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Abstract 
We consider a municipality faced with the question of how big to make their new 
wastewater treatment facility to meet the demand of 10% expected growth in the 
number of new connections. Previously, we developed a real options framework for 
determining optimal plant size and showed that the model takes on the form of an Asian 
option. Furthermore, it was shown that if the connection rate growths are closely 
correlated with the market growth, then the penalty costs associated with having 
insufficient capacity to treat the wastewater can be effectively hedged, significantly 
reducing overall expected costs. In this study, we introduce an approximate analytical 
solution and optimize the plant size of a staged / modular expansion. Based on the 
given construction cost estimates, we show that a staged expansion has a minimal 
(expected) savings when connection growth rates are closely correlated to the market 
growth rates. However, as the correlation decreases to zero, or, alternatively, no 
attempt is made to hedge the penalty costs, a staged expansion has an expected 
savings of 20%. 
 

Introduction 
The municipal water and wastewater industrial sector is considered to be one of the 
most capital intensive industrial sectors and unfortunately the American Society of Civil 
Engineers (2005) rated the condition of the drinking water and wastewater infrastructure 
systems as poor, citing specifically a lack of investment in capital assets over a 
prolonged period of time. Clearly, methods based on sound financial principles that 
enhance capital asset allocation strategies can add significant value to municipal 
decision makers. It is recognized that projects face future uncertainties. The ability of 
project managers to react to these uncertainties at a future time adds intrinsic value to 
the project, and this value is not captured by standard discounted cash flow (DCF) / net 
present value (NPV) methods. To adequately account for the uncertainty and its impact 
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on the project value, financial engineering methods applied in the financial markets can 
be utilized in “real” capital investment projects. Trigeorgis (1996) provides a thorough 
introduction and review of real option theory and how it can be utilized to enhance an 
entity’s strategy in resource allocation. 
 
While capital asset and project valuation using real options has seen a significant 
research focus over the last 15 years (see, for example Jacoby and Laughton (1992), 
Ingersoll and Ross (1992), Emhiellen and Alaouze (2003), and van Putten and 
MacMillan (2004)), real options theory has seen limited application in the municipal 
infrastructure sector. Of note, Schubert and Barenbaum (2007) discuss how public 
managers can employ real options technique to better value their capital budgeting 
opportunities and improve the efficacy of capital budgeting decisions. 
 
Other studies, Ho and Liu (2002), Garvin and Cheah (2004), consider the application of 
real options to value public infrastructure projects under private management 
arrangements. Arboleda and Abraham (2006) propose a method using real option 
analysis to evaluate capital investments in public infrastructure projects managed by 
private operators. The proposed methodology develops a valuation based on 
deterioration curves of infrastructure and the associated value of flexibility to invest at 
optimal states within the model. 
 
Recently, we presented a real option valuation method to determine the optimal size of 
a wastewater plant expansion required for a small municipality undergoing significant 
residential growth (Lawryshyn and Jaimungal (2009)). The community is located in a 
resort area and has experienced increases in the growth rates of approximately 10% 
over the last 15 years. Since a significant number of new dwellings are second 
“weekend” homes, the planners felt strongly that growth rates were tied to the strength 
of the market index1. We showed that the model takes the form of an Asian option, and 
numerical methods were used to solve the resulting partial differential equation. 
Hedging strategies were introduced to show the potential savings the municipality could 
theoretically realize. 
 
In this study, we consider a staged investment approach, where the municipality can 
today, decide to build a plant of a smaller size, and then expand at a defined time in the 
future, if the residential growth warrants the expansion. Because of the significant 
computational effort required to solve the partial differential equation of the model, we 
introduce an approximate closed form solution and use this equation for optimization. 
 
The following section provides a brief description of the cost dynamics of the problem. 
Next, in the Model Development section, the Asian option-like model developed 
previously is summarized, a closed form solution approximation is introduced and the 
                                            
1 Analysis of the data showed some correlation to the general stock index, but due to the limited amount 
of total connections, confidence intervals on the correlations were very broad. It is likely that a lag exists 
between the market index and the rate of connectivity and analysis of the data showed a lag of 
approximately 9 months. For the analysis presented here the lag was ignored. 
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optimization strategy is developed. A comparison of the numerical results of the exact 
model to the analytical approximate model and optimization results are presented in the 
Results section. Conclusions are presented in the last section. 
 

Cost Description 
As mentioned previously, this study focuses on developing an optimal wastewater plant 
expansion strategy for a small resort municipality. In the last 15 years, the municipal 
rate of wastewater connections has been growing by an average of 10% and the current 
infrastructure is inadequate to meet the expected demand in approximately 3 to 5 years. 
The present conditions are such that the municipality must build a new plant 
immediately. It is assumed that construction time to build a new plant is 3 years. The 
municipality is faced with the option of building a full-size (non-staged) plant of size Kf, 
or a modular plant of initial size K1 with the option to expand up to a predetermined 
maximum size of K1 + K2max. The total timeframe for the analysis is assumed to be 23 
years – i.e. the plant has a 20 year useful life. The staged expansion decision will be 
made 11 years from now and will require 2 years of construction time (see Figure 1). 
 
Gillot et al. (1999) and Alasino et al. (2007) provide detailed methodology to optimize 
the cost of constructing a wastewater plant by considering different unit processes. Most 
of the cost functions power functions of the form aQb, where Q is the flow rate 
(analogous to plant size) and a and b are constants for the given unit process. A simpler 
fixed / variable cost function is assumed in this study; however this has no loss of 
generality for the proposed method. 
 
The present value cost, as of the initial construction date, to build a non-modular plant 
to size Kf is given by 
  Cf (Kf ) = α f + γ fKf . (1) 
For a modular plant, the initial cost is given as 
  C1(K1,K2max ) = α1 + γ1K1 + γ12K2max  (2) 
and the cost to expand the modular plant (present value as of the date of initial 
construction expansion) in real dollars as of t0 is 
  C2(K2 ≤ K2max ) = α2 + γ 2K2 . (3) 
The parameters αi and γi are the fixed cost and variable cost components. The present 
value of the salvage value is assumed to be captured by the parameters. 
 

Model Development 
This section consists for three sub-sections: 1) Summary of the Non-Staged Plant 
Expansion, which summarizes the model previously developed by Lawryshyn and 
Jaimungal (2009), 2) Analytical Approximation, which develops the analytical 
approximation to the Asian-like option model, and 3) Staged Optimization Model 
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Summary of the Non-Staged Plant Expansion 
Geometric Brownian Motion (GBM) was assumed for both the stock index, St, and the 
wastewater connection rate, Xt,  
  (4) 

 
 
dXt = µXXtdt + σXXt ρdWt + 1− ρ2dWt

⊥⎛
⎝⎜

⎞
⎠⎟  (5) 

where Wt and W┴
t are Weiner processes independent of each other. The growth, µi, 

volatility, σi, and correlation, ρ, parameters are assumed to be constant. Under the risk-
neutral measure 

  (6) 

and 

 
  
dXt = rXtdt + σXXt ρd Wt + 1− ρ2dWt

⊥⎛
⎝⎜

⎞
⎠⎟  (7) 

where  and r is the risk-free rate. 

 
Defining Nt as the total number of connections to the plant, N0 as the current plant 
capacity, then 

 , (8) 

and defining the penalty cost associated with over capacity, PCt, as 

 
 
PCt = max 0,(Nt −K) ⋅PC0ercpit⎛

⎝
⎞
⎠ , (9) 

led to the following expected present value of the penalty cost incurred from time t ot T, 

 

  

E PCt,T;K
PV⎡

⎣
⎤
⎦ = PC0e−(r−rcpi )u ⋅ E Nu −K( )+⎡

⎣
⎤
⎦du

t

T
∫

= PC0e−(r−rcpi )u ⋅ E N0 + Xs ds
0

u
∫ −K⎛

⎝⎜
⎞
⎠⎟ +

⎡

⎣
⎢

⎤

⎦
⎥du

t

T
∫

 (10) 

where PC0 is the current penalty cost rate associated with insufficient plant capacity per 
connection, K is the size of the plant expansion and rcpi is the inflation rate. The term 

 takes on the form of an Asian option’s payoff and defining 

 
   
v(t,Xt,Nt ) ≡

E Nt + Xs ds
t

T
∫ −K⎛

⎝⎜
⎞
⎠⎟ +

F t
⎡

⎣
⎢

⎤

⎦
⎥ , (11) 

the solution to v(t,x,y), with Xt and Nt replaced by the dummy variables x and y, was 
given by the following partial differential equation (PDE) 

 
 

∂v
∂t

+ rx ∂v
∂x

+ x ∂v
∂y

+ 1
2
σX

2 x2 ∂2v
∂x2

= 0 . (12) 
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Analytical Approximation 
Since the problem requires optimization of the parameter K of equation (10), which 
requires multiple solutions of the PDE of equation (12), an analytical approximation for 
v(t,Xt,Nt) is developed. 
 
For the approximation, it is assumed that 

 
   

E Xs ds
t

T
∫ − ′Kt

⎛
⎝⎜

⎞
⎠⎟ +

F t
⎡

⎣
⎢

⎤

⎦
⎥ ~ E Xte

µ− 1
2
σ2( )+ σZ

− ′Kt
⎛

⎝
⎜

⎞

⎠
⎟
+

F t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (13) 

where  and Z ~ N(0,1) so that the Black-Scholes analytical solution can be 

utilized. Moments are matched as follows. For a process given by   e
µ− 1

2
σ2( )+ σZ

, 

 
  
E e

µ− 1
2
σ2( )+ σZ⎡

⎣⎢
⎤
⎦⎥
= e µ  (14) 

and 

 
  
E e

µ− 1
2
σ2( )+ σZ⎛

⎝⎜
⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= e

2 µ+ σ2( ) . (15) 

Also, 

 
   
E Xu du

t

T
∫ F t
⎡
⎣⎢

⎤
⎦⎥
= Xt

er (T−t) −1
r

 (16) 

and 

 

   

E Xu du
t

T
∫⎛⎝⎜

⎞
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2
F t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 2 E XuXv F t⎡⎣ ⎤⎦t

u
∫t

T
∫ dv dt

=
2Xt

2

r + σX
2

e
2r +σX

2( ) T−t( )
−1

2r + σX
2

− er T−t( ) −1
r

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

.

 (17) 

Matching equations (14) and (16) gives 
 

  
µt,T ≡ µ = ln er (T−t) −1( ) − ln r  (18) 

and equations (15), (17) and (18) gives 

 

  

σ t,T ≡ σ = ln 2
r + σX

2

⎛

⎝⎜
⎞

⎠⎟
+ ln e

2r +σX
2( ) T− t( ) −1

2r + σX
2 − e2r T− t( ) −1

r

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ 2ln r − 2ln er (T− t) −1( ) . (19) 

From equation (13), 

 

   

E Xte
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1
2
σt,T
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⎝
⎜

⎞

⎠
⎟
+

F t

⎡

⎣
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1
2
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2 Z
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⎝
⎜

⎞

⎠
⎟
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F t

⎡

⎣
⎢
⎢
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⎦
⎥
⎥

⎛

⎝
⎜
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⎞

⎠
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⎟

= e
µt,T XtΦ(dt,T;+ ) − ′Kte

− µt,TΦ(dt,T;− )( )
(20) 
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where  and Φ is the normal cumulative distribution 

function. Thus, the penalty cost of equation (10) can be approximated as follows 

 
  
E PCt,T;K

PV⎡
⎣

⎤
⎦ ~ PC0e−(r−rcpi )u ⋅e

µ0,u X0Φ(d0,u;+ ) − (K −N0)e− µ0,uΦ(d0,u;− )( )du
t

T
∫ , (21) 

or in the case where we are interested in a filtration, 
 
F τ , where  τ ≤ t , equation (21) can 

be written as 

 
   
E PCt,T;K

PV F τ
⎡
⎣

⎤
⎦ ~ PCτe

−(r−rcpi )u ⋅e
µτ,u XτΦ(dτ,u;+ ) − (K −Nτ )e

− µτ,uΦ(dτ,u;− )( )du
t

T
∫ , (22) 

where  PCτ = PC0e
rcpiτ . It should be emphasized that equation (22) represents the 

penalty cost as of time τ. The analytical approximation of equation (20) will be 
compared to the numerical solution of the PDE (equation (12)) in the Results section. 
 
For the non-modular plant, determining the optimal plant size, Kf can be done directly by 
minimizing the present value of both the plant cost and the expected penalty cost 
(equations (1) and (21)), 
 

  
Kf

Opt = min
Kf

Cf (Kf ) + E PCt1,T;Kf

PV⎡
⎣

⎤
⎦( ) . (23) 

Equation (23) is easily solved using numerical non-linear minimization.  
 

Staged Optimization Model 
The timeline for the optimization problem is depicted in Figure 1. A sample path for Xt is 
presented in Figure 2 highlighting the decision points. The initial plant size and the 
maximum plant size decision must be made at t0, i.e. K1 and K2max must be determined 
at this time. Stage 1 construction will take place from t0 to t1. Note that during this 
timeframe, incurred penalty costs for lack of plant capacity have no impact on decision 
making, since the decision making process has no impact on the current plant capacity. 
From t1 to t3 the new modular plant will operate with a capacity of K1. Note that N0 
denotes the number of current customers (connections), as of t0, that the municipality 
will redirect towards the new plant. At t2 a decision will need to be made with respect to 
the added plant capacity, K2, with . Stage 2 construction will take place from 
t2 to t3 and Stage 2 operation, with total plant capacity of K1 + K2, will occur from t3 to T. 
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Figure 1. Timeline for plant construction and operation. 

 

 
Figure 2. Simulation of Xt. 

 
The expected cost for the modular plant can be written as 

   

Cmod = C1 K1,K2max( ) + E PCt1,t3 ;K1

PV⎡
⎣

⎤
⎦

+ E PC
t3 ,T;K1+min K

2

Opt ,K2max( )
PV F t2

⎡

⎣
⎢

⎤

⎦
⎥e−rt2 + C2 min K

2

Opt,K2max( )( )⎛

⎝
⎜

⎞

⎠
⎟0

∞

∫−∞

∞

∫ ⋅ fX,N(Xt2
,Nt2

)dXt2
dNt2

(24) 
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where 
 
fX,N(Xt2

,Nt2
)  is the joint probability density function (PDF) of Xt and Nt at t = t2 and 

 K2
Opt  is the optimized size of the plant at Stage 2 for a given Xt2 and Nt2, determined by 

 
   
K2

Opt = min
K2

C2(K2) + E PCt3 ,T;K1+min K2 ,K2max( )
PV F t2

⎡
⎣⎢

⎤
⎦⎥e−rt2( ) . (25) 

For notational efficiency, we define 

 
   
g Xt2

,Nt2
;K1,K2max( ) ≡ E PC

t3 ,T;K1+min K
2

Opt ,K2max( )
PV F t2

⎡

⎣
⎢

⎤

⎦
⎥e−rt2 + C2 min K

2

Opt,K2max( )( )  (26) 

Optimization now proceeds by minimizing Cmod as a function of K1 and K2max. 
 
One unresolved issue is the estimation of the joint PDF, 

 
fX,N(Xt2

,Nt2
) . A simple approach 

would be to estimate the function through simulation. We propose a slightly more 
elegant approach by assuming that Nt is approximately log-normally distributed and 
applying moment matching. Specifically, we assume that  Xt ~ ez1 and  Nt ~ ez2 , where 

 z1 = m1 + σ1W1  and 
 
z2 = m2 + σ2 ρW1 + 1− ρ2W2

⎛
⎝⎜

⎞
⎠⎟ , W1 and W2 are uncorrelated N(0,1) 

and, m1, m2, σ1, σ2 and ρ  need to be determined. Letting 
 
E Xt⎡⎣ ⎤⎦ = E ez1⎡

⎣⎢
⎤
⎦⎥

, 

 
E Nt⎡⎣ ⎤⎦ = E ez2⎡

⎣⎢
⎤
⎦⎥
, 

 
E Xt

2⎡
⎣⎢

⎤
⎦⎥ = E e2z1⎡

⎣⎢
⎤
⎦⎥
, 

 
E Nt

2⎡
⎣⎢

⎤
⎦⎥ = E e2z2⎡

⎣⎢
⎤
⎦⎥
 and 

 
E XtNt⎡⎣ ⎤⎦ = E ez1ez2⎡

⎣⎢
⎤
⎦⎥
 we can 

solve for the parameters as follows (see Appendix for details) 

 

 

m1 = 2ln E Xt⎡⎣ ⎤⎦( ) − 1
2 ln E Xt

2⎡⎣ ⎤⎦( )
m2 = 2ln E Nt⎡⎣ ⎤⎦( ) − 1

2 ln E Nt
2⎡⎣ ⎤⎦( )

σ1
2 = −2ln E Xt⎡⎣ ⎤⎦( ) + ln E Xt

2⎡⎣ ⎤⎦( )
σ2

2 = −2ln E Nt⎡⎣ ⎤⎦( ) + ln E Nt
2⎡⎣ ⎤⎦( )

ρ =
ln E XtNt⎡⎣ ⎤⎦( ) − m1 +m2 +

1
2 σ1

2 + σ2
2( )( )

σ1σ2

 (27) 

Therefore, equation (24) can be modified as follows, 

 

  

Cmod = C1 K1,K2max( ) + E PCt1,t3 ;K1

PV⎡
⎣

⎤
⎦

+ g ez1,ez2 ;K1,K2max( )−∞

∞

∫−∞

∞

∫ ⋅ φ(z1,z2)dz1dz2

 (28) 

where  φ(x,y)  is the joint normal PDF with respective means of m1 and m2, respective 
standard deviations of σ1 and σ2, and a correlation of ρ . For faster numerical 
integration, we rewrite equation (28) as 
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Cmod = C1 K1,K2max( ) + E PCt1,t3 ;K1

PV⎡
⎣

⎤
⎦

+ g em1+σ1W1,e
m2 +σ2 ρW1+ 1−ρ2 W2

⎛
⎝⎜

⎞
⎠⎟ ;K1,K2max

⎛
⎝⎜

⎞
⎠⎟−∞

∞

∫−∞

∞

∫ ⋅φ(W1)φ(W2)dW1dW2

 (29) 

where φ(x) is the standard normal PDF. 
 

Results 
The time to construct the initial plant was estimated to be 3 years, thus t1 = 3. For the 
modular case, it was determined that a decision regarding staged expansion would 
occur 8 years after the commissioning date of the first stage, thus, t2 = 11. Two years 
will be required for the stage expansion construction, and thus, t3 = 13. The horizon 
time, T, was taken to be 23 years. Since the existing plant still had capacity for 200 
connections, the value for N0 was -200 connections. Based on historical data, X0 was 
estimated to be 81 connections / year, the growth rate, µX, was estimated to be 0.1 and 
the volatility, σX, was estimated to be 0.16. The penalty cost rate, PC0, was estimated to 
be $5000 per year per connection The following market parameters were used: r = 5%, 
rcpi = 3%, µS = 8% and σS = 0.05. 
 
Based on data provided by engineers, the following parameters were estimated for the 
construction cost equations (see equations (1), (2) and (3)). 
 
Table 1. Construction Cost Parameters. 

Parameter Value 
αf $3,500,000 
α1 $3,500,000 
α2 $525,000 
γf $860/connection 
γ1 $860/connection 
γ12 $258/connection 
γ2 $900/connection 

 
The approximate solutions to v(t,Xt,Nt) using equation (21) versus the PDE solutions 
obtained by solving equation (11) are plotted in Figure 3 for varying K. Clearly, the 
solutions match very closely. The present value of the expected total cost for the 
modular case, Cmod, for ρ = 0.5 is plotted in Figure 4, as a function of K1 and K2max. 
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Figure 3. Comparison of approximate solution to the solution determined via solution of 
the PDE. 
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Figure 4. Present value of the expected total cost for the modular plant, Cmod, for ρ = 0.5 
versus K1 and K2max. 
 
The optimal plant sizes for ρ = 1.0, 0.5 and 0.0 for the non-modular (fixed) case are 
presented in Table 2 and for the modular case are presented in Table 3. For the case of 
ρ = 1.0, where the connection rate is perfectly correlated to the market, the expected 
cost savings associated with building a modular plant is less than 4%. The expected 
savings increases to approximately 10% of total costs for the case of ρ = 0.5 and to 
over 20% for the case of ρ = 0.0. 
 
Table 2. Fixed Plant Optimal Size and Cost Estimates 

ρ Optimal Plant Size 
(Kf) 

Construction Cost Expected (Hedged) 
Total PV Cost 

ρ = 1.0 3088 $6,155,508 $6,758,394 
ρ = 0.5 5792 $8,481,202 $9,807,298 
ρ = 0.0 11,610 $13,484,821 $16,555,133 
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Table 3. Modular Plant Optimal Size and Cost Estimates 

ρ Optimal K1 Optimal K2max 
Initial 

Construction 
Cost 

Expected 
(Hedged) Total 

PV Cost 
ρ = 1.0 1655 1665 $5,352,929 $ 6,489,406 
ρ = 0.5 3096 2526 $6,814,393 $8,843,789 
ρ = 0.0 6905 3351 $10,303,244 $13,058,365 

 

Discussion and Conclusion 
A key contribution of this paper is the introduction of approximate methods to allow for 
the solution of a somewhat complicated real option problem that has significant 
similarities to an Asian option. Without the approximation, a PDE would be required to 
be solved at every optimization step, making the analysis intractable. As discussed in a 
previous paper (Lawryshyn and Jaimungal (2009)), it is not likely that many 
municipalities will opt to build smaller wastewater treatment plants and try to hedge 
away their potential penalty costs in the stock market. However, the approach 
developed here highlights how private investment would value the cost of a plant 
expansion. Capital investment theory is based on the assumption that investors will only 
invest in a project if its expected payoffs, for a give risk level, are better than what could 
be achieved in the market. In situations where private investors are burdened with the 
financial costs of a design-build-operate system, it may be important to ensure penalty 
costs associated with not meeting treatment are adequately adjusted at the outset. 
 
In the case where no attempt will be made to hedge the penalty cost, we have showed 
that an expected 20% total savings may be achieved by building a modular plant. This 
result is consistent with real option theory – while the total construction cost per unit 
treated is greater in the case of the modular plant, the value of waiting to observe the 
total number of connections over the 11 years and then adding to the plant, accordingly, 
is greater and the modular options should be pursued. The final recommendation 
resulted in building a plant with K1 = 7300 and K2max = 2700. 
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Appendix 
Here we provide details for the moment matching. 
 
Clearly, 
 

  
E Xt⎡⎣ ⎤⎦ = X0e

rt  (30) 
and 

 
  
E Xt

2⎡⎣ ⎤⎦ = X0
2e

2r +σX
2( )t . (31) 

Since  dNt = Xtdt  or 
  
Nt = N0 + E Xs⎡⎣ ⎤⎦ds

0

t
∫ , we have 

 
  
E Nt⎡⎣ ⎤⎦ = N0 + X0

ert −1
r

. (32) 
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To calculate 
  
E XtNt⎡⎣ ⎤⎦ , we apply Ito’s lemma so that 

 
  
d(XtNt ) = rXtNt + Xt

2( )dt + σXXtNt ρd Wt + 1− ρ2dWt
⊥( )  (33) 

or 

 
  
E XtNt⎡⎣ ⎤⎦ = X0N0 + r E XsNs⎡⎣ ⎤⎦ds

0

t

∫ + E Xs
2⎡⎣ ⎤⎦ds

0

t

∫ . (34) 

Differentiating equation (34) with respect to t and substituting equation (31) for 
  
E Xt

2⎡⎣ ⎤⎦ , 

gives the following linear ODE 

 
  

d E XtNt⎡⎣ ⎤⎦
dt

= r E XsNs⎡⎣ ⎤⎦ + X0e
2r +σX

2( )t , (35) 

the solution of which gives 

 
  
E XtNt⎡⎣ ⎤⎦ = X0N0e

rt +
X0

2

r + σX
2 e

2r +σX
2( )t − ert⎛

⎝⎜
⎞
⎠⎟ . (36) 

Finally, for 
  
E Nt

2⎡⎣ ⎤⎦ , Ito’s lemma gives 

  d(Nt
2) = 2XtNtdt  (37) 

so that 

 

  

E Nt
2⎡⎣ ⎤⎦ = N0

2 + 2 E XsNs⎡⎣ ⎤⎦ds
0

t

∫

= N0
2 + 2X0N0

ert −1( )
r

+
2X0

2

r + σX
2

e
2r +σX

2( )t −1
2r + σX

2 − ert −1
r

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.
 (38) 

 


