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Abstract

This paper uses the stochastic discount factor (SDF) to price real options and introduces the expected
discounted shortfall (EDS) risk measure to control risk.

A multivariate covariance based SDF modelling framework is described. Explicit formulae linking
the correlation matrix to the risk premium are derived for assets prices following both Brownian and
Ornstein-Uhlenbeck processes. Applying the SDF to real option problems simplifies calculations and
economic assumptions by removing the requirement for replicating portfolios.The SDF method does not
identify a hedging portfolio, so other risk control methods have to be used to compensate. EDS is a
coherent, multi-period risk measure that calculates the present value of the risk to the shareholder, that
cashflows are insufficient. An example real option is included, focusing on cashflow, using the SDF
approach to measure the change in return and the EDS risk measure to price the increase in risk. The
changing risk and return profile over time is also studied.

Keywords: Stochastic Discount Factor, SDF, Real Option, Expected Discounted Shortfall, EDS, Risk
Measure, Coherence
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1 Introduction

An option is the right, but not the obligation to take action at pre-determined cost for a pre-determined
period of time depending on how uncertain conditions evolve. A real option is any investment in a physical
or intangible asset, in human competence, or in any capabilities that help an organization to envision and
respond to future contingent events.

Valuing an asset using (possibly mean reverting) random processes to generate future prices is a widely
accepted approach to asset valuation, but the choice of a suitable discount rate is a contentious issue. This
paper considers the discount rate as a random process, called a stochastic discount factor (SDF). A simple
but generic approach to SDF modelling is introduced, based around correlations. This framework is then
applied to real options pricing and to risk calculations. The Monte Carlo SDF approach of this paper values
real options and removes the need for an explicit replicating portfolio, simplifying calculations and economic
justifications.

The risk of holding the real option through time must still be managed, so this paper introduces the
expected discounted shortfall (EDS) measure which is a coherent, multi-period risk measure that is presented
as a cost from the shareholder’s point of view.

1.1 Stochastic discount factors

The stochastic discount factor (SDF) is a stochastic process that discounts a projected future cashflow to
give a present value. The SDF process takes a different value at each point in time and is also dependent
on the state of the economy at that time. Only one SDF process is applied to all cashflows, pricing all
assets simultaneously. The SDF is synonymously referred to across the academic literature as the state
price deflator1, stochastic discount factor, state price density, state price kernel and the marginal rate of
substitution.

Looking at a project’s cashflows in isolation, the SDF method can calculate how much value taking on
a project would add to a diversified investor. Each opportunity to influence the project’s cashflows is a real
option, and a chosen combination of real options is a strategy. SDFs allow the value of different strategies to
be compared and decisions to be ranked. Although the SDF can value a project, it does not directly quantify
the risk of investing in a project.

This paper uses covariance to simplify the mathematical complexities of other SDF implementations,
formulating a generic SDF model that explicitly links the correlation matrix to risk premiums via the SDF.
The approach is simple to understand and implement alongside existing models, and can be achieved without
sacrificing any descriptive power. The approach allows many different types of stochastic processes to be
combined without increasing the volatility of the SDF.

The derivation of a log-normally distributed, mean reverting, model uses the correlation matrix to fully
describe the relationship between the risk premium of each asset and the SDF. The model in this paper is
simple and tractable, allowing results to be checked easily.

1.2 Real options

A real option valuation method is needed that can price all types of assets, uses the real world probability
measure, and is simple for practitioners to use.

This paper introduces a new approach to valuing real options, using the SDF within a Monte Carlo
framework. An equilibrium based theoretical argument is used to justify the approach, avoiding many
assumptions that, to date, have hampered the general acceptance of real options.

1Not to be confused with the economic, GDP deflator which is a historic measure of changes in prices in an economy.
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SDFs can be used to disguise the mathematical complexities, allowing a practitioner to value real options
without knowledge of the techniques needed to generate the stochastic variables. SDFs also remove the
complexity and subjectivity around choosing a discount rate.

Under the SDF approach there is only one category of real option model. For example, there is no dif-
ference between implementing a ’switching’ option model or an ’abandonment’ option model. The under-
lying SDF model and implementation method stays the same whatever option is valued, only the cashflows
change. SDFs encourage real options to be viewed and valued collectively, allowing overall strategies to be
measured against one another, on a combined risk and return basis.

Combining real options, the SDF, and EDS allows the risk and return to a company of a given real option
strategy to be fully defined. Real options calculate the return from a project and the EDS calculates the risk
to the firm when a project is commissioned.

1.3 Risk pricing

The Monte Carlo SDF approach does not produce a hedging portfolio, so the risk of holding a real option
must be measured using other methods. If a company had an infinite ability to raise cash then risk would be
ignored and all valuations could be done on an expected value basis. As the cash limit is set at the company
level then this is where the risk (of a real options strategy) should be measured and controlled.

This paper defines a new, coherent, multiperiod, value based risk measure that is applied at the company
level. EDS is the only risk measure that is able to coherently combine risks from multiple time periods into
a single present value. It produces an absolute price for a risk which can be subtracted from the asset value.
Mapping the risk dimension onto value makes EDS the ideal measure to judge the effectiveness of different
strategies from a shareholder’s point of view.

1.4 Paper structure

The literature on real options, SDFs and risk measures is summarised in section 2.
Section 3 documents the SDF modelling approach, from first principles through to a generic covariance

SDF model. The end of the section describes an analytic SDF model where the random element of the return
is normally distributed and is controlled by the correlation matrix.

Section 4 discusses real options and the important role that SDFs play in simplifying theoretical justifi-
cations and computations by removing the requirement for a replicating portfolio to be found. The section
discusses how equilibrium arguments are relied upon for theoretical justification.

Section 5 discusses how the risk of a particular real option strategy can be measures and introduces the
EDS risk measure.

Section 6 demonstrates the covariance SDF model from section 3 and why the EDS risk measure from
section 5 should be included in real options analysis.
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2 Literature Review

Section 2.1 collects the various literature surrounding SDFs, comparing approaches and closes by detailing
this paper contributes. Section 2.2 looks at risk measures. Section 2.3 critiques the common theoretical
methods used to value real options. Section 2.4 highlights the gaps that this paper attempts to fill.

2.1 Stochastic discount factors

A contingent claim asset is an asset that delivers a payoff if a certain set of conditions occurs. State assets
are a particular type of contingent claim asset, introduced by [Arrow & Debreu, 1954], that pay a unit of
currency if a particular state of the economy occurs, and nothing otherwise. [Varian, 1987] gives a good
introduction to state prices.[Etheridge, 2002] explains why weak arbitrage is impossible if and only if there
exists non-negative state prices. [Girotto & Ortu, 1997] provide a mathematically rigorous description of
the equivalence between SDFs and state prices in discrete finite space and time, also showing that there
is a single SDF if and only if a market is complete. In continuous time [Harrison & Pliska, 1981] showed
that absence of arbitrage is equivalent to the existence of an intrinsic discount process that makes the dis-
counted asset process into a martingale. [Jarvis et al., 2001] provide an excellent introduction to SDFs.
[Cochrane, 2004] provides the links between some standard asset pricing models, showing that many popu-
lar asset pricing models are special cases of the SDF model.Thorough SDF literature surveys can be found
in [Ferson, 1995], [Smith & Wickens, 2002] and [Campbell, 2003].

[Chapman, 1997] approximates the SDF using orthogonal Legendre polynomials, creating a continuous
function of a set of observable variables. [Rosenberg & Engle, 2002] use Chebyshev polynomials and allow
the shape of the SDF to be flexible over time. Additional state variables can be added using tensor products.
This approach is flexible and able to price non-linear assets, like derivatives. More than one asset can be
priced simultaneously but as the dimension size increases the tensor products quickly become burdensome.

[Rubinstein, 1976] derives a simple form of the SDF. [Epstein & Zin, 1991] use the reciprocal of the re-
turn on the optimal portfolio which is hard to calculate when there is a large number of assets. [Arajo et al., 2005]
apply panel-data techniques to asset returns to construct a consistent estimator for the SDF. [Ait-Sahalia & Lo, 1998]
use equity index option prices to non-parametrically estimate the average SDF, which is used in [At-Sahalia & Lo, 2000]
to give a VaR distribution adjusted for risk aversion. [Breymann et al., 2005] show that diversified indices
such as the FTSE All Share, S&P 500 or Morgan Stanley Capital Growth World Index (MSCI) are all appro-
priate market proxies for the theoretical ’growth optimized portfolio’ introduced by [Platen, 2006], which is
equivalent to the SDF.

[Hansen & Jagannathan, 1991] construct bounds for SDF from historic times series, with and without a
risk free asset. [Hansen & Jagannathan, 1997] construct a benchmark linear SDF model against which other
models can be tested, giving a measure of how well prices are calculated by the model. This method is
used in [Alvarez & Jermann, 2005] to put empirical bounds around each part of the SDF.Unfortunately the
non-parametric approach only measures the SDF for the particular underlying asset that provided the data.
The results will not necessarily generate an SDF that can be used to price other assets.

[Duffie et al., 2000] define an affine jump diffusion state process for pricing defaultable, fixed income
bonds and options with stochastic volatility. This structure of the SDF allows parameter estimation via
Laplace and Fourier transforms, both of which can be used to give closed form solutions to option prices.
The SDF process is actually a linear factor model of underlying processes, not a process in its own right.
There are various affine models in the literature, for example [Bekaert & Grenadier, 2002] look at equity
pricing and bond pricing, [Dai & Singleton, 2000] study the term structure, [Piazzesi, 2009] surveys affine
bond models and [Monfort & Gourieroux, 2007] give a model for stochastic interest rates. Generating the
SDF as weighted portfolio of other assets is flexible, but the correlation between each asset and the SDF,
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and therefore the risk premium of each asset, is hard to control.
[Constantinides, 1992] was the first to define term structure between numeraries using state prices and

[Rogers, 1997] extended the approach to SDFs. [Smith & Speed, 1998] model all processes as SDFs from
the same general equation creating a multi-currency, continuous time and space, full yield curve model. The
price of an asset is defined by the ratio of two SDFs. [Platen, 2000] takes a similar approach but with greater
mathematical rigor. [Bakshi et al., 2008] compare SDFs in three countries, fitting empirical option data
to parameters of a foreign exchange model with a stochastic time change diffusion component for global
risk and an independent stochastic time change jump diffusion component for country specific risk. The
exchange rate is the ratio of two SDFs. [Mo & Wu, 2007] take a similar approach except that they use data
from equity option markets and place the jump risk in the global component of the equity model instead of
the country component. Defining orthogonal global and independent country components means that the
only co-movement between countries is through the global component. This does not scale well to multiple
economies where there could be dependencies between countries that are unrelated to the global risk. It
is hard to generate correlations in multivariate stochastic time change models when using stochastic time
counters.

Modelling all prices as a ratio of two SDFs is a complex way to approach asset pricing. It is hard to
control and calibrate ratios of two stochastic processes and calibration to the market price of derivatives
written on those assets is even harder. Using the ratio modelling approach means that adding extra assets
increases the SDF volatility, increasing the convergence time when implemented using the Monte Carlo
method. An alternative approach to multi-currency modelling is given by [Hadzi-Vaskov & Kool, 2008] who
derive the SDF in foreign currencies by modifying the local currency SDF using exchange rates retaining
control over the exchange rate process and keeping the nature of the original SDF model.

A good deal is a trade that any investor will be willing to make, either because risk to return ratios are
large or arbitrage opportunities exist. The good deal bound approach puts an upper and lower bound on
values for the SDF. These two sets of values are then used to give an upper and lower price for a real option.
Good deal bounds are not equivalent to pricing with pure Sharpe ratio arguments as they can bring extra
market information into the equation, such as correlation with a traded asset. [Amram & Kulatilaka, 1999]
suggest that real option practitioners should try to find a portfolio of traded securities that is correlated (even
if just partially) with the untraded risk. Pricing via correlation with similar assets is a common approach
when trading financial options on illiquid assets. [Staum, 2004] gives a rigorous description of how SDFs
can be used with good deal bounds, finding minimum and maximum values for options based on realistic val-
ues for their Sharpe ratio, after taking into account correlations with other assets. [Bernardo & Ledoit, 2000]
use SDFs to calculate good deal bounds for options, and [Cochrane & Sa-Requejo, 2000] apply the same
approach to real options, deriving an analytical solution similar to Black Scholes but with extra terms.
[Chapman et al., 2001] use SDFs to value cashflows to all stakeholders in a pension scheme identifying
the winning and losing parties. The good deal bound approach to real options has also been adopted by
[Thijssen, 2002] in which he compares the utility based approach and the good deal bound approach.

Disadvantages of current SDF approaches Non-linear SDFs are able to price complex assets, like
derivatives, but are unsuitable for multiple sources of risk. Employing stochastic volatility with jump pro-
cesses to produce non-normal returns does not allow correlation between assets to be controlled. The expo-
nential affine jump diffusion approach overcomes the above problems but only allows Gaussian processes
to be combined with jump process.

2.2 Risk measures

Definition A risk measure assigns a real number to a random variable.
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[Artzner et al., 1999] define the properties of a coherent risk measure. Coherence is essential because it
ensures that a risk measure produces consistent decisions. If a risk measure is not coherent then is impossible
to know if a result is optimal or not. For example, conflicting results could occur at different confidence lev-
els, or further diversification of a portfolio may lead to an increase in the risk measure. [Ng & Varnell, 2003]
define a coherent risk measure that combines with SDFs to value the effect of frictional costs. They recog-
nise the difference in pricing between systematic and unsystematic risk and show that frictional costs can
help explain why some diversifiable risks attract a risk premium. [Csoka et al., 2007] extend the idea to
show that any risk measure using SDFs is a coherent risk measure, for all cashflows. This property is used
in section 5.

[Froot & Stein, 1998] say that hedgeable risks should not need any risk capital, because they can be
mitigated in the market. Unhedgeable risks can be managed by holding an amount of risk capital that can
be attributed to the risk. The amount of risk capital needed for the unhedgeable part of the risk is dependent
on what other unhedgeable risks are held in the portfolio. The same approaches that are used to handle the
unhedgeable risks in a trading operation can be used to handle the risks of real options. That is, the real
option risks can be combined, measured and compared at the company level. [Ho & Liu, 2002] value the
government guarantee of debt as a real option of a project. The risk of different strategies can be evaluated
by noting the change in value of this real option.

[Ye & Tiong, 2000] presented the NPV@Risk method to value privately financed infrastructure projects.
One of the main advantages of this approach as a risk measure is that risks in different time periods can be
combined. The NPV@Risk approach takes the risks from all time periods and discounts them to a present
value, solving the time period problem. Unfortunately, the rate at which cashflows are discounted is not
defined, nor is NPV@Risk a coherent risk measure.

2.2.1 Expected shortfall (ES)

EDS, introduced in this paper, is an extension of expected shortfall (ES), also referred to as conditional
value at risk which was introduced by [Acerbi & Tasche, 2002]. It is defined as the expected value of the
cashflows exceeding V aRγ so

ESγ (X) =
1

1− γ

∫
X≥V aRγ

xPr (x) dx = V aRγ + E [X − V aRγ |X > V aRγ ]

whereX is the random variable being measured and Pr (x) is the probability thatX = x. Expected shortfall
satisfies all the properties of a coherent risk measure, but the measure is not cumulative, so cannot be used
for multiperiod risk calculations.

.

2.3 Real options

When making financial decisions there is a need to convert uncertain future cash flows into a present-day
value. Many methods have been developed to achieve this.

[Sick, 1995] uses the [Miller & Upton, 1985] principle which assumes that an amount of exhaustible
natural resource is a function only of its spot current price, net of extraction cost. Ignoring discount rates
may provide a quick valuation, but ignoring the time dimension is not a credible approach to option analysis.
Deciding when to exercise an option is a fundamental part of flexibility.

The idea of discounting expected cash flows at a rate adjusted for risk was proposed in [Fisher, 1907].
The Net Present Value (NPV) concept was initially developed to value bonds and stocks by passive investors
who required a different risk adjusted rate for each asset. It is common for all risks factors to be combined
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into a single, suitably weighted, risk adjusted, discount rate, often set with reference to the capital asset
pricing model (CAPM) (see [Sharpe, 1964]) where the risk premium on the asset depends on its correlation
with the rest of the market.

The NPV approach is powerful, simple and well understood but based on value maximization without
taking into account uncertainty and flexibility within an investment. All risks are discounted at the same
(possibly time dependent) rate, whether the risk is correlated with the market or not. It makes assump-
tions about future scenarios, but does not allow different responses to be made in different scenarios. The
flexibility within a project can be a major source of value.

Using a single, constant, discount rate assumes that the riskiness of cashflows increases at a geometric
rate over time. This is fine for projects that are time homogeneous and memoryless, but this is generally not
the case (see [Trigeorgis, 1996]) so projects require different rates over different time periods.

Attempts to modify the NPV approach to account for flexibility are usually unsuccessful. [Myers, 1976]
states that ”If NPV is calculated using an appropriate discount rate, any further adjustment for risk is double
counting”. Unfortunately, using the NPV approach with further adjustments for risks is common practice.
[Mathews et al., 2007] use a Monte Carlo projection of prices with a fixed discount rate, but allow different
types of cashflow to be discounted at different rates. [Swinand et al., 2005] also make adjustments to the
NPV approach, saying that ”an important insight of real option theory is that the cash flows are appropriately
discounted at a rate based on the weighted average cost of capital, but the value of flexibility should be
discounted at the risk-free rate of interest.”. Decisions based upon these ’quick and dirty’ methods are ill
founded. [Hodder et al., 2001] compare the risk adjusted, risk neutral and certainty equivalent approaches.
They show that risk adjusted discount rates can be made to work but only retrospectively.

The market asset disclaimer (MAD) approach developed by [Copeland & Antikarov, 2001] treats the
project and real option as if they were actually traded. The best replicating asset for the option is assumed
to be the project without flexibility, which is valued using the NPV method. The need to find an actual
traded replicating portfolio is removed because Copeland & Antikarov reason that no ”asset has a better
correlation with the project, than the project itself.” The NPV approach does not value risks properly, so
correctly pricing the project without flexibility (e.g using the correct discount rate) is just as complex and
important as valuing the flexibility. No attempt is made under MAD to control risk when executing the
real option. The approach requires decision trees to be built to value the options, so is not appropriate for
complex, multivariate, compound options. [Borison, 2005] points out that, under the MAD approach, the
value of the investment underlying the real option is based entirely on subjective data. It is only tied to
market data by the discount rate and ignores the possibility that an actual replicating portfolio exists.

A popular valuation approach is to apply risk neutral probabilities to price real options. The assumption
of risk neutrality, and the use of the risk free discount rate, is justified by identifying a portfolio of traded
investments replicating the cashflows of the real option, removing all risks from the asset (also assuming
perfect and frictionless markets) making the asset equally valuable to all investors. Using no arbitrage ar-
guments (see appendix A.2), the value of the option is the value of the replicating portfolio. This approach
to real options works well where underlying risks are freely traded (e.g. with commodity based real op-
tions), but the risk neutral approach is harder to justify when the risks cannot be hedged in the market.
Many assets are not freely traded and there are few very long term traded options available to construct
hedges. [Dixit & Pindyck, 1994] only use the risk neutral approach when investment values can be rea-
sonably tracked by publicly traded assets. Decision analysis is used when investments are dominated by
corporate specific or untradeable risks. Each real option type is priced using a different model.

Utility functions are used to define risk preferences of investors, which are then used to justify a risk
premium on a real option. Utility functions were introduced to real options by [Henderson & Hobson, 2002],
followed up in [Henderson, 2007] and with mean reversion in [Yang & Ewald, 2007]. They often aid the
finding of analytic solutions to problems. [Miao & Wang, 2005] use a utility function to establish certainty
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equivalent values. Section 4.1.3 demonstrates why utility functions should not be applied to decision making
within publicly traded companies.

The concept of certainty equivalent values was introduced by [Theil, 1957] and was ‘popularized by
[Robichek & Myers, 1965]. An adjustment is made to an expected cashflow, so that it can be discounted
at the risk free rate. The method projects prices using real world probabilities, but each cashflow requires
its own correlation with the market portfolio to be estimated. [Copeland & Antikarov, 2001] recommend
certainty equivalent values for real option valuation as it complements their MAD approach. They show that
the certainty equivalent approach is the same as the risk adjusted approach.

At [University of Maryland, 2002] Eduardo Schwartz said ”I don’t see companies using real options to
value projects where the risk-neutral distributions have to be obtained using an equilibrium model.”. For
a company to accept the equilibrium approach, real world distributions should be used. Realism requires
that models are able to incorporate drivers of risk that are likely to be correlated with the economy (such
as uncertainty about price, quantity, and operating costs) and be able to account for other risks which are
unlikely to be correlated with the economy (like technological uncertainty). As much market information as
possible should be involved, as the analysis would be incomplete if information contained in market prices
was ignored. Proper treatment of risk from the shareholder’s perspective is one of the key features required
of real options. [Borison, 2005] categorises real option approaches into four distinct groups; whether proba-
bilities are derived from the market or made by subjective assessment, and whether risks are publicly traded
or not. [Mello & Pyo, 2002] discount untraded risks at a risk adjusted rate, not the risk free rate. Probability
assessments of untraded risks are made subjectively by the managers of the firm (but the managers’ risk
tolerances are ignored).

Many prices display mean reversion, which [Metcalf & Hassett, 1995] apply to real options. [Sarkar, 2003]
adds correlation with the market (although no beta calculation is given) and [Jaimungal et al., 2009] apply
mean reversion to both investment amount and project value, driven by Brownian motions.

SDFs can help in real options analysis by simplifying the modelling method, allowing complex situations
to be analysed and results to be explained.

2.4 Gaps in the literature

Creating replicating portfolios is impossible to do with untraded assets. Many real option approaches are
rejected because they require a replicating portfolio to be defined. The certainty equivalent approach does
not rely on replicating portfolios, but is impractical for complex options because each cashflow requires its
own covariance with the market to be calculated.

If a replicating portfolio does exist then the risk neutral approach can be applied to real options, but
this approach assumes that all asset growth is at the risk free rate. Real world probabilities are needed so
that realistic scenarios are projected, and because the parameters of non-normal distributions change when
translated from the real world to the risk neutral measure. The SDF method uses real world probabilities,
generating realistic growth in prices that is easier to explain than risk neutral projections.

The good deal bound SDF approach to real options (literature review section 2.1) allows upper and lower
analytical bounds to be placed on the value of a real option, but for complex, multidimensional problems
(when solution speed is not vital) only the Monte Carlo SDF approach of this paper is practical.

Risk measures based on percentile estimates are only coherent when normal distributions are used. Other
coherent risk measures, such as expected shortfall, are defined at a single timepoint so they cannot measure
risks over multiple time periods. No risk measure is defined with reference to an absolute cash level that
also takes into account the correlation of a risk with the market. SDFs can be used to create a coherent risk
measure that spans multiple time periods and takes into account correlation with the market. The current
methodology is seen by practitioners as being too complex. A simpler approach is required.
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3 Stochastic discount factors

Introduction Throughout this paper the process m will be referred to as the stochastic discount factor
(SDF). Across the academic literature it is synonymously referred to as the state price deflator2, stochastic
discount factor, state price density, state price kernel and the marginal rate of substitution. This section
blends material from [Cochrane, 2004], [Duffie, 2001] and [Jarvis et al., 2001].

Section 3.1 discusses a special type of contingent claim called a state asset. In particular it shows
how prices are calculated when time and state space are discrete, where the concepts introduced are easier
to understand. When there are more states than assets the market is said to be incomplete. Section 3.2
introduces probabilities and the concept of the SDF, defining prices in incomplete markets. Section 3.3
shows why the SDF is arbitrage free and extends the concept to continuous time. Section 3.4 shows that risk
and return are controlled by covariance with the SDF.

The final section 3.5 contains novel contributions to the SDF literature. It introduces a simple way
to build a generic, multivariate, covariance based SDF model which is easy to understand and quick to
implement within a Monte Carlo framework. The section ends with two example SDF models; a log-normal,
SDF based pricing model and a similar model that adds mean reversion.

3.1 State prices

3.1.1 Contingent claims

A contingent claim asset is an asset that delivers a payoff if a certain set of conditions occurs. It pays a
predefined amount in the future if the world enters a certain state, where a state can represent any collection
of events occurring. For example, the payoff claimed by the holder of a put option on a share is contingent
on the share being below a certain value. As contingent claims can cover any event, it is possible to redefine
all assets in terms of contingent claims.

3.1.2 State assets

State assets are a particular type of contingent claim asset that agree to pay 1 unit of currency if a particular
state occurs, and 0 if any other states occur.

Define Ψ (ω) to be the current price of a state asset that pays 1 only if the future state ω occurs. Ψ (ω)
is said to be the state price of a ω state asset, or more generally, Ψ is referred to as the state price. If state ω
occurs in the future then the value of the state asset at that time will be Ψ (ω) = 1, if any other state occurs
then the state asset will be worth 0. These state assets can be used as building blocks to create a portfolio
of state assets so that the payoff of the portfolio in all future states exactly matches the payoff from any
contingent claim asset.

Let x (ω) be the future value of a contingent claim asset x if the world ends up in the state ω. The state
price equation can be defined as

price (x) =
∑
ω

Ψ (ω)x (ω) (1)

where price (x) is the market price now of the contingent claim asset x. The current price of this portfolio
of state assets should match the current price of the chosen contingent claim asset. If the price differs then
an arbitrage opportunity will exist (see appendix A.2 for a definition of arbitrage).

2Not to be confused with the economic, GDP deflator which is a historic measure of changes in prices in an economy.
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3.1.3 Risk free assets and state prices

An asset is risk free if its payoff is independent of the future state, so x (ω) = Constant for all ω.
Consider the amount paid now in exchange for receiving a guaranteed amount of x (ω) = 1 in the future,

so price (1) =
∑
ω

Ψ (ω) 1. Enforcing non-negative interest rates requires that 1
Rf
≤ 1 so

Rf =
1

price (1)
=

1∑
ω

Ψ (ω)
≥ 1⇒

∑
ω

Ψ (ω) ≤ 1. (2)

To avoid arbitrage all state prices must be non negative, so Ψ (ω) ≥ 0 for all ω. If a state price were less
than 0 then it would mean that someone would pay you to hold an asset that will either expire worthless, or
pay 1.

3.1.4 State prices in discrete time and space

When time and space are discrete and finite, uncertainty can be defined as a finite set ω ∈ {1, . . . , S}
of S future states, one of which becomes true. Assume there is an economy that has N assets and their
cashflows in each state can be represent by an N × S cashflow matrix X where the element xiω = xi (ω)
represents the amount paid by asset i in state ω. Define the prices of the N assets as the vector P. This
means that a portfolio vector θ has market value PTθ and payoff vector XTθ. A vector of state prices
ΨT = [Ψ1, . . . ,ΨS ] is a weighting such that the price of an asset can be equated to its payoffs, so Pi =∑S

ω=1 xiωΨω for all assets i. It is possible to think of Ψω = Ψ (ω) as the cost of obtaining an additional
unit of currency in state ω. Extending the equation to the vector of prices P gives the matrix representation
P = XΨ.

If there are as many assets as states then the state price equation P = XΨ can be reversed by inverting
the cashflow matrix, X−1P = Ψ uniquely defining the state price vector Ψ. This is equivalent to solving
a set of simultaneous equations, so for a unique solution the matrix must be invertible, i.e. the payoffs are
linearly independent.

For a payoff cashflow matrix X, price vector P and portfolio vector θ, the combination is weakly
arbitrage free if PTθ ≥ 0 whenever XT θ ≥ 0. Farkas’s Lemma implies that a system is weakly arbitrage
free if and only if there exists non-negative state prices Ψ such that P = XΨ.

3.1.5 Numerical example

What follows is a simple example showing how state prices are constructed. The example economy has two
future states and two assets with known current market price and future cashflows.

Price/Payoff
matrix

Current
Price

Boom state
payoff

Bust state
payoff

Asset A 1.65 3 1
Asset B 1.00 2 0.5

Define the price vector P =

[
1.65
1.00

]
and the cashflow matrix X =

[
3 1
2 0.5

]
The goal is to create state price assets, for use as building blocks to price any other asset. The required

payoffs from the state price assets are

Required state
price payoffs

Current
Price

Boom state
payoff

Bust state
payoff

Boom state asset ? 1 0
Bust state asset ? 0 1
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The state price vector Ψ =

[
?
?

]
is unknown.

A replicating portfolio from the two traded assets can be constructed for both state assets. The current
price of the state asset will be the current price of the replicating portfolio of traded assets.

X−1 =

[
−1 2
4 −6

]
so X−1P =

[
−1 2
4 −6

] [
1.65
1.00

]
=

[
0.35
0.60

]
= Ψ

Portfolio holdings Current
Price

Units held
of asset A

Units held
of asset B

Boom state asset 0.35 −1 2
Bust state asset 0.60 4 −6

The state prices are now defined and can be used to check the price of asset A.

Replication State
Price

Asset A
pays

Building block
calculation

Boom state 0.35 3 0.35× 3 = 1.05
Bust state 0.60 1 0.60× 1 = 0.60

The price of asset A is the sum of the value of the two states = 1.05 + 0.60 = 1.65. Note how easy it is now
to price an asset. All that is needed is to multiply the payoff in each state by the corresponding state price
asset, then total all these to get the current asset price.

In this example there was no risk free bond, but because the state prices are known, one can be con-
structed. The current price of a bond paying 1 in all states is 0.35 + 0.60 = 0.95, constructed by holding
3 units of asset A and selling 4 units of asset B 3. This building block approach can be used to price any
asset, where the only requirement is that cashflows of the asset are known in all states. At no point does
the probability of either state occurring enter into the calculation. Probabilities are not required because the
market is complete, with as many assets as states.

3.1.6 Incomplete markets

If there are as many (linearly independent) assets as states then the market is complete. In a complete market
all contingent claims can be bought. These contingent claims do not necessarily have to be explicitly traded,
but there needs to be enough securities to span and synthesize all contingent claims.

If there are fewer states than assets then redundant assets exist which, if incorrectly priced, allow for
arbitrage opportunities. To take advantage of these opportunities, pick as many assets as there are states,
calculate the state prices, then use these to identify arbitrage opportunities in the redundant assets.

If there are more states than assets then the market is incomplete and a different approach is required
(this also happens when state space is continuous). In that situation there are an infinite number of possible
combinations of state prices that match the cashflows and prices.

Numerical example Adding an extra state to the previous complete market example (making the market
incomplete) gives

Price/Payoff
matrix

Market
Price

Boom state
payoff

Bust state
payoff

Bad state
payoff

Asset A 1.65 3 1 0.5
Asset B 1.00 2 0.5 0.75

3This was why a discount rate of 0.95 was chosen in the in appendix A.1
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To price Assets A and B correctly it is required that

3ΨBoom + ΨBust + 0.5ΨBad = 1.65
2ΨBoom + 0.5ΨBust + 0.75ΨBad = 1.00

These can be rearranged to define the boom and bust state prices in terms of the bad state price.

ΨBoom = 0.35−ΨBad

ΨBust = 0.60 + 2.5ΨBad

To avoid arbitrage all state prices must be positive. So in this example the bad state price must be
between 0 < ΨBad < 0.35. If positive interest rates are required then an extra bound of ΨBad < 0.02 is
needed, ensuring the sum of the state prices is less than 1.

Although some bounds on the state prices have been established, there are still an infinite number of
possible prices for the state assets. State assets cannot give a unique price for other (non-traded) assets so
probabilities need to be introduced to progress further.

3.2 Stochastic Discount Factors

In an incomplete market probabilities have to be introduced to complete the market and state prices can
become unwieldy in multi-period, multi-asset settings. To simplify the mathematics, define the stochastic
discount factor as

m (ω) =
State Price

Probability
=

Ψ (ω)

Pr (ω)
. (3)

SDFs are only well defined for states that have a positive probability of occurring. They can be inserted into
the state price equation (eq: 1) after multiplying and dividing by probabilities

price (x) =
∑
ω

Ψ (ω)x (ω) =
∑
ω

Pr(ω)
Ψ(ω)

Pr(ω)
x(ω) =

∑
ω

Pr (ω)m (ω)x (ω) = E [mx] (4)

where Pr (ω) is the probability of state ω occurring. This is the basic pricing equation. which is mainly
just a change in notation of eq: 1. The definition of the SDF looks artificial in a discrete state complete
market environment, but expected values are easier to calculate than summations and generalize better to
continuous time and space. The underlying state assets are taken care of by design.

Typically there are many possible positive SDFs that can be modelled (as markets are rarely complete),
which implies that there are many contingent claim economies consistent with observations and preferences.
Introducing probabilities fixes values for the state prices, completing the market.

From this point onwards this paper focuses on SDFs. State assets are largely ignored, but it is useful to
remember that the theory underlying the SDF is based on state prices.

3.2.1 Introducing time

Now the time dimension is added to the notation. Every sample ω that is realised produces a different SDF
process mt (ω), the value of which varies over time t. Similarly the cashflows xt (ω) can depend on t as
well as on state ω. The pricing equation is extended to assets with cashflows in multiple periods by summing
over time as well as states. At time 0 it can be written that

price (x) = x0 =
∑
ω

∑
t

Prt (ω)mt (ω)xt (ω) =
∑
t

E [mtxt]
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If the current price of an asset is considered to be just another cashflow then the notation can be simplified.
By dropping the ω notation and filtering up to time s, the value of a future cashflow at time t the conditional
basic pricing equation can be written as

xs =
Es [mtxt]

ms
(5)

where Es [ ] is the expected value, given all information up until time s.
Notice that rearranging the equation gives msxs = Es [mtxt] which is a martingale. An SDF has the

property that the deflated price of any cashflow is a martingale. This property is important as it avoids
arbitrage in continuous time (see section 3.3.2).

Multiple cashflows may also be priced, so ifm is an SDF then the price at time s is xs = 1
ms
Es

[
t∑

j=s+1
mjxj

]
is true for all s.

The end time t can be increased by 1 to price a t+ 1 set of cashflows. By induction this can extend the

expectation to be over an infinite sum xs = 1
ms
E

[
∞∑

j=s+1
mjxj

]
, but restrictions onm are required to ensure

that the summation is well defined. Going from a t period to∞ period requires that lim
h→∞

Et [mt+hxt+h]→
0 sufficiently quickly, ruling out bubbles in prices. For the price to be finite, the received cashflows must also
be finite. To ensure that cashflows are finite the condition that the price process xt is mean-summable can

be imposed. A process x is mean-summable if E
( ∞∑
t=0
|xt|
)
< ∞ . If m is also mean-summable then the

dominated convergence theorem implies that E
( ∞∑
t=0

mtxt

)
is well defined and finite, therefore the price is

finite. To avoid arbitrage all state prices must be positive (see section 3.1.4). Probabilities are non-negative
by definition, implying that SDFs must be strictly positive to avoid arbitrage. Price is only dependent on
the ratio of the SDF at two time points, so m0 can be set at any initial value. The standard convention is to
define the initial value of the SDF as m0 = 1.

3.2.2 Constructing the SDF in a finite state space

The following section describes how to calculate SDFs whether the market is complete or not. The method
is slightly more complicated than the state price calculation, but it does show the link to the basic pricing
equation (eq: 4).

Define cashflow space C as the set of all cashflows investors can purchase, or the subset of tradeable
cashflows used in a particular study. The cashflow space consists of all portfolios or combinations of original
cashflows

{
θTX

}
∈ C where θ is a vector of portfolio weights and X is the cashflow matrix.

Complete markets Define a specific example of the cashflow space C to be generated by S cashflows
(S can be thought of as the number of states). This allows the cashflows from an asset i to be organized
as a vector Xi = [xi1, xi2, ..., xiS ]T ∈ C. Similarly, in a complete market there will be n = S assets, so
the current prices of the assets can be arranged as a vector P = [price (x1) , price (x2) , ..., price (xn)]T

that spans the cashflow space. Define an SDF vector M to be M = θTX where θ is a vector of portfolio
weightings. As the SDF is essentially a portfolio of assets, it is also in the cashflow spaceC. The weighting
θ is to be constructed so that P = XMT allowing M to price all assets. In a complete market the weighting
can be constructed without using probabilities. For P = XMT = XXT θ to be true the SDF weighting θ
needs to be set as

θ =
(
XXT

)−1
P (6)
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which, in turn, defines the SDF.
If the market is complete then, for each state, the value of the SDF is the same as the price of the state

asset. Only in the complete market case is the SDF unique.

Incomplete markets Incomplete markets exist when contingent claim assets cannot be bought for all
states, so n < S. Expectations have to be introduced to define the state prices and complete the market.
The pricing equation becomes P = E

[
XMT

]
= E

[
XXT θ

]
. Reversing the pricing equation gives a

weighting of θ = E
[
XXT

]−1
P, which is used to define the SDF M = θTX. If E

[
XXT

]−1
exists and

is non-singular then θ exists and is unique, leaving

M = PTE
[
XXT

]−1
X (7)

as the SDF. This process finds an SDF vector that prices all assets, but it does not guarantee that all values
in the vector are strictly positive, a requirement for arbitrage opportunities not to exist.

In an incomplete market there are an infinite number of possible SDFs, corresponding to the infinite
choice of probability weightings. Picking an SDF by choosing a set of probability weightings defines the
pricing of all state assets, completing the market.

Numerical example Taking the previous incomplete market example and assigning probabilities to each
state gives

Price/Payoff
matrix

Market
Price

Boom state
payoff

Bust state
payoff

Bad state
payoff

Real World Probability 10% 50% 40%

Asset A 1.65 3 1 0.5
Asset B 1.00 2 0.5 0.75

Take expectations of the cashflows X Pr I = E [X] =

[
0.3 0.5 0.2
0.2 0.25 0.3

]
soE [X] XT = E

[
XXT

]
=[

1.5 1
1 0.75

]
, inverting gives E

[
XXT

]−1
=

[
6 −8
−8 12

]
. Multiplying by prices P =

[
1.65
1.00

]
and

cashflows leaves the SDF vector M = PTE
[
XXT

]−1
X =

[
3.3 1.3 0.05

]
and a corresponding state

price vector of Ψ =
[

0.33 0.65 0.02
]

Different probabilities will produce different state prices. The more likely a state is, the higher the price
of the corresponding state asset. Different state prices leads to different SDFs, giving different answers for
non-traded cashflows.

3.3 Absence of arbitrage

Arbitrage opportunities offer a positive probability of profit for no cost. There are various ways to ensure
absence of arbitrage, depending on the model being used. The following definition may be used when SDFs
are applied in finite, discrete state space and time.

Define a set of cashflows x and a pricing function price (x) to be in cashflow space C . If the cashflow
x ≥ 0 in all states and in at least one state x > 0 then there are no arbitrage opportunities if price (x) > 0.
No arbitrage implies that prices of any positive payoffs are also positive. It implies that you cannot create a
portfolio for free that might payoff positively but will certainty never make a loss.

Absence of arbitrage also implies that if one asset’s cashflows are always greater than those of another
asset then its price must be higher. So if x ≥ y for all states, and there is at least one state where x > y
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with positive probability, then price (x) > price (y). If price (x) < price (y) were true then you would
sell short asset y to buy asset x, guaranteeing a positive return.

Absence of arbitrage is equivalent to existence of a positive SDF m > 0, and having m > 0 implies no
arbitrage. But it is not necessarily true that all m satisfying price (x) = E [mx] are positive. The existence
of a positive SDF does not mean that price (x) is defined for payoffs /∈ C. For example, if an SDF is defined
for a set of assets then it is unlikely that it can be extended to a larger set of assets without implying arbitrage
opportunities.

A complete market with no arbitrage implies that there exists a unique m > 0 such that price (x) =
E [mx], implying no arbitrage. In an incomplete market, choosing a unique m > 0 completes the market
and no arbitrage is assured. If a model is built using positive SDFs then it is guaranteed to be arbitrage free.

3.3.1 SDF assumptions

Assumption 1 - Free portfolio formation

x1, x2 ∈ C ⇒ ax1 + bx2 ∈ C (8)

for any real a, b where C is the space of cashflows.
A portfolio can be constructed from any weighting of assets. This assumption allows investors to trade

the underlying assets so that payoffs from any asset can be matched by a portfolio of contingent claim assets.
If there is free portfolio formation then it is possible for an SDF to exist. If investors can form a portfolio
then it will have a price.

Assumption 2 - Law of one price

price (ax1 + bx2) = a · price (x1) + b · price (x2) (9)

The law of one price means that the portfolio has the same value as its contents, so if x = y + z then
E [mx] = E [my] + E [mz]. This allows all cashflows to be priced by price (x) = E [mx]. Supply and
demand will force the price of the portfolio to be equal to the price of its constituent assets, leading to the
assumption of a common price. Existence of an SDF implies the law of one price, but the reverse is also
true. The law of one price implies existence of (at least one) SDF.

Combining the above Given free portfolio formation (eq: 8) and the law of one price (eq: 9) then there
exists an SDF m > 0 ∈ C such that price (x) = E (mx) is unique for all x ∈ C if and only if there are
no arbitrage opportunities. Together, both assumptions imply the payoff 0 exists and has a price of 0. SDFs
are based solely on the above two assumptions, avoiding other assumptions such as utility functions and
complete markets.

3.3.2 Continuous state space

In a complete market, every possible financial claim has a price. In most cases, when the state space is
continuous the market is incomplete. This is because there are more possible states (infinite) than there are
assets (finite). One role of modelling is to supply market consistent prices where no market price exists.
This creates a complete market from an incomplete one and is referred to as completing the market. To
complete a market in a continuous state space, probabilities are assigned to each state, and the easiest way to
assign probabilities to states is to assume a probability distribution4. Completing a market is also equivalent

4For example, in the Black Scholes model the market is completed by assuming that asset returns are log-normally distributed.
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to picking one SDF from all possible SDFs. Once an SDF has been chosen it can be used to price any future
cash flow.

The continuous time and space derivation of the SDF method is different to the discrete case, but ends up
with an analogous equation. [Harrison & Pliska, 1981] showed that absence of arbitrage involving asset y
is equivalent to the existence of an intrinsic discount process β that makes the process βy into a martingale.
The intrinsic discount process βt generates prices from payoffs, such that the market value at time s, of
stochastic cashflow y, due at time t > s, is given by

ys =
1

βs
Es [βtyt] (10)

where Es denotes expectation based on the filtration up to time s.
The goal in constructing the SDF is to ensure that all deflated processes of assets are martingales. Define

the current deflated price of an asset to be ys = msxs and the future deflated price to be yt = mtxt. For
there to be no arbitrage, the SDF must satisfy the intrinsic discount process (eq: 10) so

msxs =
1

βs
Es [βtmtxt] (11)

Only the ratio of the SDF at two timepoints affects the price xs. Multiplying the SDF process by a constant
value does not change the pricing model, so there is a degree of freedom in the choice of the initial value
of the SDF, m0. The scaling factor chosen to make models easy to build is a multiple of the intrinsic
discount process and the original SDF βtmt = m̂t. Therefore the revised market value of x at time s is
xs = 1

m̂s
Es [m̂txt]. Each SDF m̂ now acts as a state price. Dropping the hat from the notation gives the

basic pricing equation in continuous time

msxs = Es [mtxt] (12)

In a continuous state space the state prices and probabilities are not a single value, but a continuum of values,
therefore the SDF has to be redefined in terms of densities

m (ω) =
State Price Density

Probability Density
=

Ψ (ω)

Pr (ω)

Note that in (possibly multidimensional) continuous space the expectation is calculated by integrating with
respect to the state ω over all possible states A where ω ∈ A so

E [mx] =

∫
A

Pr (ω)m (ω)x (ω) dω

3.4 Risk, return and correlation

3.4.1 Risk free assets

An asset is risk free if the payoff is the same across all states. Define Rfs:t as the risk free rate between s and
t, so paying 1

Rfs:t
at time s ensures that an amount of 1 will be returned at time t.

Using the conditional basic pricing equation (eq: 5), if x is the risk free asset then if xs = 1 and
xt = Rfs:t then ms1 = Es

[
mtR

f
s:t

]
= Es [mt]R

f
s:t giving

1

Rfs:t
=
Es [mt]

ms
(13)
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This equation holds in continuous frameworks as well as in discrete ones. It strongly ties the SDF to the
bond model, as the expectation of the SDF process must match the pricing given by the bond model. The
SDF framework only places minor restrictions on the choice of bond model, which must be arbitrage free
and have prices and payoffs defined in the same currency as the SDF.

3.4.2 Covariance pricing model

Define the return between time s and t by Rs:t = xt
xs

and the SDF at time t to be mt. Consider expected
returns on investment using the basic pricing equation (eq: 4). Using the definition of covariance, the
equation can be rearranged to

ms1 = Es [mtRs:t] = E [mt]E [Rs:t] + Cov (mt, Rs:t) (14)

Using the SDF’s risk free rate identity (eq: 13) the equation can be rearranged to

Es [Rs:t]

Rfs:t
= 1− Cov

(
Rs:t,

mt

ms

)
(15)

The risk premium is related to the covariance of the asset return with the change in SDF value. The equation
can also be written in terms of prices

Cov (mt, xt) = E [mtxt]− E [mt]E [xt] = x0 −
E [xt]

Rf0:t

so

x0 =
E [xt]

Rf
+ Cov (m,xt) (16)

This is the present value equation for a risk free asset, plus a risk adjustment. The risk adjustment is the
covariance of the asset with the SDF.

A positive risk premium is obtained for taking risks that are negatively correlated with changes in the
SDF. e.g. a positive risk premium means that the asset is expected to fall when the SDF rises (and vice
versa).

Note that in eq: 16, zero correlation with the SDF gives xs = E[xt]
Rf

which is the expected value of the
cashflow (in real world terms) discounted at the risk free rate, independent of the risk of xt. SDFs only
assign value to risks correlated with themselves.

Excess returns Defining excess return as returns above the risk free rate Ris:t
Rfs:t

= eRis:t and using the basic

pricing equation, rearranged in terms of returns (eq: 14) combined with the risk free property (eq: 13) gives,

ms = msEs
[
eRis:t

]
+ Cov

(
mt, R

i
s:t

)
(17)

So defining Rms:t = mt
ms

means
1 = Es

[
eRis:t

]
+ Cov

(
Rms:t, R

i
s:t

)
This explicit relationship, between expected excess return and the correlation between change in the SDF
and change in price, is how the present value of future prices is defined. The risk premium of an asset is
controlled by its correlation with the SDF.

For example, if equities are assumed to return more than the risk free rate then an appropriate correlation
with the SDF must be assumed, to ensure that the present value for the equities equals the expected deflated
future value. Conversely, any assets uncorrelated with the SDF will be discounted at the risk free rate. The
covariance structure does not have to be constant over time, and can even be conditional on state. Any
stochastic price process may be implemented, so long as the discounted asset process is a martingale.

21



3.4.3 Risk premiums

Risk premiums exist because a risk averse investor is more concerned about a drop in their wealth than an
increase in wealth of the same amount. If the investor is fully diversified then they are exposed to all risks in
the economy, but only by a tiny amount to the risks in each asset. Risks that are not correlated or common
to all assets are of little concern, because not all of these risks will occur at the same time. However, there
will be concern over common risks across the portfolio as these risks are correlated with one another and
are able to affect the investor’s overall wealth. Extra financial compensation is required to bear the risk that
the correlated assets may simultaneously drop in value, so a risk premium is demanded.

Rather than consider all correlations between all assets, it is simpler to reference the correlated risks to
a particular weighting of all assets called the market portfolio (see section 4.1.1).

3.4.4 Pricing multiple assets

If contingent claims to many states of nature are not available then the SDF m is not unique. Unless the
market is complete, there are an infinite number of random variables satisfying the basic pricing equation
(eq: 4). When calibrating an SDF model there will typically be more than one SDF to choose from that will
price all traded investments at market prices.

If there exists an SDF m such that price (x) = E [mx] then the equation price (x) = E [(m+ ε)x]
generates all additional discount factors, for any ε orthogonal to x (i.e. E [xε] = 0). So the SDF m can be
represented as m = m∗ + ε where E [εx] = 0.

The breakdown of an SDF into a correlated component and an uncorrelated component allows a single
SDF to price multiple assets. Whilst the correlation of the asset with the m∗ part of the SDF prices one
asset, the ε part of the SDF prices other assets. Different assets will have different breakdowns between the
correlated and uncorrelated parts of the SDF.

3.5 Model building

There are many approaches to defining the SDF process, but the approach introduced in this section is
simpler than those in the literature, whilst still being generic. The requirements placed on a price process for
use within the SDF model are discussed. Finally a log-normal, mean reverting example is given, employing
the new, simple SDF modelling approach.

3.5.1 General model

It is important to be able to control the expected future value of the SDF as the mean must be the same as
the price 1

Rfs:t
of a risk free zero coupon bond with a payoff of 1, as given in eq: 13. This constraint can be

rewritten as Es [mt] = ms
Rfs:t

. An easy way to satisfy the constraint is to break the SDF into two independent

parts, building part of the SDF out of a bond model.

mt = ms (Bond Model)s:t × (Random Innovation)s:t (18)

where E [(Random Innovation)s:t] = 1 so that

Es [mt] = ms (Bond Model)s:t =
ms

Rfs:t

The SDF must not become negative. The bond model will not produce negative prices (if it is arbitrage free)
so long as the starting value for the SDF is greater than zero m0 > 0 (convention sets m0 = 1) and the
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random innovation is strictly positive. The random innovation element may be modelled without reference
to the bond model, although correlation is required if the bond model is not risk free. An easy way to ensure
positivity is to model exponential processes.

(Random Innovation)s:t = exp [(Random Process)s:t]

Any (arbitrage free) bond model5 may be used, although the bond model must be able to give a price for the
whole term structure. For example, if monthly time steps are generated via Monte Carlo simulation then the
bond model must be able to price a bond maturing in one month’s time. A stochastic interest rate will add
noise to the SDF (in comparison to deterministic interest rates) increasing the number of Monte Carlo runs
required for prices to converge.

If a new asset is added to an existing SDF model then the SDF process does not need to be modified,
so long as the correlation between the SDF and the new asset is correct. Correlations can be created in a
number of other ways. Factor modelling can be used to create new random processes based on the value of
assets already projected in the SDF model. Alternatively, a new random variable common to the SDF and
the asset can be added to the SDF. This approach is not ideal as it increases the volatility of the SDF.

3.5.2 Simulation of the SDF

Modelling the SDF by using a bond model multiplied by a random innovation is relatively easy to do. To
introduce SDFs into an existing Monte Carlo model, the only addition required is a new stochastic process.
To generate the future SDF value:-

• take the current SDF value,

• multiply by the bond price of a zero coupon bond, paying 1 at the end of the next time step,

• multiply by a suitably correlated, strictly positive, random innovation that has a mean value of 1.

At this point, few restrictions have been placed on the price process (it is implicitly assumed that the
expectations of all processes are finite). All distributions, seasonal factors, mean reversions etc. are allowed
within this framework. The only requirement is that it must be possible to control the covariances between
the price processes and the SDF.

In a Monte Carlo implementation, the covariance structure only needs to be calculated as far as the
next time step. This simplifies the projection of more complicated price processes (like time changing
parameters).

There is only one SDF process per model. This means that the pricing of derivatives should be calibrated
through the covariance between the SDF and the asset, not through the choice of SDF distribution. Corre-
lating processes to the SDF can be made numerically simple and flexible by using an analytical equation to
control the risk premium through the correlation matrix. The copula approach allows many different types
of stochastic processes to be combined but analytical tractability is sacrificed.

3.5.3 Multivariate log-normal model

The following multivariate log-normal model is original to this paper. It can be simulated easily, allows
a forward curve, and its outcomes can be checked analytically. Asset risk premiums and covariances of
the SDF to all prices are defined through the multivariate normal distribution. Importantly, an explicit link

5The literature on bond modelling is extensive and well researched. This paper does not extend the bond model research area.
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between the risk premium and the correlation parameter in the multivariate normal covariance matrix is
given. The model is extended to mean reverting assets in section 3.5.4.

The log-normal spot price S (t) at time t for asset i can be written as

S (t) |S (s) = F (s, t) exp

[
−1

2
σ2
i (t− s) + εiσi

√
t− s

]
(19)

where εi ∼ MultivariateNormal(0, 1) and F (s, t) is the forward price for asset i between time s and t.
Now we guess that an SDF exists of the form

mt = ms exp

[(
As:t −

1

2
σ2
m

)
(t− s) + εmσm

√
t− s

]
(20)

where As:t is a function to be defined that depends upon timepoints s and t.
Taking the expectation of the SDF gives Es [mt] = ms exp [As:t (t− s)] and using the risk free defini-

tion (eq: 13) it can be rearranged, resulting in As:t =
− ln

(
Rfs:t

)
(t−s) . So the SDF is defined as

mt =
ms

Rfs:t
exp

[
−1

2
σ2
m (t− s) + εmσm

√
t− s

]
(21)

This completes the process for the SDF leaving only the volatility of the SDF σm and its correlations ρim to
define.

Both the price process and the SDF process are log-normal stochastic processes, so there is a closed
form representation of covariance

Cov (mt, S (t)) =
ms

Rfs:t
(s, t)F (s, t) [exp (ρimσiσm (t− s))− 1] (22)

Inserting eq: 22 into the covariance pricing model (eq: 16) and simplifying gives the definition for excess
return in terms of correlation with the discount factor as

Es
[
eRis:t

]
= exp (−ρimσiσm (t− s)) (23)

where return is defined as Rs:t = F (s,t)
S(s) so excess return is eRjs:t = F (s,t)

S(s)
1

Rfs:t
To ensure that |ρim| ≤ 1, a minimum variance for the SDF is defined as

σm ≥ maxi

∣∣∣∣∣− lnEs
[
eRis:t

]
σi (t− s)

∣∣∣∣∣ (24)

This means all assets priced by the SDF are within the efficient frontier wedge (see Fig 4.1.1).
Finally the correlations between each asset and the SDF are set as

ρim =
− lnEs

[
eRis:t

]
σiσm (t− s)

=
− lnEs

[
eRiannual

]
σiσm

. (25)

This is an instantaneous risk premium, defined in annual terms following common convention, although the
period chosen for the timepoints s and t is arbitrary. Another interpretation is that if the risk premium is time
homogeneous then so are the correlations. Note that excess return is solely defined in terms of covariance
with the SDF. The forward price of asset i has been canceled out of the equation.
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If a constant time step and time homogeneous risk premium is used then only one covariance matrix is
required. If a stochastic interest rate is modelled then, for the covariance matrix to remain constant, total
return must be modelled as the excess return of an asset on top of the stochastic interest rate.

If the SDF is perfectly negatively correlated with one of the variables, k, such that ρkm = −1 then, as
the SDF is the reciprocal market portfolio, asset k is the market portfolio (as defined by the model). If all of
the variables have ρim > −1 then no asset in the model is the market portfolio, although it exists by proxy
within the model as the reciprocal of the SDF.

It is easy to insert this simple form of the SDF framework into existing variance-covariance models
as all that is required is the addition of a new log-normal process, which is the same as adding a new
asset process. Care must be taken when using the correlation method as it is very easy for a matrix to not
be positive definite. Assigning a larger variance to the SDF gives smaller correlations, making a positive
definite matrix easier to obtain.

3.5.4 Multivariate mean reverting log-normal model

If a mean reverting term is added to a log-normal price process then the distribution is still log-normal,
but the volatility is dependent on the stepsize and the mean reversion parameter, and the expected return is
dependent on the spot. [Clewlow & Strickland, 1999] derive the spot price of a mean reverting processes of
asset j with mean reverting parameter α as

S (t) |S (s) = F̂ (s, t) exp

[
−1

2
σ̂2
s:t + εj σ̂s:t

]
(26)

where the modified variance parameter is

σ̂2
s:t =

σ2
j

2α
[1− exp (−2α (t− s))] (27)

and the modified forward rate is

F̂ (s, t) = F (0, t)

(
S (s)

F (0, s)

)exp(−α(t−s))
exp

(
−σ

2

4α

(
e−αt

(
e2αs − 1

) (
e−αt − e−αs

)))
(28)

This means that

Cov (mt, S (t)) =
ms

Rfs:t
F̂ (s, t)

[
exp

(
ρjmσmσ̂s:t

√
(t− s)

)
− 1
]

so

Es

[
eRjs:t

]
= exp

(
−ρjmσmσ̂s:t

√
(t− s)

)
(29)

or

ρjm =
− lnEs

[
eRjs:t

]
σmσ̂s:t

√
(t− s)

=
− lnEs

[
eRjannual

]
σjσm

√
[1−exp(−2α(t−s))]

2α(t−s)

(30)

so because ρ → 0 as t − s → ∞ this means that the risk premium of a mean reverting process disappears
over time (see appendix A.4). If t→ s or α→ 0 then the non-mean reverting version (eq: 25) is recovered,
implying that if small enough timesteps are simulated then the correlation matrix will not need to be mod-
ified. Over a small timestep the noise term dominates the mean reverting drift of the process. A two asset
numerical example of eq: 30 is implemented in section 6 using Monte Carlo.
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4 Real Option Valuation

This section introduces a new approach to real options analysis. Using the SDF can simplify calculations
and assumptions, whilst allowing models to be generic and flexible.

The real option approaches listed in the literature review take an average value of future cashflows and
then discount them to the present. The real option approach used in this paper reorders this process. Future
cashflows are first discounted to the present and then averaged.

subsection 4.1 discusses various approaches, comparing them to the SDF approach in particular. Only
the argument against utility functions in section 4.1.3 is original in this valuation section. The second
subsection 4.2 is non-mathematical but is important for justifying the practical implementation of the Monte
Carlo SDF approach to real options.

4.1 Valuation approaches

4.1.1 Risk adjusted discount rates

A traditional way to calculate the present value of risky cashflows, and therefore price risky assets, is to
discount using a risk adjusted rate. The present value of a project is the expected value of future cashflows,
discounted at a risk adjusted rate that is equal to the expected return in eq: 35, so

price
(
xi
)

=
E
[
xi
]

Ri

The capital asset pricing model (CAPM) equation can be derived from SDFs. The starting point is the
basic pricing equation (eq: 4) expressed in terms of returns

1 = E
[
mRi

]
= E [m]E

[
Ri
]

+ σ (m)σ
(
Ri
)
ρm,Ri

Where ρm,Ri is the correlation between the SDF m and the return on asset i and σ (·) is the standard
deviation operator. Using the risk free rate identity (eq: 13) this can be rearranged to

E
[
Ri
]
−Rf = −Rfσ (m)σ

(
Ri
)
ρm,Ri (31)

The equation implies an asset with a positive expected risk premium has a negative correlation with the SDF.
Correlations are always bounded by |ρ| ≤ 1 implying a bound on the risk premium∣∣E [Ri]−Rf ∣∣ ≤ Rfσ (m)σ

(
Ri
)

which is represented graphically in fig 4.1.1 (figure is adapted from [Cochrane, 2004]).
Define the market asset Ri → Rp by picking a point on the upper bound line, so that ρRp,m = −1.

Inserting the market asset into eq: 31 allows the frontier line to be written as

Rfσ (m) =
E [Rp]−Rf
σ (Rp)

(32)

relating the Sharpe ratio of the market (also referred to as the slope of the frontier, or the market price of
risk) to the SDF volatility. Any point along this efficient frontier can be replicated by a combination of the
market asset and a risk free asset. Assets on the line are perfectly correlated, with each other and the SDF.

The slope of the efficient frontier is governed by the volatility of the SDF, placing a constraint on the
SDF. It needs to be volatile enough to ensure that all assets available are contained within the wedge. All
assets are contained within the wedge because, by definition, there are no assets that are more efficient.
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Figure 1: Volatility Wedge

Assets inside the frontier assets are not inferior. Rational investors are happy to hold all assets whether
they are on the efficient frontier or not. They are not worried about the idiosyncratic risk of each asset
because not all of the idiosyncratic risks will occur at the same time.

An asset with the maximum Sharpe ratio will be perfectly negatively correlated with the SDF. One
of these assets has already been defined to be the market asset Rp. As ρRp,m = −1 there is a direct
linear relationship m = a − bRp for constant a and positive scalar b. This linear relationship shows that
σ (m) = bσ (Rp) leads to

σ
(
Ri
)
σ (m) ρRi,m = Cov

(
Ri,m

)
= Cov

(
Ri, a− bRp

)
= −Cov

(
Ri, Rp

)
b (33)

After rearranging this becomes

σ
(
Ri
)
ρRi,m = −

Cov
(
Ri, Rp

)
σ (Rp)

(34)

So putting eq: 32 and eq: 34 into eq: 31 gives

E
[
Ri
]

= Rf + βi
(
E [Rp]−Rf

)
(35)

where βi =
Cov(Rp,Ri)

V [Rp] . This is the capital asset pricing model (CAPM), giving an important conclusion.
The SDF can be thought of as the inverse of the market portfolio.

The SDF is perfectly negatively correlated with the market, so its value is high when the market is low
and low when the market is high. Essentially, the SDF rewards cashflows that are produced in a bear market
more than ones produced in a bull market. Pricing with reference to CAPM and the efficient frontier is often
referred to as equilibrium pricing.

The SDF approach does not need the market portfolio to be explicitly defined within the model. This is
because the market portfolio and the SDF are equivalent as they are perfectly negatively correlated. Exis-
tence of an SDF implies an efficient frontier and an efficient frontier implies that an SDF exists.

4.1.2 Risk neutral valuation

A popular real option valuation approach is to apply risk neutral probabilities (see appendix A.1.2) to price
real options. The assumption of risk neutrality, and the use of the risk free discount rate, is justified by
identifying a portfolio of traded investments exactly replicating the cashflows of the real option, removing
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all risks from the asset (also assuming perfect and frictionless markets) making it equally valuable to all
investors. Using no arbitrage arguments (see appendix A.2), the value of the option must equal the value of
the replicating portfolio.

This approach to real options works well where underlying risks are freely traded (e.g. with commodity
based real options), but the risk neutral approach is harder to justify when the risks cannot be hedged in the
market. Many assets are not freely traded and there are few very long term traded options available with
which to construct hedges.

Risk neutral probabilities Risk neutral probabilities are an artificial construct that, by changing the prob-
abilities of the states occurring, simplify pricing models (see the numerical example in appendix A.1.2).
The following derivation of risk neutral probabilities using state prices is based on [Etheridge, 2002], who
makes the mathematics easier to follow by using discrete time and space.

Consider a complete market with n securities (as in section 3.1.4). If there is a state price vector Ψ
that has been derived from the cashflow matrix X with n states and price vector P then a new value can be

defined as Ψ0 =
n∑

ω=1
Ψ (ω). For any state ω, set the risk neutral probability of that state to be q (ω) = Ψ(ω)

Ψ0
.

As
n∑

ω=1
q (ω) = 1 and q (ω) ≥ 0 the vector [q (1) , . . . , q (n)] is a well defined probability distribution,

referred to as the risk neutral distribution. Using eq: 1 the price of an arbitrary security with a cashflow x
can be written as

price (x)

Ψ0
=

n∑
ω=1

q (ω)x (ω) = EQ [x] (36)

These q probabilities satisfy the requirements to be a state price, as 1 ≥ q (ω) > 0.
If there exists an asset B with payoffs of 1 in all states, so B (ω) = 1 for all ω, then using 36 gives

price(B)
Ψ0

=
n∑

ω=1
q (ω) = 1 which defines price (B) = Ψ0 = 1

Rf
as the discount rate on riskless borrowing.

The normalized prices can be viewed as the expected payoff under a specially chosen set of risk neutral
probabilities.

price (x) =

n∑
ω=1

Ψ (ω)x (ω) =
1

Rf

n∑
ω=1

q (ω)x (ω) =
EQ [x]

Rf
(37)

where EQ uses the risk neutral probability measure Q. Any security x can now be written as price (x) =
1
Rf
EQ [x] showing the security’s price to be its discounted expected payoff under artificially constructed

probabilities.
Risk averse investors give greater value to cashflows received in bad states than good states, therefore the

risk neutral probability measure Q will give greater weight to bad states as their state prices will be larger.
Simulating under a risk neutral measure will cause systematically bad events to occur more often than good
events.

Risk neutrality and the SDF Risk neutral probabilities are actually a special case of the SDF. This can
be seen by comparing eq: 4 to eq: 37, so

EP [mx] =
1

Rf
EQ [x] (38)

where probability measure P is the real world measure. Inspecting eq: 38 and conditioning on each state it
can be seen that the SDF can also be defined as

m (ω) =
q (ω)

p (ω)

1

Rf
(39)
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showing that the SDF is the ratio of the risk neutral measure to the real world measure, discounted at the
risk free rate6.

State prices provide the link between risk neutral and real world probabilities. Risk neutral probabilities
can be converted to state prices which can be converted to real world probabilities (and vice versa). Risk
neutral pricing can be derived from SDFs, so anyone comfortable holding unhedged derivatives, priced using
risk neutral probabilities should be happy using SDFs.

4.1.3 Utility functions

Utility functions are used to define risk preferences of investors, which are then used to calculate the risk
premium on a real option. Using utility functions replaces the objective of maximizing shareholder value
with an objective of maximizing a risk preference.

The approach is not suitable if shareholders are rational and seek to diversify their assets. If utility
functions alone were used to price assets then shareholders would be happy to accept any price and would
vary their shareholdings to accommodate the risk.

To demonstrate this, define an investor to have the utility function U (x) where x is the wealth. The
expected change in utility can be measured by an approximation using the power series expansion

E[U(x+ε)]
U(x) =

E[U(x)+εU ′(x)+ 1
2
U ′′(x)ε2]+o(ε3)

U(x)

' 1 + U ′(x)
U(x) E [ε] + 1

2
U ′′(x)
U(x)

(
E [ε]2 + V [ε]

) (40)

where ε represents an uncertain future cashflow.
The investor can invest a proportion y in the risky security and the remaining 1 − y in the risk free

security. So the random component can be broken down as ε = εf + y
(
εi − εf

)
giving E [ε] = E

[
εf
]

+
yE
[(
εi − εf

)]
and V [ε] = V

[
εf + y

(
εi − εf

)]
= y2V

[
εi
]

because the risk free asset has no variance
V
[
εf
]

= 0.
To simplify the notation assume εf = 0 and scale current utility so that U (x) = 1, giving the quadratic

E [U (x+ ε)] = ay2 + by + 1 where a = 1
2U
′′ (x)V

[
εi
]

and b =
(
U ′ (x) + 1

2U
′′ (x)E

[
εi
])
E
[
εi
]
.

Solving the quadratic for y and differentiating shows that utility is maximised when

y =
E
[
εi
]

V [εi]

(
−
E
[
εi
]

2
− U ′ (x)

U ′′ (x)

)

The greater the return, the higher the proportion y. The larger the variance of the security, the smaller the
proportion. Due to the non-linearity in the pricing the investor will happily accept any variance for the
underlying security by varying the proportion invested accordingly.

If the investment cannot be broken down into liquid sub-units, or it has a small number of owners
then utility functions are applicable. But if a company has shares traded openly then each shareholder can
individually increase or decrease their holdings of the company (and therefore the underlying real option)
until their individual risk preference is satisfied. This means that utility functions should not be applied to
decision making within publicly traded companies.

If U ′′ (x) = 0 then variance is removed from eq: 40 which then becomes linear. This utility function is
a special case where the investor is said to be risk neutral.

6This relationship is analogous to the Radon-Nikodym derivative.
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4.1.4 Real world probabilities

Appendix A.1.1 gives a numerical example showing the potential pitfalls of pricing using real world proba-
bilities.

When constructing SDFs, the state price can be divided by any chosen probability measure, so a natural
choice is to use the probabilities that actually occur. The SDF uses the same real world probability measure
as the cashflow payoffs, so there is a consistent probability measure across all processes. Using SDFs with
real world probabilities allows all assets and derivatives to be priced but also allows price projections to
include risk premiums, giving realistic prices which allow other risk measures to be calculated.

4.1.5 Certainty equivalent values

The certainty equivalent approach requires an adjustment CEi to be made to each (real world) expected
cashflow E

[
xi
]
, so that it may be discounted at the risk free rate.

price
(
xi
)

=
E
[
xi
]
− CEi

Rf
(41)

matching eq: 16 to eq: 41 implies that

CEi = −RfCov
(
m,xi

)
or rearranging using the frontier equation (eq: 32) and the linear relationship between the SDF and the
market (eq: 33) gives

CEi = Cov
(
Rp, xi

) E [Rp]−Rf

σ (Rp)2 (42)

which is the more common form of the certainty equivalent adjustment. This link between the SDF and
certainty equivalent cashflows shows that the two approaches are mathematically equivalent.

The certainty equivalent approach is good for simple calculations (e.g. a binomial tree with few timesteps
and only one source of risk) and produces transparent, analytic solutions using real world probabilities.

The main drawback in working with certainty equivalent values is that correlation with the market port-
folio must be evaluated for every risky cashflow. So for a large project the calculations become burdensome
unless major simplifying assumptions are made about both the cashflow profile and the underlying risks.

4.2 SDFs and real options

A project (or portfolio of projects) containing real options can be priced using the covariance model in
section 3.5. The cashflows can be discounted using the SDF to give a present value for the project. The
value of each source of flexibility is the change in project value for that decision. Using SDFs, both the
underlying real asset and options on that underlying asset are priced simultaneously.

The Monte Carlo SDF approach has various advantages over traditional real option pricing methods;
it does not require a separate calculation for each cashflow (certainty equivalent does); it uses real world
probability measures (risk neutral does not); and it uses the same discount rates for all cashflows (risk
adjusted rates depend on the asset being valued).

Using the covariance SDFs combined with Monte Carlo techniques can provide models that are simple
to implement, yet retain accuracy and realism making real options more likely to be employed in practice.
If each option is valued using the SDF then the portfolio will be priced without arbitrage and without having
to resort to any hedging arguments.
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4.2.1 Mathematical equivalence

SDFs will not produce different values to other techniques. Their main advantages are that they are simple to
explain and implement, and allow asset prices to be projected under the real world probability measure. The
equivalence of SDFs to various other modelling methods can be used to check simple results and explain
more complex ones.

4.2.2 Market and subjective data

The Monte Carlo SDF model appropriately incorporates risks within its framework by employing as much
information as available, from the market and from experts7.

Market data comprises of the past history of prices, and current prices of derivative assets. It may also
be possible to use traded derivatives to work out the implied probabilities and parameters, as long as the
derivatives are sufficiently liquid. If historic price data is available for an asset then SDF correlations can be
calibrated using the historical correlation between the asset and the market. A diversified market portfolio,
such as the FTSE All Share or S&P 500 may be an appropriate choice of market proxy for SDF correlations.
[Breymann et al., 2005] find that the Morgan Stanley Capital Growth World Index (MSCI) is a good proxy
for the theoretical growth optimised portfolio ([Platen, 2006]).

The subjective approach assumes that assets and markets exist, but does not identify them. Experts must
be relied upon for subjective estimates of statistics. For the SDF this involves defining either the asset’s
expected risk premium, or its correlation with the market portfolio (and therefore with the SDF, see section
4.1.1).

4.2.3 Systematic and unsystematic risks

SDFs are the ideal method for tackling systematic and unsystematic risks within the same framework. SDFs
value assets from the perspective of a fully diversified shareholder. SDFs place greater value on systematic
cashflows that occur in poor times than good times. Unsystematic risks are uncorrelated with the general
economy, so the SDF discounts their cashflow at the risk free rate (on average).

4.2.4 Complete markets

Valuing an option using the replicating portfolio approach requires a perfect hedge, removing all risk. The
market needs to be complete for an option to be perfectly hedged. SDFs do not require a perfect hedge to
price an option, so they do not need complete markets. Unfortunately an incomplete market implies the
existence of an infinite number of possible SDFs, giving an infinite number of possible prices for the option.
The SDF approach offers two solutions to this infinite price problem.

One approach for completing the market is by picking an SDF from the infinite set of possible SDFs,
choosing the SDF’s functional form. [Black & Scholes, 1973] took this approach to completing the market
by choosing Brownian motion for their option pricing model. Choosing an SDF with a low volatility lets
the Monte Carlo converge faster.

The other solution, the good deal bound approach, is used to place limits on the price of the residual risk,
constraining the total market price of risk below a reasonable value. Again, a lower volatility SDF produces
a tighter price bound.

7If competitive interactions are required then these have to be implemented as a separate modelling layer, using other techniques,
like game theory
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4.2.5 Cashflow independence

A common mistake in applying real option analysis is to focus on the options available in the revenues of
a project and ignore options on costs. SDFs value cashflows independently of whether they are positive
or negative (costs or revenues). The approach can be used at company, project and even transaction level,
complementing, rather than replacing other tools.

The same underlying set of asset projections can be produced for many purposes. Specific business
problems can be modelled in parallel, only drawing on data from the Monte Carlo SDF model when prices
are required. The SDF method only has to be described to management once, allowing their attention to be
focused on the more valuable areas of identifying real options and ensuring they are executed correctly.

The mathematical complexities involved in generating the stochastic evolution of asset prices and a
correlated SDF process can be hidden away. Only the generated numbers need to be viewed by practitioners.
Growth assumptions are offset by the risk premium, so have no effect on present value calculations when
the SDF approach is used (with normal distributions), simplifying decision making and removing a major
source of contention.

4.2.6 Disadvantages of the SDF

The Monte Carlo SDF approach takes longer to converge to a solution than other approaches, so the approach
is recommended when time is not an issue, and real world probabilities are required. Techniques to speed
up the Monte Carlo, such as control variates and antithetic random numbers, are still applicable to SDFs.

The SDF is a measuring tool. It does not solve any decision making problems. Other solution techniques,
appropriate to the problem under consideration, should be employed alongside the measurements given by
the SDF method. Although the Monte Carlo method allows many theories to be tested, optimal strategies
are hard to identify because each strategy being tested usually requires its own Monte Carlo run. The SDF
method takes slightly more simulations to converge to a stable value than the risk neutral Monte Carlo
method, as there is the added variation of the SDF process to average out, but this is a small price to pay for
the benefits gained through real world probability modelling.

If risk premiums are not too large and the correlation matrix is positive definite then the SDF volatility
can be kept small, reducing the number of simulations required for convergence. Manipulating the corre-
lation matrix so that the volatility of the SDF is kept low, whilst still remaining positive definite, can be a
matter of judgement.

SDFs only calculate the value of an asset. A replicating portfolio is not explicitly identified so the
portfolio required to hedge a specific real option is generally not known. Other pieces of information, such
as the amount of risk created or sensitivities to changes in underlying parameters8 are not calculated. The
risk when using SDF has to be controlled separately.

The Monte Carlo SDF approach is not the answer to everything. Analytic solutions are best found
through other methods. Absence of a replicating portfolio or any measurement of parameter sensitivity
makes the approach unsuitable for trading applications. Removal of the replicating portfolio means that
risks have to be monitored and controlled by other methods. This is explored in section 5.

5 Controlling risk

Most real options approaches rest on the assumption that, in complete markets, the investor will find a traded
security that exactly replicates the risk of the option’s payoff at any point in time between acquisition and

8Referred to as Greeks in financial option pricing
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exercise. Since the current price of this replicating portfolio is known, the current value of the option is
known. The investor may also use the replicating portfolio to hedge the option, removing risk.

5.1 Hedging

The necessity to hedge a risk provides the largest stumbling block for most real option approaches. The
Monte Carlo SDF approach removes the hedging requirement, allowing pricing without resorting to the as-
sumption of a replicating portfolio. Instead SDFs use the correlation with the market, avoiding all difficulties
surrounding the tradeability of an asset.

5.1.1 Hedging individual options

It is usually difficult to discover and create a suitable replicating portfolio as the underlying assets in most
real options are not traded.

Specific real options hedging by an individual firm in a highly competitive area will have an immediate
impact on the action of its competitors, possibly signaling valuable information to the market. Exercising
the real option may alter the momentum of a the perfectly matched hedging security. Real options contain
many operational and contractual obligations which tend to be inseparable from other real and intangible
assets, meaning they may only be sold as part of a package. A real option can be held collectively by many
firms, making a sale by an individual company impossible.

Even if a replicating portfolio can be found, it is often not feasible due to substantial costs and imperfect
markets. The underlying assets are usually not liquid enough to trade or sell short and relevant futures
contracts may not even exist.

The execution strategy of a real option is unlikely to be changed by the purchase of a hedging financial
option. The hedge is there to control cashflow volatility. Holding a hedging portfolio places a limit on just
how much downside risk a single real option can impose on a firm. But controlling the risk at the project
level, rather than the company level, is likely to be ineffective.

5.1.2 Hedging at the portfolio level

Financial options are usually managed with reference to a hedging portfolio, which is traded to minimise
the overall possible loss as no hedge is perfect. The risks can never be totally hedged, but they can be
handled efficiently (reducing transaction costs) and effectively (by diversifying away untraded risks) when
combined and managed at a portfolio level. If a portfolio approach is taken to owning options then hedging
individual options is not required. This may be due to independence of the option, or through risk control at
the portfolio level.

The more uncorrelated options there are in a portfolio, the closer the actual return of the portfolio will
be to its expected return (in relative terms). Independence may also be achieved by repeating the real option
over time. The cumulative value of the series of the same option will allow the good and bad payoffs to
mitigate one another, removing the need to hedge.

Within a firm there may already be natural hedges, so that hedging a risk that is already hedged will lead
to speculation and increased risk. For example, a firm that sells both ice-creams and umbrellas may find that
investing in weather derivatives only increases its cashflow volatility.

5.1.3 Comparing real option strategies

Strategies are often framed in a risk-return space, where the optimal strategy is one with the largest return
for a given level of risk. The SDF approach allows the risk and return measures to be combined into a single
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measure of shareholder value, combining all timescales.
This is achieved by adding an appropriate risk charge to the expected value of each strategy. Section 6

demonstrates this approach with a case study.

Introduction

5.2 Expected discounted shortfall

This paper uses the SDF to create a coherent risk measure that views cashflows over multiple time periods
and takes into account correlation with the market. Expected discounted shortfall (EDS) can be seen as a
discounted extension of expected shortfall (ES, section 2.2.1), applied to a series of cashflows. Another
differentiating characteristic is that absolute levels of cash are defined over many timepoints, rather than a
percentile level at a single point in time. An absolute approach is required as a percentile measure does not
easily extend to a multi-temporal environment. A practical example of EDS is given in section 6.

5.2.1 Cashflow default point

A company defaults when its incoming cashflow is insufficient to cover its required cashflow expenditure.
It is (theoretically) possible to identify, at each time point, the minimum cashflow that allows the company
to continue trading. This is defined as the cashflow default point (CDP). The default point for each time
period should be calculated at the firm level, so that defaults occur after all relevant income cashflows are
taken into consideration. The actual value of the CDP will be dependent on many factors (gearing level,
opex requirements etc.) which are time varying, and could also be random variables. To ease calculation
and comparison it may be more convenient to use a range of constant CDP levels as a proxy for the actual
default level.

An alternative approach is to think of the CDP as the point at which undesirable distress is caused, rather
than complete default. For example, this could be the point at which new debt has to be issued at a high
interest rate, or it could be a minimum level set by the company directors. If there are business decisions
that can be made at the company level to reduce the probability of a default or distress event occurring then
these should be explicitly (and dynamically) modelled. One way to deal with default is to require that assets
be sold, but rather than force income generating assets to be sold, an extra injection of shareholder equity is
modelled. Enough capital is assumed to be raised by shareholders to cover the shortfall, which is defined as

St = max (CDPt − xt, 0) (43)

where xt is the net cashflow generated by the company’s assets at time t. The cashflow default pointCDPt is
the minimum required outgoing cashflow at time t. This is the amount owed by the company to its creditors,
e.g. a coupon payment on a bond.

5.2.2 Expected discounted shortfall (EDS)

Expected discounted shortfall (EDS) is defined as

EDS =
∑
t

E [mtSt] =
∑
t

E [mt max (CDPt − xt, 0)] (44)

where CDPt and xt are defined above and mt is the SDF.
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5.2.3 Conditioning on default

After finding the EDS cost to the company, a project can be charged or rewarded for the default risk it adds
or removes. This charge only makes sense from a company perspective, since the entire company, not just
the one project, is in default.

Defining xit as the cashflow of the ith business area at time t allows the company cashflow at time t to
be written as xt =

∑
i x

i
t. By definition, the risk contributions of individual exposures should add up to the

total risk. EDS can be re-expressed as

EDS =
∑
t

E [mtSt] =
∑
t

(E [CDPtmt|xt < CDPt]− E [mtxt|xt < CDPt])

Splitting out the individual components gives
∑
t
E [mtCDPt|xt < CDPt] − EDS =

∑
i
EDSi where

EDSi =
∑
t
E
[
mtx

i
t|xt < CDPt

]
.

EDSi can be interpreted as the ith business area’s marginal contribution to the EDS of the company.
Without the contribution of the ith business area, the company’s EDS charge would be EDSi greater. To
calculate the marginal EDS in practice, a Monte Carlo engine is run and all the simulation paths where the
company cashflow is always above the CDP are discarded. Using the remaining simulations, the average of
the discounted cashflows of each business area can easily be calculated.

One of the main practical difficulties in applying this conditional risk measure is its slow convergence
in simulation, especially if the cashflow default point is set at a low level which is not often breached.

5.2.4 EDS capital charge

The EDS charge is the risk the shareholder bears when a project is taken on by a company. A project’s
default burden to the company can be calculated using the EDS measure, which can be subtracted directly
from the project’s NPV (see the example in section 6.4). Risks that are negatively correlated with other
projects in the company will produce a lower EDS value than positively correlated risks. EDS is an extra
cost that should be integrated into the decision making process.

EDS is also dependent on the other projects in a firm’s portfolio. One project may have its EDS charge
reduced (or even turned positive) when a second complementary project is added to the portfolio. A corollary
is that a project that fits well within one company’s portfolio is unlikely to find the same fit in a different
company.

5.2.5 Properties of EDS

[Csoka et al., 2007] show that any risk measure is coherent if it is based on the basic pricing equation9 (eq:
4). EDS uses this equation so it is a coherent risk measure. Only the assumptions of free portfolio formation
and the law of one price (see section 3.3.1) are required to use EDS.

The SDF process mt can be used to discount cashflows from all projects and time horizons simultane-
ously, combining market and non-market risks. Path dependent interventions and outcomes are naturally
incorporated. Rather than the risk being controlled by the size of the discount rate, the risk premium is
controlled by the covariance of the cashflow with the SDF. Covariance can be set independently for each
risk source, allowing different risk premiums to be valued using the same SDF.

EDS is the amount of additional equity guaranteed by the shareholders to keep company ownership from
passing to the debt holders. It is the amount that would have to be paid to insure against default at multiple

9Referred to in their paper as the general equilibrium measure of risk.
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future points, where the insurance covers all default losses of the company. Shareholders must pay out on
this insurance to retain ownership of the company. The capital structure of the firm affects the EDS measure.
The more debt that is held, the higher the CDP and the greater the EDS charge. The risks of a project may
have different effects on EDS at different debt levels.

It may be possible to calculate EDS analytically in some situations, however the real power of EDS
lies in its ability to be applied to high dimensional, complex problems. It fits neatly into a Monte Carlo
framework allowing complex situations to be modelled. If calculated using Monte Carlo simulation then
scenarios that cause distress can be used to identify the risks to a firm. If a recurring risk source can be
identified then steps can be taken to mitigate that risk.

EDS can be calculated simultaneously over many default levels and time points, allowing a clear, con-
sistent picture of the risk profile to be formed. Using EDS allows risk and return to be combined into
one measure, valued from the shareholder perspective. This allows judgement between various real option
strategies, where the optimal strategy is the one generating the greatest shareholder value. EDS does not
find optimal strategies, it only provides a way to rank strategies.

5.2.6 Comparison with other approaches

Risk measures that look at a single percentile value ignore any cashflow information occurring outside that
percentile. The EDS and ES measures take an average of all the values in the tail, so no information is
ignored.

Most other risk measures (ES, VaR) chose a percentile to represent the default point, but EDS defines
a (possibly random) default cashflow level, the point at which incoming cashflow is less than the required
outgoing cashflow.

A large advantage that EDS has over other measures is that it can be used in a multi-period setting
because all shortfalls are discounted back to a present value. Risk and return can be measured in the same
units and linked directly to shareholder value.

EDS is mostly relevant at the portfolio level as its most useful economic meaning is when the com-
pany is financed by a capital structure that includes defaultable payments. EDS requires a trigger event, as
essentially the method is trying to price a form of insurance.

6 Application

The choice between debt and equity involves trading off the benefits of debt (e.g. interest payments paid
before tax, increased discipline on managers) against the potential costs of financial distress. To calculate the
benefit of debt a firm needs to know the probability of distress occurring, for a given capital structure. One
of the most important determinants in calculating the probability of distress is the variability of cashflows.

This section describes an application of the SDF approach to valuing real options, using EDS to measure
the risk of the option. The examples in this section have been designed to demonstrate the ideas introduced
in this paper. Detailed calculations for parameters are given, allowing Monte Carlo output to be compared
to theoretical calculations.

Section 6.1 introduces the situation and section 6.2 derives parameters for Normally distributed mean
reverting exponential processes and the correlation parameters for the covariance matrix. Section 6.3 intro-
duces the real option to expand production. Section 6.2.1 reviews the statistics and risk measures. Section
6.5 looks at different possible real options strategies and makes comparisons.

Dynamic risk models have preprogrammed actions that are triggered depending on events occurring.
This allows interventions over time to be modelled, according to pre-set strategies. By testing many different
combinations of interventions, the best strategy can be identified. Section 6.5.2 uses a dynamic risk model to
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switch production on or off dependent on two underlying costs. This is a simplified example and in practice
the combination of underlying events on which to base decisions is likely to be infinite.

Including embedded optionality into a risk model makes modelling trickier, and optimization even
harder but modelling flexibility is essential if solutions, as well as problems, are to be identified. To avoid
loss of value it is essential that risk, as well as return, is measured.

6.1 Background information

A widget company produces 5000 widgets every month. All widgets are sold each month at a wholesale
price set by an external agent. One of the company’s engineers has discovered that production can be
increased if part of the process is continually heated to a high temperature using natural gas. At the start of
the month the gas supplier fixes the gas price at the market spot rate. Each extra widget requires 0.9 units
of gas. The average price of both gas and widgets is 1, so the expected profit from a gas produced widget is
0.1. Management have determined that widget and gas prices both carry a risk premium of 3% and that their
price movements are uncorrelated. Interest is assumed to be deterministic with an annual risk free return of
exp (0.05) = 1.0513.

6.2 Parameter derivation

The annual variances (measured weekly, multiplied by 52) are

Without Mean Reversion Widget Gas
Variance 0.12908 1.88224

Mean reversion = α 0.5 4.8

StdDev [S] =
√
E [S2]− E [S]2 27.3366% 46.9172%

Mean Reverting LogNormal σ 33.7654% 138.2099%

The calculation for σ is achieved by inverting the equation for the standard deviation of a mean reverting

log normal distribution StdDev [S] = E [S]
√

(exp (σ̂2)− 1) where σ̂2 =
σ2

2α
(1− exp (−2α)), giving

σ =

√√√√ln

((
StdDev [S]

E [S]

)2

+ 1

)
2α

(1− exp (−2α))

The minimum variance and correlations of the stochastic discount factor can now be calculated using
eq: 30.

α MR LogNormal σ Rei Sharpe Ratio
Widget 0.5 33.77% 3% 0.1118
Gas 4.8 138.20% 3% 0.0673

where Sharpe Ratioi =
ln(1+Rei )

σi
. ChoosingMaximumCorrelation = 0.636 gives SDF V olatility =

σm = max(Sharpe Ratioi)
Maximum Correlation = 0.1118

0.636 = 13.76% and using SDF Correlationi = − Sharpe Ratioi
SDF V olatility pro-

duces Table 1
The excess market portfolio return can be calculated as Rep = exp

(
σ2
m

)
− 1 = 1.9%. It should be

noted that this is an arbitrary number as it is related to the Maximum Correlation parameter. Assuming
a higher market return implies a lower correlation and vice-versa.
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Table 1: Instantaneous Correlation Matrix

Correlation SDF Widget Gas
SDF 1 −0.6360 −0.1554
Widget −0.6360 1 0
Gas −0.1554 0 1

6.2.1 Distribution of widget prices

The Monte Carlo output of widget prices has the statistical properties given in Table 2.

Table 2: Spread of Widget Prices

Widget Prices Year 1 Year 2 Year 3 Year 4 Year 5
Mean 0.9985 0.9986 1.0020 1.0009 0.9984
St Dev 0.2722 0.3216 0.3393 0.3459 0.3456

5% 0.6175 0.5650 0.5487 0.5445 0.5425
10% 0.6817 0.6352 0.6193 0.6146 0.6127
50% 0.9638 0.9504 0.9510 0.9453 0.9426
90% 1.3591 1.4193 1.4466 1.4544 1.4494
95% 1.4958 1.5925 1.6318 1.6373 1.6416

The percentile measures can be read as the probability that the widget price is below the value given in
the table. The spread of widget prices stabilises as time progresses.

6.2.2 Comparison to deterministic NPV

Cash is assumed to be collected at the end of the month and deposited in the bank, so at the end of the year
the mean amount collected will be

5, 000
11∑
t=0

exp ((11/12− t) 0.05) = 5, 116.44

The market betas in Table 3 for the widget and gas price are calculated using eq: 46 in Appendix A.4.
The deterministic discount factors are calculated using CAPM as Di

t = exp
(
−
(
βir

e
p + rf

)
t
)

where rep =
ln
(
Rep + 1

)
.

Table 3: Beta and Discount factors

Time = t 0 1/12 2/12 3/12 4/12 5/12 6/12 . . .

Widget βw 1.560 1.528 1.497 1.467 1.437 1.409 1.381 . . .
Gas βg 1.560 1.286 1.074 0.909 0.778 0.675 0.591 . . .

Widget Dw 1.000 0.993 0.987 0.981 0.975 0.969 0.963 . . .
Gas Dg 1.000 0.994 0.988 0.983 0.979 0.974 0.970 . . .

38



Table 4: Monte Carlo Mean Values

End of year means Year 1 Year 2 Year 3 Year 4 Year 5 s.e. Year 1
SDF 0.9517 0.9061 0.8619 0.8202 0.7811 0.0006
Widget Price 0.9980 0.9986 1.0022 1.0012 0.9990 0.0012
Gas Price 0.9997 0.9995 0.9996 0.9977 1.0030 0.0021

Production 5, 000 5, 000 5, 000 5, 000 5, 000 0
Cash 4, 998 4, 995 5, 000 5, 006 4, 999 3.4821
Cash + Interest 5, 115 5, 111 5, 116 5, 123 5, 116 3.5402
Disc Cash 4, 830 4, 509 4, 245 4, 017 3, 802 2.6056

Assuming that each month has a constant 1/12 of annual production then the NPV for the 1st year of
widget sales can be calculated, using the monthly discount factors, as 5000

∑11
t=0D

w
t/12 = 4831.35 and

further years as:-

Theoretical Year 1 Year 2 Year 3 Year 4 Year 5
NPV by year 4, 831 4, 511 4, 242 4, 007 3, 796

Performing 50, 000 Monte Carlo simulations gives the results in table 4. The line SDF is the mean value
of the stochastic discount factor, where the average is designed to converge to the risk free rate. The final
column of the table shows the standard error of Year 1 simulated values. As expected, Gas and Widget
prices are all within 2 standard errors (s.e.). Production is not a random variable so has zero standard error.
Cash is the total cash collected in each year, without discounting or interest. Cash + Interest is the total
cash at the end of each year after being deposited at the risk free rate at the end of each month. Disc Cash is
the present value of the cashflows received discounted using the stochastic discount factor, all of which are
within 2 s.e. of the theoretical amounts. These results show that Monte Carlo methods produce reasonable
results in comparison to the theoretical calculations. The real options described in the rest of this section are
measured against these base case values.

6.3 Valuing the option to expand

This section details the theoretical value gained by increasing widget production using the new gas technol-
ogy but ignoring any increase in risk. The theoretical NPV when production is increased can be calculated
using

NPV = 5000
60∑
i=1

(
(1 + Production Inc.)Dw − 0.9 ∗ Production Inc. ∗DG

)
/12

to give the expected present value when using the option, ignoring risk factors. The theoretical calculations
are presented in Table 5 with the Monte Carlo outputs presented in Table 6.

Valuation of mean reverting cashflows using the SDF is much simpler to implement than theoretical
calculations, so long as the problem is large and complex enough to warrant a Monte Carlo approach.

On average, creating an extra widget is NPV positive so if risk is ignored then value is maximised by
increasing production to maximum capacity. The risk dimension should not be ignored as the next section
will show.
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Table 5: Theoretical NPV

Production NPV NPV increase broken down by year
Inc. Inc. Year 1 Year 2 Year 3 Year 4 Year 5
10% 155 45 35 29 24 22
30% 466 136 106 86 73 65
50% 777 226 176 143 122 108
70% 1, 087 317 246 201 171 152
90% 1, 398 408 317 258 220 195

Table 6: Monte Carlo NPV

Production NPV NPV increase broken down by year
Increase Increase Year 1 Year 2 Year 3 Year 4 Year 5

10% 156 45 34 29 25 22
30% 468 136 103 87 76 65
50% 779 227 172 146 127 108
70% 1, 091 318 241 204 177 151
90% 1, 403 409 310 262 228 194

6.4 Calculating the cost of risk

If the owners of the company had unlimited access to funds then risk would not be an issue. All decisions
could be made on an expected NPV basis. In reality this is rarely the case. In this example case study the
project has been implemented by a financial structure that requires a fixed annual payment10. Calculations
are given at various payment levels to demonstrate different risk profiles.

Table 7: Expected Shortfall, risk free rate

Shortfall Level Year 1 Year 2 Year 3 Year 4 Year 5
3, 800 5 75 167 264 359
4, 000 13 116 247 382 514
4, 200 29 179 354 536 713
4, 400 57 258 494 731 962
4, 600 100 366 669 971 1, 623
4, 800 161 504 884 1, 260 1, 623
5, 000 242 674 1,140 1, 598 2, 040

Table 7 shows the expected shortfall at various levels, discounted to the present at the deterministic risk
free rate and where no extra widgets are produced. The values in the table represent the cumulative mean
amount of cash that would need to be set aside now to cover the expected value of a possible shortfall in
cash.

10For example, this could be a coupon payment of a bond or a project financing requirement
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As the shortfall level increases so does the cumulative expected shortfall because the volatility of the
widget price makes the cashflow more likely to fall below this level. The expected shortfall for a specific
year can be calculated by subtracting one cumulative value from another. For example, the cost at shortfall
level 4400 at time 4 is 731 − 494 = 237. The bold values indicate the year when the greatest increase
in premium occurs. This point is the riskiest point in time, for the given shortfall level. Discounting the
expected shortfall at the risk free rate may seem like the natural, prudent approach but this ignores the risk
of losses occurring at a time when the rest of the market is also falling.

Table 8 displays the Expected Discounted Shortfall with discounting using the stochastic discount factor
rather than the risk free rate. The values represent the ’insurance premiums’ payable at time 0 for protection
below the shortfall level over the period 1-5 years, where if the annual cashflow is lower than the shortfall
level then the EDS insurance makes up the difference. The insurance can be invoked in multiple years, i.e.
if it pays in year 2 it can also pay in year 4.

Table 8: EDS over 5 years

Shortfall Level Year 1 Year 2 Year 3 Year 4 Year 5
3, 800 6 92 211 338 464
4, 000 16 141 306 480 652
4, 200 34 210 431 661 888
4, 400 65 303 591 886 1, 177
4, 600 113 424 789 1,159 1, 523
4, 800 179 576 1, 027 1,482 1, 927
5, 000 265 759 1,307 1, 854 2, 389

The premiums demanded by the EDS measure are all greater than the ES measure discounted at the risk
free rate. This implies that discounting at the risk free rate will underestimate risk for a diversified investor.
In fact, if a deterministic discount rate is used to match the risk free discounted values to the EDS values
then the rate would be around 2% less than the risk free rate.

The cost of insurance is most expensive in the 4th year as this is the most risky year for all shortfall
levels except 5, 000. For shortfall levels 4, 600 and 4, 800 the riskiest year has changed. So not only is the
size of risk incorrect when using the risk free rate but also the point of maximum risk is incorrect. Decisions
made after discounting risks at the risk free rate can lead to suboptimal strategies.

6.5 Options as strategies

6.5.1 Choosing between strategies

As well as comparing risks over time, EDS allows different real option strategies to be compared consis-
tently. Table 9 compares using gas for increased production to the base case of no extra production11. The
bold values are the years when the extra risk introduced by increased production is greater than the stan-
dalone NPV of the extra production. The cost of shortfall insurance for producing these extra widgets is
greater than the value they add.

At all production levels the EDS premium for year 4 is the greatest. In year 5 present value of the risk is
lower than in year 4 even though the probability of the cashflow going below the shortfall level is larger. The

11The comparison base case for this table is with 0% extra production.
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Table 9: EDS

Shortfall Level 5000 4800 4600 4400 4200 4000 3800

Prop Year Inc NPV Increase in EDS compared to no gas
10% 1 45 9 12 13 12 10 7 5
10% 2 34 30 32 32 32 30 28 24
10% 3 29 35 36 37 36 35 33 30
10% 4 25 36 38 38 38 36 34 31
10% 5 22 35 36 37 36 35 33 31

30% 1 136 33 37 39 36 31 25 19
30% 2 103 99 103 105 104 100 93 84
30% 3 87 112 116 118 117 114 108 101
30% 4 76 116 120 121 120 117 112 105
30% 5 65 112 115 117 116 113 108 101

50% 1 227 45 48 48 46 42 37 30
50% 2 172 176 183 186 184 179 169 156
50% 3 146 196 202 205 205 200 192 181
50% 4 127 202 207 210 209 205 198 187
50% 5 108 194 200 202 202 198 191 181

70% 1 318 51 53 53 52 49 44 39
70% 2 241 258 267 271 269 262 250 234
70% 3 204 284 292 296 296 291 281 267
70% 4 177 291 299 302 301 297 288 275
70% 5 151 281 288 291 291 286 278 266

90% 1 409 55 56 56 55 53 49 45
90% 2 310 344 354 359 357 349 353 316
90% 3 262 376 385 390 390 384 373 358
90% 4 228 384 392 396 396 391 381 366
90% 5 194 370 378 382 382 377 367 353
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more that production is increased, the greater the NPV, but also the larger the risk. The cost of risk increases
faster than the NPV. In the long term, continually using gas to increase production is not an optimal strategy.

6.5.2 Option to switch on and off

The engineer has modified the process so that the gas does not need to be continually switched on. To get
the equipment up to temperature after an inactive period requires 1.5 units of gas per widget for the initial
month, reverting back to 0.9 units per widget for subsequent months. Extra production can be shut down at
no cost, but restarting requires another month using the extra 1.5 units of gas.

The new strategy, tested in Table 10, is to switch on extra gas production when widget prices are 0.5
higher than gas prices, and switch off the extra production when widget prices are less than gas prices. This
strategy is guaranteed to either equal or better the base case of no extra production.

Using the new strategy to choose when to turn switch on, increases the value of the project. Not only
does the NPV increase but the EDS premium also decreases, making the whole project less risky. This is
not surprising as the strategy is designed never to make a loss (in comparison to the base case). The best
option is to maximise production at 90% when gas is 0.5 cheaper than widget sales prices.

Table 10: New Option

Shortfall Level 5000 4800 4600 4400 4200 4000 3800

Prop Year Inc NPV Increase in EDS compared to no gas
Normally distributed random variables

90% 1 584 −9 −6 −3 −2 −1 0 0
90% 3 762 −97 −75 −56 −40 −27 −18 −11
90% 4 738 −89 −71 −54 −40 −28 −19 −12
90% 5 701 −82 −65 −50 −37 −26 −18 −11
90% 5 655 −79 −63 −49 −36 −26 −18 −11

Being equal or better than the base case is not necessarily the optimal strategy. It may be better to start
extra production up when gas prices are only, say, 0.45 cheaper than widget prices so a small loss is made in
the first month allowing the 0.9 production to be ready for subsequent months. There may also be options
available to reduce (or increase) the required payment in the financing framework. Meaningful decisions
can only be made once the risk profile changes have had their costs and benefits analyzed.

6.5.3 Hedging Strategies

The sale and purchace of relevant financial products can be added alongside the above analysis. This allows
the effect of hedging strategies to be measured at the default level, rather than at the option level. The effect
of different strategies can be measured and compared, allowing partial hedges to be evaluated and the costs
of a particular strategy to be compared to the EDS saving.
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7 Conclusion

7.1 Stochastic Discount Factors

The stochastic evolution of asset prices has become accepted as a mainstream valuation and risk measure-
ment technique within corporate finance, so there is no reason why a stochastic discount rate should not
be equally as accepted, especially when the discount rate is strongly linked to the accepted concept of the
market portfolio.

The value of an SDF is related to the performance of the market, not to the risks of a project. By
assigning a high discount rate when the market is high and a low discount rate when the market is low, the
SDF rewards cashflows received when the economy is falling and punishes cashflows received when the
economy is rising. This is the shareholders’ view of risk, as a risk-averse investor prefers a smooth series of
cashflows to a volatile series and so will be willing pay more for an asset that will increase in value when
the majority of other investments are decreasing in value.

SDFs are mathematically equivalent to risk neutral, certainty equivalent and CAPM approaches. Con-
ceptually, correlation to a market portfolio is much easier to understand than alternative justifications, al-
lowing greater chance of adoption by practitioners. SDFs use real world probabilities to project realistic
growths in asset value, so are easier to communicate. SDFs also ensure that models are arbitrage free.

The SDF models described in the literature are either too specific or too complex to implement, so have
limited the appeal of the SDF method. This paper showed that a continuous time, multivariate model can be
built where the mathematical complexities of other SDF methods are replaced with a covariance definition,
giving a simple but strong foundation for the development of more advanced SDF models. This was used to
define a lognormal SDF model with formulae for controlling the risk premia through the correlation matrix.
This simple implementation is important for practical adoption of the SDF method, outside of empirical
research. The multivariate covariance pricing model of section 3.5.1 placed only a few restrictions on the
price and SDF processes. It made no assumptions about probability distributions, although it implicitly
assumed that the mean, variance and correlation could be calculated.

Equations 25 and 30 are important as they explicitly link the risk premium to the correlation parameter
of the SDF and the asset.

Monte Carlo SDF modelling does not provide quick mathematical solutions or define a replicating port-
folio, but neither of these are usually essential for real options evaluation.

7.2 Real options

Using the SDF technique within a Monte Carlo framework allows real options to be valued using real world
probabilities, without having to identify a replicating portfolio. Equilibrium based economic arguments can
be applied instead, avoiding all difficulties surrounding the tradeability and hedging of an asset. SDFs are
dependent on the choice of statistical model, but are independent of the cashflows being valued. This inde-
pendence allows the same SDF model simulations to be applied to multiple projects, reducing the number
of models that have to be communicated to management and allowing the same SDF set to be used for many
different real options at company, project and even transaction level. SDFs should also be used when cash-
flows are truncated by guarantees or contractual agreements, or when the shareholders risk point of view
requires consideration.

Approaches that combine traded and untraded risks usually sacrifice some of the specific information
associated with each of these types of uncertainty. By removing the hedging requirement and using equi-
librium arguments, the discount rate implied by the SDF is set in relation to the asset’s correlation with the
market, allowing traded and untraded risks to be treated in the same manner.
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SDFs remove the complexity and subjectivity around choosing a discount rate for project valuation.
Fixing the risk premiums for specific risks allows a standard approach to be applied to all projects. These
risk premiums can be calibrated either by an assumed risk premium or by historical correlation with a proxy
for the market portfolio. These assumptions may be decided centrally, allowing practitioners to concentrate
on modelling options.

Unfortunately the risk of a real option is not controlled under the Monte Carlo SDF approach. This has
to be handled through other methods, such as the expected discounted shortfall risk measure.

7.3 Expected discounted shortfall

Risk measures in the current literature do not allow risks in different time periods to be compared consis-
tently. Most risk measures treat risks that are correlated with the market exactly the same as risks that are
uncorrelated with the market, therefore they do not take into account shareholder risk preferences. Ulti-
mately, for a company to add value, the shareholder perspective needs to be the overriding measure, taking
in risk of default as well as correlation with the market. Expected discounted shortfall (EDS) is a new coher-
ent risk measure that is able to combine multiple time periods to measure risk from the point of a diversified
shareholder. Risk is measured in terms of value, not probability, making it ideal to judge the effectiveness
of a particular strategy, and compare between strategies.

Using SDFs in combination with a cashflow model allows risk reduction to be judged across strategies
at the company level, whilst also quantifying any value created by the risk reduction. Risk-return decisions
are greatly simplified as the risk dimension has been converted into value. This paper showed that the risk
added by a project can outweigh the expected value added.

Discounting the expected shortfall at the risk free rate ignores the risk of losses occurring at a time when
the rest of the market is also falling, so underestimates the risk to a diversified shareholder. As the discount
rate is incorrect, so are estimates of the point of maximum risk. This paper shows that this can lead to
resources being mis-allocated.

There are a number of equivalent ways to interpret EDS:-

• It is the present value of the average amount the equity shareholders may have to inject into the
company to keep it as a going concern.

• If the company were able to buy insurance covering all defaults for a given period then the EDS would
be the fair value for a one-off premium.

• If default payments are completely hedgeable, then the EDS equals the present value of an (unidenti-
fied) replicating hedge portfolio.

The EDS approach to real options does not provide the optimal solutions, but it does give a consistent
framework where different option strategies can be compared, combining present values of expected payoffs
with the present value of their associated risk costs.

7.4 Paper Innovations

This paper employs generic SDF modelling framework, based around covariance to derive a log-normally
distributed, mean reverting, multi-asset model that gives an analytic relationship between the risk premium
of each asset and the SDF, using the correlation matrix.

Applying the SDF to corporate finance simplifies many problems, particularly when used with real
options and risk calculations. The Monte Carlo SDF approach is simple for real option practitioners to
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implement and explain as it uses real world probabilities. The approach uses equilibrium theory, avoiding
assumptions that have hampered the acceptance of real options.

Expected discounted shortfall is a new, coherent, multiperiod risk measure that is applied at the company
level, but can be measured at the transaction level. It is the only risk measure that is able to coherently
combine risks from multiple time periods into a single present value, making it the ideal measure to judge
the effectiveness of different real option strategies, from the shareholders point of view. The ability to
convert risk into present value allows risk and return to be compared on the same basis over multiple time
periods.

7.5 Further research - Optimality

Optimal real options strategies are not identified using the Monte Carlo method. Applying stochastic pro-
gramming alongside SDF method would allow shareholder value to be maximised and adding the element of
competition to the SDF approach would enhance decision making abilities. Factor modelling can reduce the
number of random variables and increase efficiency. Methods other than Monte Carlo need to be employed
for optimal strategies to be identified.
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A Appendix

A.1 Probability measures

A.1.1 Real world probabilities

Real world probabilities are a measure of the actual frequency of an underlying event occurring. The use
of real world probabilities allows events to occur as often as they do in the real world. This gives realistic
projected returns, allowing risk metrics (see section 2.2) to be calculated. Unfortunately, many methods that
use real world projections are not able to produce discount rates that give consistent asset prices.

Numerical Example Imagine an example economy with only two future states, boom and bust, containing
two assets with unknown current market price but known future cash flows.

Payoff
matrix

Boom state
payoff

Bust state
payoff

Real world probability 1/5 4/5
Asset A 3 1
Asset B 2 0.5

By taking expectations based on real world probabilities and using a discount rate of 0.95, the price of
each asset can be calculated as

Implied price

Asset A 1.33
Asset B 0.76

There is nothing wrong with this pricing as all available information is used and, on average, these are fair
prices for the assets.

Now consider the case where the current market prices are known to be different to the estimated values
implied by the real world probabilities.

Price/Payoff
matrix

Current
price

Boom state
payoff

Bust state
payoff

Asset A 1.65 3 1
Asset B 1.00 2 0.5

A new asset is introduced which also has known future cashflows in each state. The current price could be
calculated based on the real world probabilities.

Current
price

Boom state
payoff

Bust state
payoff

Asset C 1.14 2 1

But this price cannot be correct. If 2 of asset A are bought, and 2 of asset B are sold short12 then a
portfolio is constructed with a payoff exactly matching asset C, but with a price of 1.30. An investor selling
asset C would be losing 0.16 on every item sold.

12Selling short involves borrowing an asset from someone else; selling it; repurchasing the asset once the future state occurs, at
the new price; returning it to the person it was borrowed from, allowing profit to be made from a drop in price (or losses from an
increase in price)
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A stock market trader could construct a portfolio selling short 2 of asset A, buying 2 of asset B and 1
of asset C. The portfolio payoff would be 0 in the future no matter which state occurred, but 0.16 would be
received now. The trader would be able to bank this amount every time the portfolio was constructed, and
would continue to do so until the prices of assets B or C rose, or asset A fell.

A.1.2 Risk neutral probabilities

The risk neutral probability measure is an artificial construct that simplifies pricing models by adjusting the
probabilities of states occurring. Doing this allows the expected returns on any asset, including risky and
state dependent assets, to be discounted at the risk free rate.

These market implied risk neutral probabilities show what investors are afraid of happening, not what
is likely to happen. Projected prices are not realistic as they are generated under an artificial probability
measure, only increasing at the risk free rate. For example, if the market is risk averse then undesirable
events will have a disproportionately high probability of occurring. The adjustment of probabilities away
from the real world makes some risk measures meaningless.

If a risk neutral modelling environment is already available (i.e. a company may already have a risk neu-
tral derivative pricing framework) then little extra work is required to add risk premium drifts to projections,
producing an approximation to the real world process. This adjustment is only exact if normal distributions
are assumed for the log of asset prices.

Unfortunately the concept of a risk neutral probability is difficult to understand and therefore hard for
management to trust and base decisions upon. Risk neutral measures of distributions displaying skew
and kurtosis are tricky to calculate, and especially difficult to communicate. Only one risk measure can
be projected at a time, so it is not possible to use real world projections for some assets and risk neutral
probabilities for others. The risk free rate and risk neutral law change when currency changes.

Numerical Example By choosing a discount rate of 0.95 and assuming risk neutral probabilities of each
state occurring of

Boom state
payoff

Bust state
payoff

Risk neutral probability 7/19 12/19

Then the prices of asset A and asset B match the current market price

Price/Payoff
matrix

Current
price

Boom state
payoff

Bust state
payoff

Asset A 1.65 3 1
Asset B 1.00 2 0.5

and the price of asset C matches the arbitrage free price.

Current
price

Boom state
payoff

Bust state
payoff

Asset C 1.30 2 1

Risk neutral pricing can accommodate (almost) any price for assets A and B, as a suitable choice of discount
rate and probabilities can be made to ensure that risk neutral pricing is correct.
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A.2 Absence of arbitrage

Arbitrage opportunities offer the ability to make probable future profit, without downside risk and with zero
initial investment. Absence of arbitrage implies that a portfolio cannot be created for free that may payoff
positively but will certainty never make a loss. It implies that if one asset’s cashflows are always greater
than another then its price must be higher. It implies that the price of any positive payoffs are also positive.

If two portfolios have the same payoff cashflows in every state of nature then they must have the same
price. If this were not true then the cheaper asset could be bought, and the more expensive sold, generating
a positive cashflow and forming a portfolio with zero payoffs. This is the law of one price.

Absence of arbitrage means that instant profits cannot be made by repackaging portfolios. If there exists
at least one investor that values a package only by contents then arbitrage opportunities will not exist as this
investor will repeatedly trade them until they disappear.

A financial model can only construct a meaningful concept of price if it is free of arbitrage. A model
that allows arbitrage will give spurious answers if used to optimize investment strategies. Unfortunately it
is easy for arbitrage to sneak into models by accident.

Arbitrage Example The following example economy has only two possible future states, boom and bust.
In the economy there are two assets, both with a known current market price. The cashflow returned by
each asset in each of the economy’s states is also known.

Price/Payoff
matrix

Current
price

Boom state
payoff

Bust state
payoff

Asset A 1.65 3 1
Asset B 1.20 2 0.5

This pricing structure contains arbitrage. Assume a portfolio can be constructed from any weighting of
assets and that there are no frictional costs, no bid offer spread and no short sell limit. If a portfolio is
created by buying 8 of asset A, funded by selling short 11 units of asset B then the portfolio will have a zero
current value but will guarantee to return at least 2. If prices stay the same then the process can be repeated
creating unlimited free money.

In reality, if this situation occurred then the prices would not stay the same. The demand created through
buying asset A will drive the price up and the supply created through selling asset B will drive its price down,
reducing the profitability of the arbitrage. This repricing would continue until the arbitrage opportunity was
removed from the market. Profit opportunities using this sort of trading strategy do not exist frequently or
for long in the real world. It quickly becomes too expensive to construct a portfolio that eliminates enough
risk to ensure that profit is certain.

A.3 Mean reversion

Mean reversion is a feature of many commodity prices. It can also be used as a way to control the likely upper
and lower values of an asset. [Clewlow & Strickland, 2000] describe the regression approach to estimating
mean reverting parameters.

For a given set of observations Zti of the mean reverting process, viewed at times ti, the regression
equation is ∆Zti = a0 +a1Zti +ε∆t where a0 = Z (1− exp (−α∆t)) and a1 = exp (−α∆t)−1 allowing
the relationship between ∆xt and xt to be tested in the presence of noise ε∆t.

By regressing ∆xt against xt it is possible to get estimates of α0 and α1, which can be rewritten in terms
of the parameters Z = −a0

a1
and α = − ln(a1+1)

∆t .
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Before any regression analysis the data should be cleaned. This means that the data may need to have
growth factors removed or be adjusted for seasonal effects. These adjustments can make choosing the value
for Z over time more an art than a science.

The mean reversion parameter α cannot be negative. If the regressions produce negative values then
it implies that the process is not mean reverting. Low values for α may also imply a non-mean reverting
process. If the sample length is low then it is possible for the data to show no mean reversion when some
may actually exist.

Half life When describing models it is often useful to refer to a real life measurement of mean reversion,
rather than talk in terms of the model parameter α. The half life is defined to be the time taken t1/2 for the
difference in value between the current level of Z and its long term level Z, to halve.

The relationship t1/2 = ln(2)
α allows the half life t1/2 and the mean reversion parameter α to be used

interchangeably.

A.4 Correlation

Control and understanding of covariance is essential for the Monte Carlo SDF framework. Section A.4
discusses how mean reversion affects correlations over time, and shows how to generate correlated random
variables. Correlations do not change over time when processes are not mean reverting, but if a process is
mean reverting then the correlation with other processes is dependent on the timeperiod being projected.

This section considers two cases of paired processes, one where both processes are mean reverting, and
the other where only one of the processes mean reverts.

A.4.1 A mean reverting and a non-mean reverting process

Define Zit as

Zit = Z
i
+
(
Z0 − Z

i
)

exp (−αit) +

∫ t

0
σi exp (−αi (t− r)) dXi

r

and Zkt as Zkt = µt+
∫ t

0 σkdXk and set E [dXidXk] = ρikdr giving a covariance of

Cov
(
Zit , Z

k
t

)
= Cov

(∫ t

0
σi exp (−α (t− r)) dXi,

∫ t

0
σkdXk

)

= E

[∫ t

0
σiσk exp (−α (t− r)) dXidXk

]
− 0

leaving

Cov
(
Zit , Z

k
t

)
=

∫ t

0
σiσk exp (−αi (t− r)) ρikdr = σiσk

ρik
αi

(1− exp (−αt)) (45)

The correlation over time is

ρ̂tik =
Cov

(
Zit , Z

k
t

)√
V
[
Zit
]
V
[
Zkt
] = ρ12

2 (1− exp (−αt))√
tα (1− exp (−2αt))

so the long term correlation is ρ̂∞ik = 0 as t→∞.
When projecting far in the future, if only one of the processes mean reverts then this destroys any

correlation. The variance of the non mean reverting process becomes large in comparison to the mean
reverting process, drowning out any correlation.
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A.4.2 Market beta for a mean reverting process

The market is usually modelled without mean reversion implying that any asset displaying mean reversion
will have a risk premium that declines over time. The reduction in expected return can be demonstrated
using the CAPM (see section 6.2.2).

The market beta is defined as βi =
Cov(Rit,R

p
t )

V [Rpt ]
where Rit is the return on the mean reverting process

with instantaneous volatility σi and mean reverting parameter α. The variance of the market return is
σ2
pt = V [Rpt ] and using eq: 45 from the previous section

Cov
(
Rit, R

p
t

)
= σiσp

ρip
α

(1− exp (−αt))

So
βit =

σi
σp

ρip
αt

(1− exp (−αt)) (46)

which decays to 0 over time. Note that if the process is not mean reverting then α = 0 and the formula
reverts back to the time homogeneous form βit = σi

σp
ρip. A numerical example of this equation is given in

section 6.2.2.
When modelling using the covariance pricing model (section 3.5.1), controlling correlations is essential.

The correlation of a mean reverting process with the SDF will be dependent on the timeperiod projected.
This implies that the risk premium placed on a mean reverting asset will fade over time.
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