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Abstract

We provide characterizations of tacit collusion (simultaneous) equilibrium in models of

investment timing allowing for spillovers in both �ow pro�ts and investment costs. We validate

these characterizations by applying them to common models of capacity accumulation and

R&D investment, as well as to investment in an endogenously priced input. For instance, in

linear demand Cournot competition, tacit collusion is likelier to arise when installed capacities

and lumpy investments are both large.
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In their seminal article on preemption in games of timing, with minimal structural assump-

tions, Fudenberg and Tirole [8] synthetically identify conditions under which a simultaneous

equilibrium may arise. There has been a recent resurgence of interest in this issue in the context

of real option models of investment (see, e.g. Boyer et. al. [3], Mason and Weeds [15]). The

objective of this paper is to provide a reasonably comprehensive characterization of simultaneous

investment equilibria under a range of assumptions regarding �rm payo¤s and investment costs,

and to tie the resulting results to several standard economic models of capacity competition and

R&D investment.

We begin by establishing the existence of a preemption (sequential) equilibrium benchmark

when allowing for indirect spillovers between �rms, such as learning e¤ects and entry barriers.

We then link the existence of a simultaneous equilibrium to the presence of direct and indirect

spillovers, complementarities, and the discounting term. When joint investment is not desirable,

the equilibrium under which �rms never invest is fully characterized. The conditions for a simul-

taneous investment are broadly comparable to those that arise in the repeated game framework.

When joint investment is desirable, we identify conditions under which the best feasible simulta-

neous equilibrium, in which �rms delay and invest at the same point in time, is characterized.

A speci�city of this paper is to focus on two kinds of externalities, pro�t externalities and

investment externalities. The former are well-known in real option games: one �rm�s investment

generally impacts the �ow pro�t of others. The latter are less well-known, and are motivated

by several reasons. First, it may be as a result of the economic environment, in which there is

learning, or experience e¤ects, that one �rm�s investment decision has an impact on the (�xed)

investment cost of the other �rm. Second, in a related paper, we show that if the investment

(or input) price is endogenized and there is market power, the input seller chooses to discount

the �rst input, e¤ectively creating an investment externality. Third, if the input is specialized,

and notably in the simultnaeous investment equilibrium that is the focus of this paper, one might

envisage decreasing returns to the input�s production regardless of market power issues, if the two

�rms invest simultaneously.

The results with respect to simultaneous equilibrium are then applied to several examples:

a model of capacity choice by Cournot duopolists, to investment in cost-reducing or demand-

enhancing R&D, and to capacity investment in a vertical industry structure where a monopoly

input supplier in�uences the downstream preemption race. We �nd, that for large enough existing

capacities and investments, a simultaneous equilibrium exists regardless of discounting, and that

larger installed capacities (�footholds�) make a simultaneous equilibruim more likely to arise [].
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1 The Model

The assumptions, most of which are standard, are described in the �rst part of this section.

Because the paper focuses on the link between speci�c externalities and simultaneous equilibrium,

or coordination, the relevant terminology for the remainder of the paper is then described. Finally,

we outline a set of payo¤ functions, which are standard for this kind of model and useful to the

analysis that follows.

1.1 Assumptions

Flow pro�ts are of the form Yt�ij , with fi; jg 2 f0; 1g2. The multiplicative shock Yt is taken to
follow a geometric Brownian motion dYt = �Ytdt + �YtdZt, with Y0 > 0, � > 0 (growth rate),

� > 0 (volatility), and where (Zt)t�0 is a standard Wiener process. For example, this shock may

be thought of as a measure of market size that evolves stochastically over time. The value of the

multiplicative shock at the current date is hereafter denoted by y. For the equation of motion to

describe a market in expansion, it is assumed that � > �2

2 .
1

There are two �rms. The time invariant component of �ow pro�t, �ij , depends on the previous

and current investment decisions of both �rms. When appropriate, � is used to denote the vector

(�00; �10; �01; �11). Investment is a binary decision, and thus i takes the value 1 if the �rm has

invested, and j takes the value 1 if its rival has invested.2 Investment is inherently discrete and

of �xed size. For example, it may be thought of as an increase in production capacity, or as an

R&D expenditure. The assumption that investment is a binary decision means that we consider

a single round of investment choices by the �rms. Investment is assumed to be desirable, that

is �1i > �0i, i 2 f0; 1g. A second assumption regarding �ow pro�t that is made throughout the
paper is that �10 > �01, that is a �rm bene�ts more from its own investment than from its rival�s.

Investment is costly, and the cost of investment may depend on previous and current invest-

ment decisions. If a single �rm is the �rst to invest, this cost is denoted by IL. If one �rm has

already invested, the cost to the second �rm is denoted by IF . Finally, if both �rms invest simul-

taneously, this cost is denoted by IS . Thus, a cost asymmetry may arise even though the two �rms

1The geometric brownian motion is derived from Yt = Y0 exp
h�
�� �2

2

�
t+ �Zt

i
by using Itô�s lemma.

2We do restrict �11 to be independent of the sequence of investment decisions. An alternative speci�cation is

to allow for persistent �rst-mover advantage by specifying �L11 > �F11, where �
L
11 designates the �ow pro�t of the

�rst �rm to invest and �F11 designates the �ow pro�t of the second �rm to invest (see Mason and Weeds [15] and

Versaevel [18]).

3



are identical ex-ante. Allowing IL 6= IF 6= IS generalizes the analysis of some existing models,

and we motivate this choice further when discussing the terminology used in the paper. When

appropriate, I is used to denote the vector (IL; IF ; IS). In the analysis, the ratios of investment

costs play an important role, so it is useful to de�ne the following magnitudes: �F � IF
IL
and

�S � IS
IL
.

The interest rate, common to both �rms, is r. To rule out degenerate solutions, it is assumed

that 0 < � < r.

1.2 Terminology

The formal conditions to characterize the simultaneous equilibrium with respect to which coor-

dination may arise are elaborate, but involve components that have economic signi�cance. The

following terminology is used in the rest of the paper.3

Investment is said to be jointly undesirable if �11 � �00, and jointly desirable if �11 > �00.

This characteristic is key to determining the qualitative nature of simultaneous equilibrium, that is

whether �rms jointly abstain from ever investing, or jointly delay investing for a �nite time. Either

possibility may arise. For example, if investment consists of an advertising campaign, negative

advertising may decrease market size (�11 � �00), whereas preference-enhancing advertising may
increase it (�11 > �00).4

Investment involves a negative pro�t externality if �i1 < �i0, i 2 f0; 1g, and a positive pro�t
externality otherwise. Note that since investment is taken to be individually desirable, if it is

jointly undesirable, then there must be a negative direct externality (that is, �00 � �11 and

�1j > �0j together imply �i1 < �i0, i; j 2 f0; 1g). Negative pro�t externalities seem natural in

situations such as capacity investment, whereas positive pro�t externalities may be thought of as

arising if investment is in R&D, when there is a large enough technological spillover.

Investment is said to involve a negative investment externality if �i > 1, i 2 fF; Sg, and a
positive investment externality if �i < 1, i 2 fF; Sg. Investment externalities may arise in one of
two ways. A �rm�s investment decision may raise or lower the cost of the next �rm that invests.

For example, the former (�F > 1) would arise if �rms compete for some key resource, such as

location, whereas the latter (�F < 1) would arise if there is a form of learning or experience e¤ect

pertaining to the investment process. A second way in which indirect externalities may arise is

3Comparing with the expressions for �rm payo¤s given in the next section (expressions (2), (3), and (4)), the

externalities described here concern the levels and slopes of some of the payo¤ terms.
4See Anderson et. al. [1].
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if joint investment has an impact on investment cost. This can happen either because there is a

form of congestion in the provision of a key input (negative investment externality, �S > 1), or

of synergy if an important network externality arises when the �rms enter the market together

(positive investment externality, �S < 1).

Another important characteristic of investment is supermodularity, which we refer to as com-

plementarity in the text. This is captured by the ratio �11��01
�10��00 , and complementarity is said to

arise if this ratio is greater than one, whereas anti-complementarity is said to arise otherwise.

A standard interpretation of complementarity is that one �rm�s investment raises the other�s

incentive to invest.

1.3 Payo¤s

An equilibrium of the investment timing game involves a triplet of investment triggers chosen

by the �rms, which is denoted as (yP ; y�F ; y
�
S). The latter two triggers result from a well-studied

optimization problem (see [7]), and have the following expressions

y�F =
�

� � 1
r � �

�11 � �01
IF , y�S =

(
�
��1

r��
�11��00 IS , �11 > �00

1, �11 � �00
, (1)

where � � 1
2 �

�
�2
+
q�

�
�2
� 1

2

�2
+ 2r

�2
is a standard expression in real option models.5 The sign of

�11 � �00 is key to determining the nature of the simultaneous equilibrium: when this expression
is strictly positive, �rms jointly delay investing until a �nite threshold is reached. When it is

negative however, in a simultaneous equilibrium, �rms jointly abstain from ever investing.

Up to the relaxation of the constraint that investment cost is invariant, the investment timing

game closely follows the analyses of Boyer et. al. [3], Grenadier [9], Mason and Weeds [15].

The derivation of the preemption threshold and the characterization of equilibrium involve the

following �rm payo¤s.

The value of a �rm that invests immediately, when the current value of the multiplicative

shock is y, is

L (y) =

8<: �10
r��y � IL +

�
y
y�F

��
�11��10
r�� y�F , y � y�F

�11
r��y � IS , y > y�F

, (2)

5 In the certainty case, that is for � = 0, we have � = r
�
and

�
y
yi

��
= e�r(ti�t), the continuous time discounting

term.
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where L is used to refer to the fact that the �rm is the leader in the market with respect to

investment timing. Note that after y�F is reached, one �rm�s investment immediately triggers the

second�s, so that investment is e¤ectively simultaneous and the investment cost is therefore IS .

The value of a �rm that invests as a follower when the multiplicative shock reaches the

threshold y�F , provided that the current value of the multiplicative shock is y, and provided that

the rival �rm invests immediately at y, is

F � (y) =

8<: �01
r��y +

�
y
y�F

��
IF
��1 , y � y�F

�11
r��y � IS , y > y�F

, (3)

where F � is used analogously to refer to the fact that the �rm invests as a follower, and also to

the fact that the investment threshold y�F results from an optimization.

The value of a �rm that invests when the multiplicative shock reaches the threshold y�S ,

provided that the current value of the multiplicative shock is y, and provided that the rival �rm

also invests only when the multiplicative shock reaches the threshold y�S , is

S�(y) =

8<: �00
r��y +

�
y
y�S

��
IS
��1 , y � y�S

�11
r��y � IS , y > y�S

, (4)

where S� is used to denote the fact that this payo¤ re�ects simultaneous investment by the two

�rms, at a threshold y�S that results from a straightforward optimization.

2 Sequential Investment (Preemption) Equilibrium

Simultaneous investment and the coordination problem it may generate (coordination which may

or may not be achieved by means of tacit collusion) is a focus of this paper. A necessary condition

for a coordination problem to arise is that there be another equilibrium solution, namely the

sequential investment equilibrium. Since player roles are endogenous, the sequential investment

equilibrium we consider has the nature of a preemption equilibrium. In a preemption equilibrium,

�rms invest sequentially, either �rm may be the leader with equiprobability, and the race to be �rst

dissipates the rents that accrue to the �rst investor. A preemption equilibrium is characterized

by the triggers fyP ; y�F g, with yP < y�F , which denote the investment thresholds for the leader

and follower.6 The preemption trigger yP is determined by the condition L (yP ) = F � (yP ), i.e.

6This is a simpli�cation. See Boyer et. al. [3], Fudenberg and Tirole [8], Huisman et. al. [11] for precise

descriptions of the strategies underlying the preemption equilibrium.
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�rms are indi¤erent between investing as a leader at yP and investing as a follower at y�F when

the leader invests at yP .

The existence of the preemption equilibrium when investment costs are invariant (�F = 1) is

well-established. The same argument establishes the existence of a preemption equilibrium with

asymmetric �rm-speci�c investment costs.7 With investment externalities, which is a source of

investment cost asymmetry, the same argument applies so long as relative investment costs �F
are in the right range.

Proposition 1 in this section characterizes the relative investment costs for which a preemption

equilibrium exists. Essentially, preemption arises whenever the investment externality is negative,

or when the investment externality is not too positive and pro�t externalities are negative. This is

to be expected: a negative investment externality means that the �rst �rm has a lower investment

cost, and negative pro�t externalities induce preemption by reducing the attractiveness of the joint

investment phase.

De�ne �(�; �) �
�
�
�
�11��01
�10��01

���1
� (� � 1)

�
�11��01
�10��01

��� 1
��1
. This expression appears as a

lower bound on relative investment cost in Proposition 1. The following lemma partly describes

the behavior of �(�; �).

Lemma 1 For �11 < �10, �(�; �) 2 (0; 1] and
@�

@� (�; �) > 0.

Proof Let z � �11��01
�10��01 2 (0; 1), so �(z; �) =

�
�z��1 � (� � 1) z�

� 1
��1 is well-de�ned. Then

�(0; �) = 0, �(1; �) = 1, and
@�

@z (z; �) = �z��2 (1� z)
�
�z��1 � (� � 1) z�

� 2��
��1 > 0 so �(z; �) 2

(0; 1). Also,
@�

@� (z; �) =
1
��1

h
1�z

��(��1)z �
ln(��(��1)z)

��1

i
�(z; �). Since x lnx � x� 1 with equality if

and only if x = 1, (� � (� � 1) z) ln (� � (� � 1) z) > (� � 1) (1� z) so @�

@� (z; �) < 0. �

In what follows, we denote �(�; �) simply by �. The conditions on �F for a preemption

equilibrium to exist can now be described.

Proposition 1 A preemption equilibrium exists whenever �F is su¢ ciently large:

(i) when pro�t externalities are non-negative (�11 � �10), a preemption equilibrium exists if and

only if investment externalities are negative (�F > 1);

(ii) when pro�t externalities are negative (�11 < �10), a preemption equilibrium exists if and only

if investment externalities are not too positive (�F � �).
7See Huisman and Kort [13].
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Proof The existence of a preemption equilibrium hinges on the behavior of the di¤erence

L (y)� F � (y). Since L (0)� F � (0) = �IL < 0, preemption occurs if and only if there exists a y
in (0; y�F ) such that this di¤erence is nonnegative. Let f (y) � L (y)� F � (y) so

f (y) =
�10 � �01
r � � y � IL �

�
y

y�F

�� IF
� � 1

� (�10 � �11) + (�11 � �01)
�11 � �01

, all y � y�F . (5)

Then the preemption threshold yP is the lower root of the equation f (y) = 0 in (0; y�F ), if it

exists. There are two cases to consider.

(i) �11 � �10

There are two subcases to consider. First, if �11 � �01 > � (�11 � �10), then f (y) is strictly
concave in y, and f 0 (by) = 0 for

by = � �10 � �01
��10 � (� � 1)�11 � �01

� 1
��1

y�F .

The maximizer satis�es by � y�F . Otherwise, if �11 � �01 � � (�11 � �10), then f (y) is increasing
and strictly convex in y. In both of these subcases, f (y) is increasing in y over the relevant

interval (0; y�F ), and therefore a preemption equilibrium exists if and only if f (y�F ) = IF � IL > 0,
i.e. if �F > 1.

(ii) �11 < �10

In this case, �11 � �01 � 0 > � (�11 � �10), so f (y) is strictly concave in y, with a maximum
at by. Moreover, the maximizer satis�es by < y�F . Therefore, a preemption equilibrium exists if

and only if f (by) > 0. Evaluating and simplifying yields that f (by) > 0 if and only if �F � �. To
establish this, insert the developed expressions of y�F and by in (5), and the inequality follows by
rearranging. �

Thus, if pro�t externalities are negative so it is advantageous to be the only �rm to have

invested, preemption occurs if there is a a negative investment externality like a location-type

e¤ect that makes investing �rst inherently attractive. Otherwise, if pro�t externalities are positive

so it is disadvantageous to be the sole �rm in the market to have invested, the condition is slacker

and preemption occurs even witha positive investment externality, such as a learning or experience

e¤ects captured by the follower, that is not too strong. If the positive investment externality is

too strong, neither �rm seeks to enter �rst, preferring either to defer and invest as a follower, or

never to invest at all, or to invest in a simultaneous equilibrium.

Having de�ned the preemption investment yP , it is useful to introduce another value function

(as compared with (2), (3), and (4) above) that is needed in the next section. This function
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describes the ex-ante expected value of a �rm, at a market size y � yP , when it anticipates that
preemption occurs at yP and that it is equally likely to enter as a leader or as a follower at that

threshold.8 Formally:

VP (y) =
�00
r � �y +

�
y

yP

��  1
2�10 +

1
2�01 � �00
r � � yP �

1

2
IL

!

+

�
y

y�F

��  �11 � 1
2�10 �

1
2�01

r � � y�F �
1

2
IF

!
, all y � yP . (6)

The function VP (y) satis�es VP (yP ) = L(yP ) = F �(yP ). It is the comparison of S� (y) with

VP (y) that constitutes a valid criterion to assess whether the investment game has the features

of a pure coordination game (i.e., whether the payo¤ from the simultaneous equilibrium is higher

than the payo¤ under preemption, so that �rms have an incentive to coordinate on the former).

Finally, the preemption threshold yP does not have an analytic expression in general. A useful

alternative is to bound its value. The bound that we use is denoted by y� and de�ned by

y� = arg max
yi2[0;y�F ]

�
y

yi

�� ��10 � �01
r � � yi � IL

�
+

�
y

y�F

�� �11 � �10
r � � y�F , (7)

so that y� = �
��1

r��
�10��01 IL. The following lemma establishes that this threshold indeed provides

a bound for the leader�s trigger under preemption.

Lemma 2 The preemption trigger satis�es yP < y�.

Proof Since L (0) < F � (0), and since yP is the unique solution to L (y) = F � (y), we have

yP < y� if and only if L (y�) > F � (y�). The latter inequality, using (2) and (3), and after a

reorganization of terms, is equivalent to �

��1
F > �

�
�11 � �01
�10 � �01

���1
� (� � 1)

�
�11 � �01
�10 � �01

��
.

There are two cases to consider. (i) If pro�t externalities are non-negative, the right hand side

of the inequality is of the form g (z) � �z��1 � (� � 1) z� , which is a quasiconcave function,
and attains a global maximum for z = 1, with g(1) = 1 so g(z) � 1. (ii) If pro�t externalities

are negative, the expression on the right-hand side is positive and equal to ���1. Therefore, by

Proposition 1, the inequality holds in a preemption equilibrium.�

The comparison between yP and y� is of interest when y� < y�F , which holds if and only if

�F >
�11��01
�10��01 .

8 If initial conditions are such that y0 > yP , other issues may be raised (�mistakes�may arise, see Huisman and

Kort [13]).
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3 Simultaneous (Non-)Investment Equilibrium

In this section we seek to characterize the conditions for the investment timing decision to have

a simultaneous equilibrium, and eventually to have the features of a pure coordination game.

This requires above all to characterize the conditions for a simultaneous investment equilibrium

to exist given that a preemption equilibrium exists as well. Therefore, throughout this section

it is assumed that the conditions of Proposition 1 on the investment externality �F hold, so a

preemption equilibrium exists. When a preemption equilibrium exists, a coordination problem

then arises if there is a simultaneous equilibrium solution also, which is such that no �rm �rms

�nds it pro�table to invest unilaterally and thereby drive the industry to a preemption equilibrium,

and which results in a higher payo¤ for the �rms.

3.1 Joint Investment Not Desirable (�00 � �11)

In this subsection we assume that joint investment is not desirable. In that case, in a simultaneous

equilibrium both �rms refrain from ever investing (y�S =1), so we refer to this case as the in�nite
delay case. Because investment is individually desirable, pro�t externalities are necessarily nega-

tive (�i0 > �i1, i 2 f0; 1g). By Proposition 1, for a preemption equilibrium to exist, investment

externalities must therefore satisfy �F � �.

We begin by characterizing the conditions for a simultaneous equilibrium to exist. To this end,

we now introduce another threshold, �(�; �) � �11��01
�10��00

�
� �10��11�10��00

� 1
��1
. This expression appears

as an upper bound on relative investment costs in Proposition 2. The following lemma describes

the behavior of �(�; �).

Lemma 3 � < �(�; �), �(�; �) 2
h
�11��01
�10��00 ;1

�
, and @�(�;�)

@� < 0.

Proof First, let A(�; �) �
�

�

�(�;�)

���1
=
�
1 + 1

�
�11��01
�10��11

��
�10��00
�10��01

��
. Then, A(�; 1) =

�10��00
�10��11 � 1, with an equality sign if and only if �00 = �11, and

@A(�; �)

@�
=

��
1 +

1

�

�11 � �01
�10 � �11

�
ln
�10 � �00
�10 � �01

� 1

�2
�11 � �01
�10 � �11

��
�10 � �00
�10 � �01

��
which is negative since ln �10��00�10��01 < 0. Therefore, � < �(�; �).
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Second, lim�!1
�
� �10��11�10��00

� 1
��1

= e lim�!1
�
�10��11
�10��00

� 1
��1

= 1 (= e) when �00 > �11 (= �11),

and lim�!1
�
� �10��11�10��00

� 1
��1

= 1, so �(�; �) 2
h
�11��01
�10��00 ;1

�
. Also,

@�(�; �)

@�
=

1

(� � 1)2

�
� � 1
�

�
�
ln� + ln

�10 � �11
�10 � �00

��
�(�; �):

The expression in brackets is negative since �10��11�10��00 � 1 and � ln� > �� 1 (recall that � > 1), so
@�(�;�)
@� < 0. �

In what follows, we denote �(�; �) simply by �. The conditions on �F for a simultaneous

equilibrium to exist can now be described.

Proposition 2 Suppose that joint investment is not desirable (�00 � �11), and that a preemption
equilibrium exists (�F � �). Then, a simultaneous equilibrium exists if and only if �F � �.

Proof A simultaneous �non-investment�equilibrium exists if and only if y�S(=1) is a best-
response y�i = y�S , that is if S

� (y) � L(y) over the interval [0; y�F ]. Note that here, the si-

multaneous investment payo¤ has the simple form S� (y) = �00
r��y. Let f (y) � S� (y) � L(y),

so

f (y) = ��10 � �00
r � � y �

�
y

y�F

�� �11 � �10
r � � y�F + IL.

This function is convex, and reaches a minimum at by = � 1� �10��00�10��11

� 1
��1

y�F , with 0 < by < y�F for
all admissible parameter values. Evaluating gives

f (by) = ��10 � �00
�11 � �01

�
�
�10 � �11
�10 � �00

�� 1
��1

IF + IL = �
�
�
��1

IF + IL.

If �F � �, then f (by) � 0 and a simultaneous equilibrium exists. Conversely, if �F > �, we

have L(by) > S� (by), implying that no simultaneous non-investment equilibrium exists.�

Propositions 1 and 2 together describe the qualitative evolution of equilibrium as a function

of the investment externality �F . There are three equilibrium regions. First, if the relative in-

vestment cost of the second �rm is relatively low (0 � �F < �), no �rm wishes to enter �rst

so there is no preemption, and only a simultaneous non-investment equilibrium. Second, in an

intermediate range of relative investment cost (� � �F � �), both preemption and simultaneous
equilibria arise, and the multiple equilibria have an intuitive pure coordination game feature (the

simultaneous equilibrium dominates the preemption equilibrium, see Proposition 3 below). Third,
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if the relative investment cost of the second �rm is relatively high (� < �F ), only preemption (se-

quential investment) arises as an equilibrium. Thus as a simple guideline, comparing Propositions

1 and 2, is that greater negative investment externalities increase the likelihood of preemption

but ultimately reduce the likelihood of a simultaneous in�nite delay equilibrium as well.

Interestingly, the existence condition for a simultaneous equilibrium with in�nite delay, given

by Proposition 2, that is

�F �
�11 � �01
�10 � �00

�
�
�10 � �11
�10 � �00

� 1
��1

� �; (8)

can be given further economic interpretation. On the left-hand side of the inequality sign, �F
(� IF

IL
) is lower than (greater than) one if investment externalities are positive (negative). On the

right-hand side of the inequality, the boundary value (in �) depends on the magnitude of the �rst

term, �11��01�10��00 . But this term re�ects (anti-)complementarities in investment. It is greater than

(smaller than) one if �ow pro�ts are supermodular (submodular). These remarks lead to more

intuitive su¢ cient conditions for (8) to hold or not.

Corollary 1 A simultaneous equilibrium exists (�F � �) if investment externalities are positive
and investments are complementary. Otherwise, a simultaneous equilibrium is more likely to

arise the more positive the investment externality (the lower is �F ), the more complementary the

investment (the greater is �11��01
�10��00 ), and the lower the discounting term �.

Thus, the e¤ect of the parameters (I;�; �) can be broken down into economically identi�able

components. For instance, holding the investment cost of the �rst �rm constant, a more positive

investment externality accelerates the follower�s entry. As a result, the expected length of time

that a �rm deviating from the simultaneous equilibrium spends as an incumbent is smaller, so

that the likelihood of deviation from the simultaneous equilibrium is smaller. Speci�cally, the

impact of IF on this incentive to deviate, when the market size is y, is

d [S� (y)� L(y)]
dIF

= ���10 � �11
�11 � �01

�
y

y�F

��
< 0: (9)

With respect to the right-hand side of the condition (8), in which the term �11��01
�10��00 re�ects the

supermodularity of �ow pro�ts, one can observe that supermodularity in �ow pro�ts entails that

rival investment raises one�s own static incentive to invest.

Having established the condition for a simultaneous equilibrium to exist, it is natural to ask

whether �rms have an incentive to choose one or the other of the equilibria. In the in�nite delay

case, the answer is unambiguous.

12



Proposition 3 The simultaneous (non-investment) equilibrium is Pareto optimal.

Proof It is necessary to sign the di¤erence between the payo¤s in the two equilibria, which

is given by

S� (y)� V P (y)

= �
�
y

yP

��  1
2�10 +

1
2�01 � �00
r � � yP �

1

2
IL

!
�
�
y

y�F

��  �11 � 1
2�10 �

1
2�01

r � � y�F �
1

2
IF

!
,

where S� (y) has the simple form S�(y) = �00
r��y, for all y < y�S = 1, and where V P (y) is as

de�ned in (6) for all y � yP . The preemption condition f (yP ) = 0, where the function f is as

introduced in (5), implicitly de�nes yP
y�F
. After reorganizing terms, substituting for

�
yP
y�F

��
, and

simplifying, S� (y)� V P (y) can be seen to have the same sign as

[� (�10 � �11) (�00 � �01)� (�11 � �01) (�10 � �00)] yP + (�11 � �01) (r � �) IL
(��10 � (� � 1)�11 � �01)

:

Since pro�t externalities are positive, the denominator is positive. Regarding the numerator, the

expression in the �rst brackets is positive, because it is equal to (�10 � �01) (�00 � �11) when
� = 1 and increasing in �. Therefore, S� (y)� V P (y) is positive. �

Together, Propositions 2 and 3 characterize conditions under which �rms face a dynamic

form of a pure coordination game with respect to their choice of investment triggers, when joint

investment is not desirable.

The conditions described in Corollary 1 are consistent with the ones that would emerge if the

simultaneous equilibrium is sustained by tacit collusion. In that case the supermodularity term

in (8) is coherent with a relatively lower cost for one �rm to punish its rival for deviating from

collusion. Holding the static incentive to deviate from collusion (�10 � �00) constant, �more�
supermodularity results in a quicker punishment insofar as y�F increases with the di¤erence �11�
�01.

With respect to the other term in (8),
�
� �10��11�10��00

� 1
��1
, a decrease in the interest rate r, or

an increase in either the growth parameter � or the volatility parameter �, are associated with

a decrease in the discounting term �, and reduce the likelihood of existence of a simultaneous

equilibrium. Finally, the lower the impact of joint investment (when �00 � �11), the more likely
is a simultaneous equilibrium to arise (Corollary 1). As for r and � speci�cally, the conditions on

� re�ect those that obtain for tacit collusion in a repeated game setting.
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3.2 Joint Investment Desirable (�00 < �11)

In this section we assume that joint investment is desirable (�11 > �00). In this case, in a

coordination equilibrium, �rms invest simultaneously at a �nite trigger y�S =
�
��1

r��
�11��00 IS , so we

refer to this case as the �nite delay case. In contrast with the previous subsection (the in�nite

delay case), �rms may now experience either positive or negative pro�t externalities.

Coordination may not be fully characterized as it was in the previous subsection, but a partial

characterization may be determined. To do this, the central proposition in the section involves

two conditions.

First, (I;�; �) are taken to be such that the following holds:

Assumption A

�
(�10 � �11) (�11 � �01)��1

(�11 � �00)�
IS
IF
+ 1 � 0. (10)

This condition necessarily holds if �10 � �11 (negative pro�t externalities), and for � �large

enough� if �i0 < �i1, i 2 f0; 1g. It is technical in nature, and ensures t hat a key part of the
di¤erence, S�(y)� L(y), is convex. Let the threshold by be given by:

�10 � �00by��1 = �
�10 � �11
y���1F

+
�11 � �00
y���1S

. (11)

It can be shown that by is well-de�ned if (10) holds.
Next, let y�L �

�
��1

r��
�10��00 IL. The trigger y

�
L is the optimal investment threshold for a leader,

if the sequence of investments is predetermined. A second condition, on (I;�), is given by:

Assumption B

y�L � min fy�F ; y�Sg . (12)

Proposition 4 Suppose that (I;�; �) are such that Assumptions A and B (conditions (10) and

(12)) are satis�ed. Then a simultaneous equilibrium exists if and only if:�
�

�F

���1
+

1

���1S

�
�11 � �00
�10 � �00

��
� 1. (13)

Proof A simultaneous equilibrium exists whenever y�S is a best response to y�i = y
�
S , that is

whenever S�(y) � L(y) for y 2 [0; y�S ].
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In what follows, let bf (y) � ��10��00
r�� y + IL +

�
y
y�S

��
IS
��1 +

�
y
y�F

��
�10��11
r�� y�F . The function

S�(y)� L(y) is continuous and di¤erentiable, with S�(y)� L(y) � bf (y) for y 2 [0;min fy�F ; y�Sg].
Note that bf 0 (0) = ��10��00

r�� , and bf 00 (y) = �IS
y��2

y��S
+ � (� � 1) �10��11r��

y��2

y���1F

. The function bf is
convex if and only if (10) holds, in which case bf has a well-de�ned global minimum in R+, which
we denote by by (see (11) above). Moreover, after rearrangement, bf (by) = �1� by

y�L

�
IL, so bf (by) � 0

if and only if by � y�L, which again after some rearrangement occurs if and only if (13) holds.
In the next step of the proof, we distinguish two cases.

Case 1: y�S � y�F
If y�S � y�F , then S� (y) � L(y) � 0 on [0; y�S ] if and only if min[0;y�S]

bf (y) � 0. Suppose that
y�S � by, so by (11), � (�10 � �11)� y�Sy�F �� � (�10 � �11) y�Sy�F . Then,
bf (y�S) = ���10 + �11 + (� � 1)�00

�11 � �00
IS
� � 1 + IL +

�
y�S
y�F

�� �10 � �11
r � � y�F

� ��10 � �00
�11 � �00

IS + IL � 0.

The last inequality follows from (12). Therefore, in this case S� (y) � L(y) � 0 on [0; y�S ] if and
only if bf (by) � 0.

Case 2: y�S � y�F
If y�S � y�F , then S

� (y) � L(y) � 0 on [0; y�S ] if and only if bf (y) � 0 for y 2 [0; y�F ] and
S� (y) � L(y) = ��11��00

r�� y + IS +
�
y
y�S

��
IS
��1 � 0 for y 2 [y�F ; y

�
S ]. Since S�0 (y) � L0(y) �

0 for y 2 [y�F ; y
�
S ] with S

� (y�S) � L(y�S) = 0, this second inequality always holds. Therefore,

S� (y) � L(y) � 0 on [0; y�S ] if and only if min[0;y�F ]
bf (y) � 0. Suppose that y�F � by, so by (11),�

y�F
y�S

��
� �(��1)�10+��11��00

�11��00
IF
IS
. Then,

bf (y�F ) = ��11 � �00�11 � �01
�

� � 1IF + IL +
�
y�F
y�S

�� IS
� � 1

� ��10 � �00
�11 � �01

IF + IL � 0.

The last inequality follows from (12). Therefore, in this case S� (y) � L(y) � 0 on [0; y�S ] if and
only if bf (by) � 0.

Combining both cases, S� (y)�L(y) � 0 on [0; y�S ] if and only if bf (by) � 0, that is if and only
if (13) holds. �
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The proof of Proposition 4 rests on the study of a speci�c function, S� (y) � L(y), over the
interval [0; y�S ]. This function re�ects the incentive to deviate unilaterally from the candidate

simultaneous investment equilibrium. Part of the di¢ culty of the proof is due to the behavior

of this function which, depending on the model parameters (I;�; �), may exhibit a discontinuity,

and may or may not have an interior minimum on [0; y�S ]. The proof must account for all possible

cases, one of which is depicted in Figure 3.2.

1 2 3 4 5 6 7 8

­1

0

1

2

 y

y

3.2, Simultaneous equilibrium condition: S�(y) (dots), L(y) (dash) and S�(y)� L(y) (thick
curve) with � = (0:5; 1; 0:25; 0:75), IL = 1:25, IF = IS = 1, � = 2 and r � � = 1.

Next, as in the in�nite delay case of the previous subsection, it is natural to ask when the

simultaneous investment equilibrium yields higher payo¤s for the �rms. In contrast with the

former case, the answer here is ambiguous. The simultaneous investment equilibrium Pareto

dominates the sequential investment equilibrium when pro�t externalities are negative, but the

sequential investment equilibrium may Pareto dominate when pro�t externalities are positive.

Lemma 4 If joint investment is not desirable (�00 < �11), then either the sequential investment

or the simultaneous investment equilibrium may be Pareto optimal:

(i) if pro�t externalities are negative (�i1 > �i0), the simultaneous investment equilibrium is

Pareto optimal;

(ii) if pro�t externalities are su¢ ciently positive(�11 >
�
��1�10 �

1
��1�01), then if investment
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externalities are very negative (�S large enough), the sequential investment equilibrium is Pareto

optimal.

Proof As with Lemma 3, it is necessary to sign the di¤erence between the payo¤s in the two

equilibria, S� (y)� V P (y), which has the same sign as:

A �
�
y

y�S

�� IS
� � 1+

�
y

yP

�� [� (�10 � �11) (�00 � �01)� (�11 � �01) (�10 � �00)] yPr�� + (�11 � �01) IL
(��10 � (� � 1)�11 � �01)

.

(14)

The proof of (i) is the same as for Lemma 3. To establish (ii), suppose that � > �11��01
�11��10 . Then,

the second term in (14) is negative. In the absence of an analytic expression of yP , ((14)) can

be partly characterized since, yP 2
�

r��
�10��01 IL;

�
��1

r��
�10��01 IL

�
(the lower bound follows directly

from the expression of L(y)� F � (y), the upper bound is given by Lemma 2). Substituting these
bounds in for yP and rearranging, A < 0 if:

(� � 1) (�01 � �00) (�10 � �01)
��1

(�11 � �01)�
���1S > 1.

�

3.2.1 Collusion with Asymmetric Investment Triggers

If certain contracting options as side payments are allowed between parties, �rms might choose

coordinate on investment triggers that are not symmetric. In this section, we abstract away from

investment externalities and set IL = IF � I. In what follows, let � � �10+�01
2 . The ex-ante

industry value is

(L+ F ) (y; yL; yF ) = 2
�00
r � �y +

�
y

yL

�� �2 (� � �00)
r � � yL � I

�
+

�
y

yF

�� �2 (�11 � �)
r � � yF � I

�
.

This function is quasiconcave, and optimizing results in the triggers y��L = �
��1

r��
�10+�01�2�00 I and

y��F = �
��1

r��
2�11��10��01 I. The resulting �rm values, which are asymmetric, are presumed to be

equalized between the �rms by means of side payments. Because such side payments are necessary

in order for these triggers to be sustained in equilibrium, and since the resulting value is a �rst-

best for the industry, it seems appropriate to speak of optimal collusion between the �rms in this

context.

A �rst point is that this asymmetric trigger optimum exists only for a restricted set of values

of the model parameters.
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Lemma 5 The optimal collusion triggers fy��L ; y��F g are well-de�ned (0 < y��L < y��F <1) if and
only if �ow pro�ts are strictly submodular (�00 + �11 < �10 + �01), joint investment is desirable

(�00 < �11), and � 2 (�00; �11).

If the conditions for optimal collusion stated in Lemma 5 do not hold, then the optimal

collusion choice may either involve simultaneous investments (in which case the conditions for

optimal collusion are the same as those for coordination given elsewhere in the paper), or a single

monopoly investment (y��F = 1) if � � �11.9 Also, according to the lemma, optimal collusion

with asymmetric triggers necessarily arises in the �nite delay case, that is when coordinating �rms

would jointly defer investment while still performing it in �nite time.

Assuming that the conditions for optimal collusion to be well-de�ned hold, the next proposi-

tion gives the condition for it to Pareto-dominate the coordinated equilibrium, provided that the

latter exists. This involves comparing the functions (L+ F ) (y; y��L ; y
��
F ) and 2S

� (y) (see (4) for

the latter).

Proposition 5 Assume that the conditions of Lemma 5 hold. Optimal collusion involves a

duopoly investment at the triggers fy��L ; y��F g if and only if:

�S > 1 + 0:5
� � �00
�11 � �

+ 0:5
�11 � �
� � �00

,

and simultaneous investment at y�S otherwise.

Proof Evaluating,

(L+ F ) (y; y��L ; y
��
F )� 2S� (y)

=
I

� � 1

"�
y

y��L

��
+

�
y

y��F

��#
� 2IS
� � 1

�
y

y�S

��
. (15)

This expression is positive if and only if f (I;�; �) � (2�S)
��1

��
���00
�11��00

��
+
�
�11��
�11��00

���
> 1.

First, note that f (I;�; 1) = 1. Next, @f@� (I;�; �) = ln
�
2�S

(���00)(�11��)
(�11��00)2

�
f (I;�; �). Therefore,

9 In which case the condition in Proposition 5 becomes,

(2�S)
��1

�
� � �00
�11 � �00

�
> 1.
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f (I;�; �) is positive if and only if 2�S
(���00)(�11��)
(�11��00)2

> 1, which yields the condition in the

proposition. �

Thus, a strong congestion e¤ect (a negative simultaneous investment externality, which arises

for instance if two �rms order their factories or their R&D at the same date, and such that �S > 2

at least) makes optimal collusion more likely, provided that it is feasible.

4 Examples

The examples of this section apply the results of Section 3 to study coordination or tacit collusion

in speci�c applications, by further specifying the economic model generating the �ow pro�t �,

and also by endogenizing the relative investment costs �F and �S .

4.1 Capacity Investment with Quantity Competition

A canonical application of preemption is to capacity investment by duopolists. In a forthcoming

paper [3], Boyer, Lasserre and Moreaux study industry development with Cournot duopolists that

acquire lumpy capacity units over time as inverse demand grows stochastically.10 Speci�cally,

�rms face an inverse market demand that is of the form YtD (x1 + x2), where Yt is a stochastic

multiplicative shock and xi refers to �rm output, have zero marginal production cost, and engage

in quantity competition. Over time, �rms engage in several rounds of lumpy capacity investment

over an industry development �tree�.

We consider a subcase of their model in two respects. First, assume that �rms have su¢ cient

installed capacity so that a single investment round is necessary for them to reach the Cournot

equilibrium output levels. Second, suppose that inverse demand is given by D(x1 + x2) = 1 �
x1 � x2. Let k denote the existing capacity of each �rm, which is assumed to be symmetric, and
� the (lumpy) increase in capacity that results from the acquisition of another unit of the speci�c

input. The investment cost is taken to be invariant, that is �F = 1.

Thus, both �rms are initially capacity constrained at k, and each of them may relax the

constraint by investing in one additional unit of size �. The end of the investment game is near,

in that a single round of investment remains xc � � � k < xc. Firms decide non-cooperatively

(contracts are ruled out) and without commitment when to invest in an additional unit. Initially,

10 In fact, Propositions 2 and 4 e¤ectively extend Proposition 5 of Boyer et. al. [3] to the case where duopolists

have asymmetric investment costs.
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with capacity k, both �rms earn Yt�00 = YtD (2k) k. When they both have capacity k + �, they

may sell xc, so that Yt�11 = YtD (2xc)xc.

In this framework, we seek conditions on the parameters k and � under which a simultaneous

equilibrium exists. Moreover, we restrict attention to the �nite delay case in which joint investment

is not desirable (�00 � �11) in which the simultaneous equilibrium is compeletely characterized.

This allows us to partition the fk; �g parameter space, so as to obtain an exhaustive representation
of those cases where the investment game has the nature of a pure coordination game.

The desirability of joint investment determines the nature of any tacit collusion equilibrium

that may arise. Assuming that industry revenue is quasiconcave, the desirability of joint in-

vestment may be determined by a strightforward criterion: de�ne x� < xc by the condition,

D (2x�)x� = D (2xc)xc. If industry revenue is quasiconcave, then x� is well-de�ned. Then, the

following proposition may be established.

Proposition 6 Investment is (strictly) jointly desirable if and only if k < x�.

Proof

If k < x�, then �00 = D (2k) k < D (2x�)x�, and by de�nition D (2x�)x� = D (2xc)xc. Since

a single investment round remains (k + � � xc), D (2xc)xc = �11.�

Consider �rst the case in which joint investment is not jointly desirable, so k � x� (= 1
6 given

the linear demand speci�cation), so the simultaneous equilibrium involves �rms abstaining from

ever investing, and is fully characterized by Proposition 2. Moreover, from Propositions 1 and 3,

that a preemption equilibrium exists, and that the simultaneous equilibrium, when it exists, is

Pareto optimal for the �rms. Moreover, the simultaneous equilibrium is the best equilibrium the

�rms could achieve, regardless of whether or not they may collude (Lemma 5).

To characterize simultaneous equilibrium, note �rst that the assumption �00 � �11 (�rms

abstain from investing under tacit collusion) together with the restriction that �the end of the

game is near� (a single capacity investment su¢ ces to reach the Cournot capacity), k + � � 1
3 ,

implies a �rst set of constraints on fk; �g:

k 2
�
1

6
;
1

3

�
, � � 1

3
� k. (16)

Second, a �rm that invests may or may not be capacity constrained in the Cournot game.

In particular, if � � 1
2 �

3
2k, then x

�
i (k) =

1�k
2 � k + � and �rm i is not capacity cosntrained.

Otherwise, the �rm is at a corner in the duopoly game and x�i (k) = k + �. Accordingly, the
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�ow pro�ts �ij can be computed to be �00 = k (1� 2k), �11 = 1
9 , and either �10 =

�
1�k
2

�2
and

�01 =
k(1�k)
2 (if the �rms are not capacity constrained, � � 1

2 �
3
2k), or �10 = (k + �) (1� 2k � �)

and �01 = k (1� 2k � �) (if the �rms are capacity constrained, � � 1
2 �

3
2k). If the �rms are

not capacity constrained, one has �00 + �11 � �01 + �10 if and only if 7k2 � 4k + 5
9 � 0, that is

if k 2
�
5
21 ;

1
3

�
. If the �rms are capacity constrained, then �00 + �11 � �01 + �10 if and only if

P (k; �) = 2k2 � k + 4k� + �2 � � + 1
9 � 0.

By Proposition 2, in the region of fk; �g for which �ij is supermodular, a simultaneous equi-
librium always exists. In the region for which �ij is not supermodular, as lim�!1 �(�; �) = 1
and @�(�;�)

@� < 0 (Lemma 3), a simultaneous equilibrium arises if and only if � is low enough. The

condition for simultaneous equilibrium given by Proposition 2 is then:

1 �
�
�
k2 � 2k + 5

9

� �
2k2 � 2k + 4

9

���1
(3k � 1)2�

(17)

if �rms are not capacity constrained (� � 1
2 �

3
2k), and:

1 �
�
�
�2k2 � �2 � 3k� + k + � � 1

9

� �
2k2 + k� � k + 1

9

���1
�� (1� 3k � �)�

(18)

if �rms are capacity constrained (� < 1
2 �

3
2k).

Figure 4.1 synthesizes these results. The subset of fk; �g space for which the assumptions are
satis�ed, that is for which a single investment remains for each �rm and tacit collusion involves

abstaining from investment, is comprised of four regions. For large enough �lumpy� investment

(above the dashed line), �rms are not capacity constrained, wheras for lower investment they

are. In the (top, right) region of the parameter space bounded on the left by k = 5
21 and by

P (k; �) = 0, �ij is supermodular and a simultaneous eqiolibrium exists for all �. Outside of

this region, a simultaneous equilibrium exists (and �rms may be thought of as facing a pure

coordination game with respect to the strategies {invest at yP , never invest}) for � su¢ ciently

low, the thresholds being those described above.

Thus, the greater the existing level of capital k, all else equal, which may be interpreted as �rms

having a �foothold� in the market, the more likely is it that a simultaneous equilibrium exists.

On the other hand, a large investment (�) increases the likelihood of simultaneous equilibrium

only if initial capacities are su¢ ciently large to begin with.

21
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Figure 4.1: In�nite delay simultaneous equilibrium/coordination in capacity investment with

linear demand and no investment externality, given initial capacity (k) and investment

increment (�).

4.2 R&D Investment with Spillovers

4.3 Endogenous Input Price and Deterrence of Collusion
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