1.0076y−0.0001y2).

(
1

dx
√

2π

)
e
−
(

(mx−y)2

2d2
x

)
.dy = 12.1844

⇒ V
(
12, 1

3

)
≈ max (7, 11.9830) = 11.9830.

For ω such that S1 (ω) = 24, then mx = 24.4 and dx = 4.1569:

(3.21) E
(
V
(
S2,

2
3

)
/S1

)
(ω)

≈
´ 76

0
(−0.093+1.0076y−0.0001y2).

(
1

dx
√

2π

)
e
−
(

(mx−y)2

2d2
x

)
.dy = 24.4312

⇒ V
(
24, 1

3

)
≈ max (19, 24.0274) = 24.0274.

For ω such that S1 (ω) = 36, then mx = 36.6 and dx = 6.2354:

(3.22) E
(
V
(
S2,

2
3

)
/S1

)
(ω)

≈
´ 76

0
(−0.093+1.0076y−0.0001y2).

(
1

dx
√

2π

)
e
−
(

(mx−y)2

2d2
x

)
.dy = 36.6473

⇒ V
(
36, 1

3

)
≈ max (31, 36.0416) = 36.0416.

For ω such that S1 (ω) = 48, then mx = 48.8 and dx = 8.3138:

(3.23) E
(
V
(
S2,

2
3

)
/S1

)
(ω)

≈
´ 76

0
(−0.093+1.0076y−0.0001y2).

(
1

dx
√

2π

)
e
−
(

(mx−y)2

2d2
x

)
.dy = 48.7911

⇒ V
(
48, 1

3

)
≈ max (43, 47.9523) = 47.9846.

Again we approximate the whole function V
(
S1,

1
3

)
in R by a regression in{

1, x, x2
}

, obtaining V (x, 1
3 ) ≈ −0.0951+1.0087x−0.0001x2 and repeat exactly

the same procedure with the instant t = 0.

4 Implementation

4.1 Implementation for one variable

Using the study case discussed in (Nembhard et al., 2002) for one stochastic
variable, we implement an American and European option pricing regarding
the following parameters: the number of sales S1 (0) =$872,640 per month;
The price of the product is S2 =$5.678; the volatility of the number of sales is
0.930354. When control charts are not implemented for controlling the process,
the loss revenue factor is equal to; g = 0.018. On the other hand, the cost
of implementing control charts is K =$11,000 per month. Finally, the cost
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of using control charts for an American option is KA =$143,044; the yearly
risk-free interest rate is equal to r = 0.08 and the maturity is T = 1.

We define the stochastic revenue variable S := g.S1.S2 which follows the
same stochastic dynamic than S1 in a risk-neutral basis:

(4.1) dS = µ.S.dt+ σ.S.dW ,

where W is a Wiener process, µ =r = 0.08 is the expected return in a risk-
neutral basis, and σ = 0.930354 is the volatility. Using the Euler-Maruyama
method with the time discretization 4t = 1

24 we have:

(4.2) Sa+1
em = Saem + Saem

(
0.08
24

)
+ 0.930354.Saem4W a,

where a is the number of steps and

(4.3) 4W a = W ((a+ 1)4t)−W (a4t).

We modificate the original numerical scheme with some reflective assumptions
for every hypothetical Euler-Maruyama discretized path, i.e. a discrete path
Sa is constructed such that: if Sa = Saem then we assume that in the next
step Sa+1 =

∣∣Sa+1
em

∣∣. This consideration assures us the desired property that Sa

never has negative values and as we will see that modifies the density function
obtained with the original scheme. Figure 4.1 shows a more intuitive idea.

Fig. 4.1: Graphical example of reflexivity

Therefore, let VE , VA, Ve and Vam be the European, American and two
auxiliar option values respectively (that they will be used to calculate the Euro-

pean and American option values). Let be ṼE , ṼA, Ṽe and Ṽam the estimations
of the last option values. Hence, we have the following Bellman equations :

(4.4) Ve (Sa, ta) = max
{

0, e−r4tE
[
Ve
(
Sa+1, ta+1

)
/Sa

]}
,

(4.5) Vam (Sa, ta) = max
{

0, e−r4tE
[
Vam

(
Sa+1, ta+1

)
/Sa

]}
,
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(if a is an odd number)

(4.6) Vam (Sa, ta) = max
{

0, Sa + e−r4tE
[
Vam

(
Sa+1, ta+1

)
/Sa

]}
,

(if a is an even number)

(4.7) VA (Sa, ta) = max {0, Vam (Sa, ta)−KA},

(4.8) VE (Sa, ta) =
∑ a

2

k=0 Ve
(
S2k, t2k

)
,

(if a is an even number)

where

(4.9) Ve
(
S24, 1

)
= max

{
0, S24 − 11, 000

}
,

and

(4.10) Vam
(
S24, 1

)
= max

{
0, S24

}
= S24.

Remark. Assuming that cash flow is monthly, Bellman equation (4.5) corre-
sponds to an intermediate period within the month. Thus, equation (4.5) is
used as an extra calculation point in order to improve the estimation of condi-
tional expectations in (4.6) as well as for adapting the option pricing scheme to
a discretization grid more dense than 4t = 1

12 . If 4t = 1
12 , then equation (4.6)

can be directly applied.
It can be seen in the Bellman equations that the American real option of

this particular problem is not formulated as the traditional American option
used in finance. For more details see section (2.4) or (Nembhard et al., 2002).

In this context, we must to calculate the integral (3.9) in enough points to ap-
proximate the option values at each point Pi as functions of Sn. Thus, we must
choose the points with a sufficient spacing among them with the objective of
capturing a range wide enough of possible values, so that it accurately approxi-
mates to the option function with an acceptable error in each iteration. Within
this work, it has been selected 54 values for Pj such that Pj = 1.5j and P0 = 0.

Equation (4.2) implies that if Saem = Pj then Sa+1
em has a normal distribu-

tion with average Pj + Pj
(

0.08
24

)
and standard deviation 0.930354

√
1
24Pj , so

the modificated discretized variable Sa+1 with reflexive assumptions follows the
next density function:

(4.11) Ji (x) =
1(R+∩{0})(x)(A1(x)+A2(x))

(0.930354Pi
√

π
12 )

,

where:

A1 (x) = e
−(x−Pi−Pi( 0.08

24 ))
2
/

(
2
(

0.930354Pi
√

1
24

)2
)

,

A2 (x) = e
−(−x−Pi−Pi( 0.08

24 ))
2
/

(
2
(

0.930354Pi
√

1
24

)2
)

,

and 1D (x) is the indicator function such that 1D (x) = 1 for x ∈ D and 1D (x) =
0 for x /∈ D. Then for each Pi and the corresponding region, it satisfies the
expression below:
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(4.12) Ωi = [LI , LS ]

where:

LI = Pi + Pi
(

0.08
24

)
− 5

(
0.930354Pi

√
1
24

)
and

LS = Pi + Pi
(

0.08
24

)
+ 5

(
0.930354Pi

√
1
24

)
.

Afterwards we estimate the conditional expectation on the set {Pi} using
the following integral for the European and American option respectively:

(4.13) G̃e(Pi, a) =
´

Ωi
Ji (x) Ṽe

(
x, ta+1

)
.dx,

(4.14) G̃am(Pi, a) =
´

Ωi
Ji (x) Ṽam

(
x, ta+1

)
.dx.

Finally, it replaces (4.13) and (4.14) on their respective Bellman equations:

(4.15) Ṽe (Pi, t
a) = max

{
0, e−r4tG̃e(Pi, a)

}
,

(4.16) Ṽam (Pi, t
a) = max

{
0, Pi + e−r4tG̃am(Pi, a)

}
,

(if a is an even number),

(4.17) Ṽam (Pi, t
a) = max

{
0, e−r4tG̃am(Pi, a)

}
,

(if a is an odd number) ,

(4.18) ṼE (Pi, t
a) =

∑ a
2

k=0 Ṽe
(
Pi, t

2k
)
,

(4.19) ṼA (Pi, t
a) = max {0, Vam (Pi, t

a)−KA}.

At the beginning, integrals (4.13) and (4.14) are calculated using the conditions
(4.9) and (4.10), all the integrals are calculated numerically by Simpson’s rule,
later we work backwards by using the interpolated approximations of Ve (x, ta)
and Vam (x, ta) for n < 24.

In this sense, let be the family of sets: Cj = [Pj , Pj+1) for 0 < j < 53
and C54 = [P54,∞). It is made a “local” approximation of the option value
function in each Cj using the resulting function interpolating the next points:

{
(
Pj−1, Ṽ (Pj−1, t

a)
)

,
(
Pj , Ṽ (Pj , t

a)
)

,
(
Pj+1, Ṽ (Pj+1, t

a)
)

,
(
Pj+2, Ṽ (Pj+2, t

a)
)
}

whereBj = Cj−1∪Cj∪Cj+1, by the set of functions
{

1Bj , x.1Bj , x
2.1Bj , x

3.1Bj
}

.
Similarly, for C0 an approximation of the option value function is obtained in-

terpolating {
(
P0, Ṽ (P0, t

a)
)

,
(
P1, Ṽ (P1, t

a)
)

,
(
P2, Ṽ (P2, t

a)
)

,
(
P3, Ṽ (P3, t

a)
)
}

by the set of functions
{

1B1 , x.1B1 , x
2.1B1 , x

3.1B1

}
, and finally, for C53 and

C54 an approximation of the option value function is estimated by interpolating

{
(
P51, Ṽ (P51, t

a)
)

,
(
P52, Ṽ (P52, t

a)
)

,
(
P53, Ṽ (P53, t

a)
)

,
(
P54, Ṽ (P54, t

a)
)
} by the

set of functions
{

1B52 , x.1B52 , x
2.1B52 , x

3.1B52

}
.
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4.2 Implementation for two variables

Similarly to the one variable problem, the same study case reported in (Nemb-
hard et al., 2002) is analyzed. For this problem we add the volatility of S2 (t),
σ2 = 0.059634 and the correlation between S1 (t) and S2 (t): ρ = 0.111344.

So let W1 and W2 be independent Wiener processes, r = 0.08 is the expected
return in a risk-neutral basis, then these are the dynamics for S1 (t) and S2 (t)
respectively:

(4.20) dS1 = 0.08S1dt+ 0.930354S1dW1,

(4.21) dS2 = 0.08S1dt+ 0.059634S2

(
ρdW1 +

√
1− ρ2dW2

)
Using the Euler-Maruyama method with 4t = 1

24 , we can state:

(4.22) Sa+1
1 = Sa1 + 0.08

24 S
a
1 + 0.930354Sa14W a

1 ,

(4.23) Sa+1
2 = Sa2 + 0.08

24 S
a
2 + 0.059634Sa2

(
ρ4W a

1 +
√

1− ρ24W a
2

)
where 4W a

i = (Wi ((a+ 1)4t)−Wi (a4t)). Then, the same Bellman equa-
tions and conditions at a = 24 used in the one variable case are applied for:

(4.24) Sa = (0.018)Sa1S
a
2 .

Let be the next sets {Mi} such that Mi = (1.5)
i−1

for 0 < i < 55, M0 = 0,
and {Ni} such that Ni = i for i < 19. Then let be {Pij} = {Mi} × {Nj} and
defining:

(4.25)



µ′ = Mi + (0.08)
24 Mi

σ′ = (0.930354)Mi√
24

Lij = (0.059634) (0.111344)Nj

(
y−Mi− (0.08)

24 Mi

(0.930354)Mi

)
µ” = Nj + (0.08)

24 Nj + Lij

σ” =
(0.059634)

√
1−(0.111344)2Nj√

24

H (x, y) = 1
2πσ′σ”

(
e
− (x−µ′)2

2(σ′)2
e
− (y−Lij−µ”)2

2(σ”)2

)
For each Pij = (Mi, Nj) we have:

(4.26) Jij (x, y) = 1(R+∩{0})×(R+∩{0}) (x, y)H (x, y) ...

+1(R+∩{0})×(R+∩{0}) (x, y)H (−x, y) ...

+1(R+∩{0})×(R+∩{0}) (x, y)H (x,−y) ...

+1(R+∩{0})×(R+∩{0}) (x, y)H (−x,−y)

Remark. Note that H (x, y) is the density function obtained directly from Euler-
Maruyama while Jij (x, y) is finally the density function where where it is forced
the reflective hypothesis to assume probability equal to zero for negative values.

Therefore, we have the following integrals that it will be replaced in the corre-
sponding Bellman equations:
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(4.27) G̃E(Pij , a) =
´

Ωij
Ji (x, y)VE

(
x, y, ta+1

)
.dx.dy,

(4.28) G̃ax(Pij , a) =
´

Ωij
Jij (x, y)Vax

(
x, y, ta+1

)
.dx.dy,

where:

(4.29) Ωij =
[
Mi

(
1 + 0.08

24 −
(5)(0.930354)√

24

)
,Mi

(
1 + 0.08

24 + (5)(0.930354)√
24

)]
×

...
[
Nj

(
1 + 0.08

24 −
(5)(0.059634)√

24

)
, Nj

(
1 + 0.08

24 + (5)(0.059634)√
24

)]
.

We have implemented an interpolation in each Cij = [Mi,Mi+1) × [Nj , Nj+1)
using the set of functions

{
1Cij , x.1Cij , y.1Cij , xy.1Cij

}
, but other interestig al-

ternative to the interpolation is implementing a Delaunay triangulation using
{Pij} as vertices and apply the same triangular or hat functions than finite
element method (Pepper and Heinrich, 1992).

5 Numerical Results.

In this section, we discuss the performance of this approach to both one and
two variable problems and also we compare these numerical results with those
provided by traditional algorithms such as lattice methods and Monte Carlo
simulation in the European and American option problems applied in control
charts valuation, with one and two stochastic variables.

Using an error analysis of the algorithm (Section 3.1) is observed three types
of errors: the first is the error due to discretization of time which can be min-
imized by reducing the value of 4t. This error exists in all algorithms except
analitic formulations as Black-Scholes. The other two types of error are inherent
to our proposal: the first is the error due to the approximation of the value of
the option function by using a regression or interpolation, which can be mini-
mized using enough interpolation or regression points {Pi} to a better fit of the
curve.

Finally, there is an error in the numerical computation of the integral to es-
timate the conditional expectation. Since in our implementation the discretized
variable follows a normal distribution, then it is reasonable to integrate around
the mean. So the distance from the integral limits to the mean, is a variable
that affects the precision. In our case, we use the Simpson rule for integration
in a ratio of five by the standard deviation from the mean. An analysis of the
computational complexity of our own implementation, we consider the following
variables:

• m = T
4t (where T is the is the maturity of the European option)

• n =the number of interpolating or regressing points.

• p =the number of points evaluated in the numerical integration.

Then we have the next order of complexity: O(m.n.p)
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In Figure 5.1 we compare the percentage of absolute error of the Euro-
pean option calculation using the binomial method, Monte Carlo simulation
and CMPA by using the absolute value from subtracting the approximated
solution and the exact solution given by the Black Scholes formula. Thus, a
sensitivity analysis of absolute error depending on the maturity within the sum
of European options series problem is done. In this sense, the absolute error of
each approach is estimated regarding the maturity parameter within an interval
from six months to three years. The Monte Carlo results show the average error
of one hundred different realizations each one.

Fig. 5.1: CMPA, Monte Carlo and Binomial percentage absolute errors

In Table 1, a similar sensitivity analysis is done for the case of the one
variable American value . In this case the Monte Carlo approach is represented
by an implementation of the LSM (Schwartz and Longstaff, 2001) using 1000
paths.

Tab. 1: Comparison between Binomial Method, CMPA and Monte Carlo Sim-
ulation for an American option.

0.5 years 1 years 1.5 years 2 years 2.5 years 3 years

Binomial 481,265 1,016,387 1,551,509 2,086,631 2,621,753 3,156,875

CMPA 481,235 1,016,279 1,551,273 2,086,218 2,621,117 3,155,980

LSM 489,128 986,219 1,618,122 2,186,306 2,698,000 3,281,857

Finally, Tables 2 and 3 compare the performance of all aproaches in mul-
tivariable European and American options respectively. Table 2 uses a Monte
Carlo simulation with 50000 paths, much more than Table 1 and Table 3 show a
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multivariable LSM implementation with the relative error of 1% setting 95% of
confidence (Fisherman, 2003). In the Fig. 5.1, Table 1, 2 and 3 lattice methods
and CMPA have the same time discretization (4t = 1

12 , 1
24 ), but Monte Carlo

and LSM simulations have a much thinner discretization (4t = 1
1728 ).

Tab. 2: Comparison of the European Option Value between Pentanomial
Method, CMPA and Multivariable Monte Carlo Simulation.

0.5 years 1 years 1.5 years 2 years 2.5 years 3 years

Pentanomial 562,600 1,074,053 1,614,143 2,184,396 2,786,100 3,431,415

CMPA 562,421 1,073,222 1,611,510 2,178,162 2,774,480 3,466,356

Monte Carlo 562,963 1,075,539 1,615,126 2,181,919 2,771,094 3,382,954

Tab. 3: Comparison of the American Option Value between Pentanomial
Method, CMPA and Multivariable LSM.

0.5 years 1 years 1.5 years 2 years 2.5 years 3 years

Pentanomial 495,039 1,068,298 1,667,003 2,292,283 2,945,317 3,627,337

CMPA 494,856 1,067,598 1,665,363 2,289,474 2,941,030 3,607,772

LSM 496,977 1,075,323 1,666,170 2,244,625 2,854,852 3,450,873

6 Conclusion

This paper exposes an alternative method based on an approximation of the
stochastic dynamic through infinite states for assessing multivariate real option
problems. In order to illustrate the feasibility of the proposed valuation ap-
proach, a real option problem related with a control chart implementation was
analyzed. The experimental results for Geometric Brownian models of one and
two variables suggest to expect a good performance for more exotic dynam-
ics. This approach seems promising for application to problems where some
traditional algorithms are no applicable or have not an adequate performance
due to its versatility of implementation. In this sense, it offers an interesting
trade-off between the precision of the lattice methods and versatility of Monte
Carlo methods. In this context, our proposal may be an useful appraisal in
some problems where the model versatility is needed but the stochastic error is
not desired. Future works could extend this approach to more general dynamic
involving Levy processes and multiple option implementations.
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