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Abstract In this paper, we investigate pollutant reduction policies under uncertainty. We assume that when

an agent reduces quantity of a pollutant, it incurs costs. We consider two kinds of policies distinguished by

their costs. One policy incurs proportional reduction cost (Case 1) and the other incurs fixed and proportional

reduction costs (Case 2). To solve these problems, we formulate the agent’s problems as a singular stochastic

control problem in Case 1 and a stochastic impulse control problem in Case 2, respectively. Using this analysis,

we show optimal pollutant reduction policies. Furthermore, we present numerical analysis.
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1 Introduction

We face many environmental problems such as
global warming, acid rain, desertification, soil con-
tamination, and so on. We directly or indirectly
suffer damage from these problems. Then, we have
to reduce pollutants which cause these problems.
Three important characteristics of most environ-
mental problems are the uncertainty, irreversibil-
ities, and the feasibility of postponing decision
(Pindyck (2000)). Real options model enables us to
solve the environmental problems with these char-
actaristics.

Arrow and Fisher (1974), Henry (1974) show the
value of flexibility of decision-making under uncer-
tainty. Dixit and Pindyck (1994), Conrad (1997),
Pindyck (2000, 2002) apply real options model to
analyze environmental problems. These research
and much of the subsequent literature investigate
the timing of environmental policy designed to re-
duce pollutants once. On the other hand, in this
research, the agent reduces a pollutant as often as
needed. As well as the timing of reduction, the
amount of reduction is endogenously derived.

In this paper, we investigate pollutant reduc-
tion policies (PRPs) under uncertainty. We assume
that when an agent reduces a pollutant, it incurs
costs. We consider two kinds of policies distin-
guished by their costs. One policy incurs propor-
tional reduction cost (Case 1) and the other incurs
fixed and proportional reduction costs (Case 2). To
solve these problems, we first formulate the agent’s
problem as a singular stochastic control problem in
Ccase 1. See, for example, Øksendal (1999), Pham
(2006), and Yang and Liu (2004) for more detail
on singular stochastic control. Next, we formulate

it as an impulse control problem in Ccase 2. See,
for example, Øksendal (1999), Cadenillas and Zap-
atero (1999), and Ohnishi and Tsujimura (2006) for
more detail on stochastic impulse control. Then, we
compare the results of two models.

The rest of the paper is organized as follows. Sec-
tion 2 describes the setup of the agent’s problem.
Section 3 examines the case 1 in which the PRP
incurs the proportional cost. Section 4 investigates
the case 2 in which the PRP incurs the fixed and
proportional costs. Next, we present the numeri-
cal analysis in Section 5. Section 6 concludes the
paper.

2 Setup

Assume that an agent suffers from a pollutant which
is emitted by an economic activity. Then the agent
have to reduce the pollutant. However it incurs
costs. Let Yt be the stock of the pollutant at time
t ≥ 0. In this paper, we assume that when the agent
does not reduce the pollutant, its dynamics is given
by:

dYt = µYtdt + σYtdWt, Y0 = y, (2.1)

where µ > 0 and σ > 0. Wt is a standard
Brownian motion on a filtered probability space
(Ω,F , P, {Ft}t≥0). Let D(Yt) be the damage func-
tion given by:

D(Yt) = aY b
t , (2.2)

where a > 0 and b > 1. The damage function D is
assumed to satisfy:

E
[∫ ∞

0

e−rtD(Yt)dt

]
< ∞, (2.3)



where r > 0 is a discount rate. Let zt be the amount
of pollutant reduction at time t. K(z) denotes the
reduction cost function. Then, the agent’s problem
is to choose z to minimize the expected total cost.

3 Pollution Reduction Policy
and Proportional Cost

In this section, we consider when the agent reduces
the pollutant, it incurs the cost which is propor-
tional to the amount of pollutant reduction (the
proportional cost). In this case, the dynamics of
pollutant stock (2.1) goes to:

dYt = µYtdt + σYtdWt − dζt, Y0 = y, (3.1)

where ζt is the cumulative amount of pollutant re-
duction until time t. ζ = {ζt}t≥0 is assumed to
be non-negative, non-decreasing, right-continuous
with left-hand limits Ft-adapted process with ζ0− =
0. Furthermore, we assume that:

E
[∫ ∞

0

e−rtdζt

]
< ∞. (3.2)

Then the agent’s expected total discounted cost
function Jsc is given by:

Jsc(y; ζ) = E
[∫ ∞

0

e−rtD(Yt)dt +
∫ ∞

0

e−rtk1dζt

]
,

(3.3)
where k1 > 0 is the proportional cost parameter.
Therefore, the agent problem is to choose ζ so as to
minimize Jsc:

Vsc(y) = inf
ζ∈Z

Jsc(y; ζ) = Jsc(y; ζ∗), (3.4)

where Vsc is the value function, Z is the set of
admissible pollutant reduction policies, and ζ∗ is
an optimal pollutant reduction policy. The agent’s
problem (3.4) is formulated as an singular stochas-
tic problem.

From the formulation of the agent’s problem
(3.4), we naturally guess that, under an optimal
pollutant reduction policy, the agent reduces the
pollutant whenever the pollutant stock reaches a
threshold y. In order to verify this conjecture, we
solve the agent’s problem (3.4) by using variational
inequalities.

The variational inequalities of the agent’s prob-
lem (3.4) are given as follows:

LVsc(y) + D(y) ≥ 0, (3.5)

V ′
sc(y) ≤ k1, (3.6)

[LVsc(y) + D(y)][k1 − V ′(y)] = 0, (3.7)

where L is the operator defined by:

L ≡ 1
2
σ2y2 d2

dy2
+ µy

d
dy

− r. (3.8)

Let Hsc be the continuation region given by:

Hsc = {y; y < y}. (3.9)

Let φ(y) ∈ C2 be a function. For y < y, the vari-
ational inequalities (3.5)-(3.7) lead to the following
ordinary differential equation:

1
2
σ2y2φ′′(y) + µyφ′(y) − rφ(y) + ayb = 0. (3.10)

If the agent will not reduce the pollutant forever,
the expected discounted present value of damage is
calculated as follows:

E
[∫ ∞

0

e−rtD(Yt)dt

]
=

ayb

ρ
, (3.11)

where ρ = r − µb− (1/2)b(b− 1)σ2. It follows from
(2.3) that we have ρ > 0. Then, the boundary
condition φ(0) = 0 yields the solution to (3.10) is:

φ(y) = A1y
β1 +

ayb

ρ
, y < y, (3.12)

where A1 is a constant to be determined and β1 > 1
is the solution to the following characteristic equa-
tion:

1
2
σ2β(β − 1) + µβ − r = 0 (3.13)

and is calculated with:

β1 =
1
2
− µ

σ2
+

[(
µ

σ2
− 1

2

)2

+
2r

σ2

] 1
2

> 1. (3.14)

It follows from (3.11) that we have:

φ(y) <
ayb

ρ
. (3.15)

Then, we obtain A1 < 0. Let φsc be redefined as
a candidate function of the value function and be
given by:

φsc(y) =

{
ψ(y) := A1y

β1 + ayb

ρ , y < y,

k1y + C, y ≥ y,
(3.16)

where C is a constant to be determined. Three
unknowns A1, y, and C are determined by the fol-
lowing simultaneous equations.

ψ(y) = k1y + C, (3.17)



ψ′(y) = k1, (3.18)

ψ′′(y) = 0. (3.19)

The condition (3.17) is the value-matching condi-
tion. The conditions (3.18) and (3.19) are smooth-
pasting conditions. From (3.17) we obtain:

C = A1y
β1 +

ayb

ρ
− k1y. (3.20)

Form (3.18) and (3.19) we obtain:

A1 =
k1(b − 1)y1−β1

β1(b − β1)
, (3.21)

y =
[
ρ(β1 − 1)k1

ab(β1 − b)

] 1
b−1

. (3.22)

Notice that from A1 < 0, (3.21), and (3.22), the
parameter b must satisfy:

1 < b < β1. (3.23)

4 Pollution Reduction Policy
and Fixed and Proportional
Costs

In this section, we investigate the case in which the
fixed cost and the cost proportional to reduction are
incurred by implementing the policy.

Let ξi be the ith amount of pollutant reduction
and τi be its time. An agent pollutant reduction
policy v is defined as the following double sequences:

v = {(τi, ξi)}i≥0. (4.1)

For all i ≥ 0, the dynamics of pollutant stock (2.1)
changes to:

dYt = µYtdt + σYtdWt, τi ≤ t < τi+1 < ∞,

Yτi = Yτi− − ξi,

Y0− = y.

(4.2)
We assume that τi satisfies:

P
{

lim
i→∞

τi ≤ T̃
}

= 0, (4.3)

where T̃ is a terminal time. The condition (4.3) im-
plies that pollutant reduction will only occur finitely
before T̃ . Let K(ξ) be the cost function given by:

K(ξ) = k0 + k1ξ, (4.4)

where k0 > 0 is the fixed cost. Note that the cost
function satisfies subadditibity with respect to ξ:

K(ξ + ξ′) ≤ K(ξ) + K(ξ′). (4.5)

Then the agent’s expected total discounted cost
function Jim is given by:

Jim(y; v) = E
[ ∫ ∞

0

e−rtD(Yt)dt

+
∞∑

i=0

e−rτiK(ξi)1{τi<∞}

]
,

(4.6)

Therefore, the agent problem is to choose v so as to
minimize Jim:

Vim(y) = inf
v∈V

Jim(y; v) = Jim(y; v∗), (4.7)

Vim is the value function, V is the set of admissible
pollutant reduction policies, and v∗ is an optimal
pollutant reduction policy. The agent’s problem
(4.7) is formulated as an stochastic impulse prob-
lem.

From the formulation of the agent’s problem
(4.7), we naturally guess that an optimal pollutant
reduction policy is in the following from specified by
two critical pollutant levels: whenever the pollutant
stock reaches a level ỹ, the agent reduces the pollu-
tant, so that it instantaneously reduces to another
pollutant level ŷ. In order to verify this conjecture,
we solve the agent’s problem (4.7) by using quasi-
variational inequalities.

Let M be the pollutant reduction operator de-
fined by:

MVim(y) = inf
ξ∈[0,y)

{Vim(y− ξ)+ (k0 + k1ξ)}. (4.8)

Then, the quasi-variational inequalities (QVI) of
the agent’s problem (4.7) are given as follows:

LVim(y) + D(y) ≥ 0, (4.9)

Vim(y) ≤ MVim(y), (4.10)

[LVim(y) + D(y)][MVim(y) − Vim(y)] = 0. (4.11)

From the conjecture above, the continuation region
Him is given by:

Him = {y; y < ỹ}. (4.12)

Then, an optimal pollutant reduction policy v∗ =
(τ∗, ξ∗) characterized by ỹ and ŷ with 0 < ŷ < ỹ <
∞ such that

τ∗
i = inf{t > τ∗

i−1; Xt− /∈ Him}, (4.13)

ξ∗i = Xτ∗−
i

− Xτ∗
i

= ỹ − ŷ. (4.14)

Let φ ∈ C2 be a function. For y < ỹ, to the QVI
(4.9)-(4.11) lead to the following ordinary differen-
tial equation:

1
2
σ2y2φ′′(y) + µyφ′(y) − rφ(y) + ayb = 0. (4.15)



As in Section 3, the solution to (4.15) is:

φ(y) = B1y
β1 +

ayb

ρ
, (4.16)

B1 is a constant to be determined and β1 is derived
by (3.14). B1 is negative as well as A1. Let φim be
defined as a candidate function of the value function
given by:

φim(y) =

{
ϕ(y) := B1y

β1 + ayb

ρ , y < ỹ,

ϕ(ŷ) + k0 + k1(y − ŷ), y ≥ ỹ,
(4.17)

Three unknowns B1, ỹ, and ŷ are determined by the
following simultaneous equations. The first equa-
tion is:

ϕ(ỹ) = ϕ(ŷ) + k0 + k1(ỹ − ŷ). (4.18)

The second one is:

ϕ′(ỹ) = lim
y↓ỹ

ϕ′(y)

= lim
y↓ỹ

d
dy

[k0 + k1(y − ŷ) + φ(ŷ)]

= k1.

(4.19)

From (4.13) and (4.14), Jim is minimized at ξ∗ =
ỹ − ŷ:

ϕ(ỹ) = k0 + k1(ỹ − ŷ) + ϕ(ŷ)
= max

q∈[0,ỹ]
[ϕ(q) + k0 + k1(ỹ − q)]. (4.20)

The third one is:

ϕ′(ŷ) = k1. (4.21)

Unfortunately, as we cannot analytically derive
these unknown, we numerically calculate their val-
ues in the following section.

5 Numerical Analysis

In this section, we numerically examine the optimal
pollutant reduction policies in order to explore their
characteristics. The basic parameter values are set
out as follows: r = 0.06, µ = 0.015, σ = 0.15,
a = 0.01, b = 1.5, k1 = 0.1, and k0 = 0.1．Then, we
obtain A1 = −0.4189, B1 = −0.1608, C = −0.0021,
y = 0.1177, ỹ = 1.4102, ŷ = 0.0453.

The comparative static analysis will be left for
future research.

6 Final Remarks

In this paper, we examined pollutant reduction poli-
cies under uncertainty. When the agent implements
the policy, it costs two types of reduction costs.
We formulated the agent’s problems as the singular
stochastic control problem and the stochastic im-
pulse control problem, respectively. Then, we found
optimal pollutant reduction policies, respectively.
We leave numerical analysis for future research.
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