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Abstract 

Binomial trees are widely used for both financial and real option pricing due to 
their ease of use, versatility and precision. However, the classic approach 
developed by Cox, Ross, and Rubinstein (1979) applies only to a Geometric 
Brownian Motion diffusion processes, limiting the modeling choices. Nelson and 
Ramaswamy (1990) provided a general method to construct recombining binomial 
lattices which was used by Hahn and Dyer (2008) to develop a censored 
recombinant Mean Reverting model. These models, although more 
computationally complex in programming than the Cox et. al. (1979) binomial 
model, are fundamentally simpler than alternative approaches such as trinomial 
trees or simulation methods for American options. In this paper we extend the 
mean reverting model of Hahn and Dyer (2008) and propose a non-censored 
model that is more precise and has some other distinct advantages. We compare 
these two approaches and present the results of applying these models to evaluate 
a hypothetical real option.  
 

Keywords 

Real Options, Mean Reversion, Binomial Lattice, Brazilian Sugar-Ethanol 
industry. 



 2 

1. Introduction: Recombinant binomial trees for real options 
valuation 

The mathematical complexity associated with the real options theory derives from 

the need for a probabilistic solution for the optimal investment decision 

throughout the life to the option. The solution to this dynamic optimization 

problem, as described by Dixit and Pindyck (1994), is to model the uncertainty of 

the underlying asset as a stochastic process where the optimum decision value of 

investment is obtained by solving a differential equation with the appropriate 

boundary conditions. In many cases, however, this differential equation has no 

analytical solution or the simplified assumptions concerning the boundary 

conditions do not reflect the actual complexity of the problem. In these cases, a 

discrete approximation to the underlying stochastic process can be used in order to 

obtain a solution that is computationally efficient for the dynamic valuation 

problem at hand. 

 

One of these alternatives is the binomial lattice, which is a robust, precise and 

intuitively appealing tool for option valuation models. The discrete recombinant 

binomial model developed by Cox, Ross and Rubinstein (1979) to evaluate real 

options is widely accepted as an efficient approximation to the Black, Scholes and 

Merton’s (1973) model due to its ease of use, flexibility and the fact that if 

converges weakly to a Geometric Brownian Motion (GBM) as the time step (∆t) 

decreases. Furthermore, as opposed to the Black, Scholes and Merton model, this 

approach provides the solution to the early exercise of American type options. The 

approach used by Cox, et al (1979), where the branch nodes recombine due to the 

fact that the upward movement (u) is the inverse of downward movement (d), 

means that at each step N, one obtains N + 1 node, and not 2N as in the case of a 

non-recombining tree. The recombinant lattice is simple and practical to 

implement in spreadsheet such as Excel or even in decision tree programs. In the 

approach developed by Brandão, Hahn, and Dyer (2005), for example, the payoffs 

in each branch correspond to cash flows of each state of the underlying asset. 

 

Often, however, the relevant uncertainty is poorly modeled by a GBM stochastic 

diffusion process. This occurs when the value of a variable is a function of a long-
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term mean level, as is usually the case of non-financial commodities or interest 

rates. Several authors, such as Bessimbinder, Coughenour, Sequin and Smoller 

(1995), Schwartz (1997, 1988), Laughton and Jacoby (1993) among others, 

suggest that this type of variable often exhibits auto-regressive behavior and point 

to the fact that modeling such variable with a GBM can exaggerate the range of 

values depicted and, as a result, overstate the value of options written on the 

variable. 

 

This paper is organized as follows. After this introduction, in section 2 we review 

the censored model of Hahn and Dyer (2008), develop a non-censored version . In 

section 3 we apply these two models to value a hypothetical real option and 

compare the results of these two approaches. In section 4 we conclude. 

 

2. Binomial approximation for mean reverting models 

A mean reverting (MR) stochastic process model is a Markov process in which 

the direction and intensity of deviation are a function of the long term average to 

which the current price must revert. The logic behind a Mean Reverting Model 

derives from microeconomics: when prices are depressed (or below their long 

term mean level), the demand for this product tends to increase while the 

production tends to decrease. This is due to the fact that consumption of a 

commodity increases as prices decrease, while low returns to producers will lead 

to the decision to postpone investment to close less efficient units, thereby 

reducing the supply of the product. The opposite will occur if prices are high (or 

above the long term mean). As an example, empirical studies (Pindyck & 

Rubinfeld, 1991) have shown that these microeconomic forces do indeed cause oil 

prices to exhibit mean reverting stochastic behavior.  

 

The simplest form of MR process is the single factor Ornstein-Uhlenbeck process, 

also called Arithmetic MR process, which is defined by Eq. (1): 

( )t t tdx x x dt dzη σ= − +        (1) 

where xt is the natural log of the variable St, η the mean reversion speed, x  is the 

long term average to which xt reverts, σ the volatility of process and dz is the 
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standard Wiener process. The natural logarithm of the variable is used since in the 

case of commodities it is generally assumed that these prices have a lognormal 

distribution. This is convenient because since x=ln(S), S cannot be negative. In 

this case we are assuming that St follows a Geometric Orstein-Uhlenbeck process, 

where St = exp(xt). Therefore, the expected value and variance of the Orstein-

Uhlenbeck process are given by Dixit and Pindyck (1994): 

[ ] ( )0

t

tE x x x x e
η−= + −       (2) 

[ ] ( )
2

21
2

t

tVar x e
ησ

η
−= −       (3) 

We can see that when t � , Var[xt] � σ2
/2η  and not to infinity as is the case of 

a GBM. 

 

The use of binomial lattices similar to the classic GBM model of Cox, et al (1979) 

to model MR processes has been essentially nonexistent due to the fact that such 

models often produce transition probabilities greater than 1 or less than zero when 

the influence of mean reversion is particularly strong. Consequently, Monte Carlo 

simulation or discrete trinomial and multi-nomial trees (Hull, 1999) are have been 

the primary methods used to model MR processes. Unfortunately, trinomial trees, 

such as those suggested by Tseng and Lin (2007), Clewlow and Strickland (1999), 

Hull and White (1994a, 1994b) and Hull (1999), require more involved 

methodologies for specifying valid branching probabilities and lattice cell sized to 

ensure convergence of the stochastic process. This requires more sophisticated 

programming and results in difficulty in applying trinomial trees to a wide range 

of specific projects and cases. 

 

As an alternative, Monte Carlos simulation approaches such as the Least Squares 

method (LS) of Longstaff and Schwartz (2001) are able to accommodate almost 

any stochastic process, including a combination of various processes, thereby 

eliminating the so-called “curse of dimensionality and modeling”. However, the 

shortcoming of these models is in modeling decisions, which can pose problems 

in the modeling of compound options, for example. 

 

∞
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We propose an approach similar to the one described by Hahn and Dyer (2008) 

involving censuring of transition probabilities. While both binomial approaches 

provide results that are sufficiently precise for the use in real options applications 

and are sufficiently robust for use for modeling two factor bi-variate processes, 

this new method does not require the censoring step.  This approach assumes that 

the stochastic behavior of modeled variable is homoscedastic, but heteroskedastic 

behaviour can also be modeled with some adjustments. 

 

2.1. Censured Mean Reversion Binomial Model (Nelson and 
Ramaswamy, 1990) 

Nelson and Ramaswamy (1990) proposed an approach that can be used in a wide 

range of conditions, and which is appropriate for the Ornstein-Uhlenbeck process. 

Their model is a simple binomial sequence of n periods of duration ∆t, with a time 

horizon T: T = n ∆t, which then allows a recombinant binomial tree to be built. 

The general form for the differential equation of a stochastic process is given by: 

dx = α(x,t)dt + σ(x,t)dz, and the proposed model is given by the following 

equations: 

( ),
t

x x t x tσ+ ≡ + ∆   (up movement)  

( ),
t

x x t x tσ− ≡ − ∆   (down movement) 

( )
( )

,
1 2 1 2

,
t

x t
p t

x t

α

σ
≡ + ∆  (up probability)   (4) 

1-pt    (down probability) 

However, in this model, the probability pt can assume values or values greater 

than 1. This condition is remedied by censoring the probabilities pt (and therefore: 

1- pt), to the range of 0 to 1 in the following manner: 

( )
( )

,1 1
           if  0 and 1

2 2 ,

0                                      if <0 ,  is censored

1                                      if >1 ,  is censored

t

t t

t t

x t
t p p

x t

p p p

p p

α

σ


+ ∆ ≥ ≤




≡ 



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For the process shown in Eq. (1), the terms in Eq. (4) are: 

( ) ( ), tx t x xα η= − , and   

( ),x tσ σ=  

However, in this case we can obtain negative values or values greater than 1 in the 

following cases: 

If ( )t
x x t σ− ∆ > , then 1

tx
p >  

If ( )t
x x t σ− ∆ < − , then 0

tx
p <  

In these cases the value of pt can be censured according to scheme shown below: 

( )1
           if 0 and 1

2 2

0                                      if <0 ,  is censored

1                                      if >1 ,  is censored

t

t t

t t

x x t
p p

p p p

p p

η

σ

 − ∆
+ ≥ ≤


≡ 




 

 
These conditions are shown in Eq. (5): 

( )1 1
max 0,min 1,

2 2t

t

x

x x
p t

η

σ

  −
= + ∆   

  
    (5) 

where: 

x tσ+∆ = ∆ ;  x tσ−∆ = − ∆        

 

As xt is the ln of price S, then t
S e

σ+ ∆∆ =  and t
S e

σ− − ∆∆ = . These expressions 

are identical to those used in the recombinant tree for a GBM, therefore the result 

is a recombinant binomial tree similar to that obtained with the Cox et al. (1979) 

approach. The probability calculations and their censoring will produce a model 

that converges weakly to a MR process, as shown by Hahn (2005). Note that at 

each node in the lattice the probability of an up movement (pt) will depend of xt, 

generating, according to the equation, a second up probability lattice px,t. 

 

The adjustment required to transform a MR process into a risk neutral process for 

use in option pricing is done in the long term average x , which is penalized by the 

normalized risk premium of the process: xx λ η−
 
(Dixit and Pindyck, 1994, 

Bastian-Pinto and Brandão, 2007). For the risk neutral censored binomial tree, the 

adjustment is made in Eq. (6): 
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( )1 1
max 0,min 1,

2 2t

x

x

x x
p t

η λ η

σ

   − −  = + ∆ 
  
     

   (6) 

 

2.2. Non Censored Mean Reverting Lattice Model 

To develop a binomial model the 1st and 2nd moments (expected value and 

variance) of the stochastic process must match the corresponding moments of the 

binomial lattice. The problem is finding a binomial sequence that converges to a 

stochastic differential equation (SDE) in the form: 

( ) ( ), ,tdx x t dt x t dzα σ= +  

where ( ),x tα  and ( ),x tσ  are respectively functions of the continuous 

instantaneous growth rate (drift) and volatility, and dz is a standard Weiner 

increment. The conditions for a binomial sequence of xt converges to the SDE 

above is that ( ) ( )0

0 0

, ,
t t

t s sx x x s ds x s dzα σ= + +∫ ∫ , exists in 0 t< < ∞ , and that 

( ) ( ) ( ) ( ) ( )2 2, , , , , , , 0t t tx x t x  x t x t  e x t x t , when t 0α α σ σ±
∆ ∆ ∆− − − → ∆ →  . 

 

Using the discretization: ∆t = t – t0 we can write Eq. (2) and Eq. (3) as: 

[ ] ( )1

t

t tE x x x x e
η− ∆

−= + −       (7) 

[ ] ( )
2

21
2

t

tVar x e
ησ

η
− ∆= −       (8) 

 

The objective is to match Eq. (7) and Eq. (8) to the analogous terms for a one 

period binomial process of price S, as shown in  Figure 1: 

Figure 1. Binomial node 

 

 

p 

1-p 

So 

S∆t
+
=S0 u 

S∆t
-
=S0 d 
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For our model we used the approach suggested by Hull and White (1994a, 1994b) 

as described in Clewlow and Strickland (1999) and in Hull (1999), for the case of 

a trinomial tree model of a MR process. First, we define an additive tree, which 

models an Ornstein-Uhlenbeck arithmetic process with a long term mean equal to 

zero: 0x
∗ = , and initial value of zero: 0 0x∗ = . In this lattice the nodes will have a 

value of t
x ∗

. The expected values of the Ornstein-Uhlenbeck model are added to 

the value of the nodes in each period from Eq. (7) using the real long term average 

of the process: x , and the real beginning value of: x0. Hence, this tree of values xt 

is used to obtain the tree of a price process St with lognormal distribution defined 

by tx

t
S e=  

  

Since we are considering xt = ln (St), to study the dynamics of the effect of the 

binomial node we can consider S0 as a unit value, i.e.: S0 = 1 in such a way that 

the relative magnitudes in the binomial process remain unaltered. Since 

0
o

x x∗ ∗= =  
we can write the binomial relationship of the process, which is now 

arithmetic, as 
0x ∗

 
(Figure 2): 

Figure 2. Binomial node for Ornstein-Uhlenbeck process 

 

  

(9) 

 

To approximate this binomial process with the Eq. (7) and Eq. (8) of the Ornstein-

Uhlenbeck process we obtain the following relationships: 

 

x x tσ∗+ ∗= + ∆        (10) 

x x tσ∗− ∗= − ∆        (11) 

( )

( )
2

2 2

1 1

2 2t

t

x

t

x t
p

x t

η

η σ

∗

∗

− ∆
= +

− ∆ +

     (12) 

 

p 

1-p 

x*0 

x*∆t
+ = ln(S0 u) = ln(S0) + ln(u) = U 

x*∆t
- = ln(S0 d) = ln(S0) + n(d) = D 
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The derivation  of Eq. (10),  Eq. (11) and Eq. (12) is shown in Appendix 1. With 

these we can model the additive recombinant binomial tree of mean 0 and initial 

value 0 for an Arithmetic MR process of t
x ∗

. As in Clewlow and Strickland (1999) 

and in Hull (1999), to these values of nodes we should then add the expected 

values obtained by Eq. (7), considering now xo and x  (both no longer equal to 0, 

but with real parameter values of a MR process). The x value after i up 

movements, and j down movements will be: 

t =(i + j)∆t 

( ) ( ) ( ) ( )0,

i j t

i j

x

x x x x e i j t
η σ

∗

− + ∆
= + − + − ∆

�������

, or: 

( )
( )( ) ( ) ( )0,

1
i j t i j t

i j

x

x x e x e i j t
η η σ

∗

− + ∆ − + ∆
= − + + − ∆

�������

   (13) 

The non censured binomial recombinant tree for the geometric MR process, 

defined by: tx

t
S e= , is obtained by directly transforming x(i,j) values in S(i,j) . This 

yields a recombinant Geometric MR binomial tree. The relationship between the 

non-censored model and the Nelson and Ramaswamy (1990) censored is shown in 

Appendix 2. We note that in this non-censored model, the adjustment for risk 

neutrality is given in the equation of expected value of the process, altering the 

value of x given in Eq. (13) to: 

 

( ) ( ) ( )( ) ( ) ( )0,
1

i j t i j t

xi j

x

x x e x e i j t
η ηλ η σ

∗

− + ∆ − + ∆
= − − + + − ∆

�������

 

 (14) 

In the following section we will apply these approaches to the valuation of a 

hypothetical real option, based on historical data, and will compared the results of 

both methods. 

 

 

3. Ethanol Industry Expansion Option Valuation using MR Lattices 

The bio-fuels sector, especially in Brazil, is well known for having several 

managerial flexibilities which must be valued as real options, as shown by 

Brandão, Penedo & Bastian-Pinto (2009), Bastian-Pinto & Brandão (2007) and 

Goncalves, Neto & Brasil (2006), among other authors. To illustrate, in this 
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section we value an option to sugar refining plants to produce ethanol from the 

same base input, sugarcane. For this option to be available an operator must pay 

the exercise price, which in this case is the investment cost of the ethanol plant. 

 

Investments in a sugar refining plant are substantially higher than those of an 

equivalent ethanol plant. A sugarcane processing plant can either be a sugar only 

refinery, an ethanol distillery or a flexible plant capable of producing any mix of 

each product. In order to value option to expand a sugar refinery into a flexible 

plant (sugar and ethanol) we consider the possible cash flows from each mode: 

production of sugar and a small amount of ethanol as byproduct, production of 

ethanol only, and production of both from the same sugarcane processing plant. 

 

As the industrial investment in a sugar refinery is higher than that of an equivalent 

ethanol plant, it is reasonable to assume that a sugar plant that is already in 

operation might want to consider the opportunity to invest in an ethanol distillery. 

We model this embedded flexibility as an American real option where the 

exercise price is the cost of the ethanol distillery unit. 

 

3.1. Modeling the Option to Expand  

The free cash flows from the sugar refinery and from the ethanol distillery plant 

are proportional to the prices of the respective commodities paid to producers. The 

series of prices used are available online at CEPEA (2009). Both series are 

historical prices and were converted into monthly averages from May 1998 to 

January 2010, deflated so as to represent prices of January 2010. The series used 

for ethanol are a mix of anhydrous ethanol (70%) and hydrated ethanol (30%), 

reflecting the ratio produced in the distillery (GONÇAVES et al, 2006; EPE, 

2008). 

 

For each ton of sugarcane that is processed, the sugar refining plant produces 107 

kg of sugar and 12 liters of ethanol, whereas an ethanol distillery plant will 

produce 80 liters from the same amount of sugarcane. Direct taxes are assumed to 

be 16% for sugar income and 4% for ethanol, but production of sugar also 

involves higher variable costs than those of ethanol production, due among other 
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factors, to higher energy consumption by this process. The case considers a 

typical high capacity plant capable of processing 2.6 million tons of sugarcane 

yearly. For this plant size variable costs for sugar were considered to be R$ 4 

million/ year greater than that of ethanol. Income tax is assumed to be 34% and 

the necessary investment for the expansion to the flex plant is R$ 83.2 million.  

 

The uncertain variable modeled for valuation of the real option is the ratio of free 

cash flows of both modes of production: 

 

E A

Free cash flow of ethanol production
R

Free cash flow of sugar production
=  

 

This approach allows the reduction of uncertainties from two to only one 

stochastic variable. The historical behavior of RE/A can be seen in Figure 3, 

together with the historical values of the free cash flows used in the calculation of 

RE/A. Free cash flows were estimated from the prices series available, as 

mentioned. 

 

Figure 3. Monthly free cash flows for sugar and ethanol plants and Ratio of cash 

flows (REA) 

  

 

The option studied is valued as follows: we assume a maturity time of ten years in 

quarter periods (∆t = 0.25), after which the higher cash flow (ethanol or sugar) is 

perpetuated without additional growth. This consideration suggests that the option 

is no longer available after 10 years, which is a limitation of this example. 
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Nevertheless, it is a reasonable assumption, since after this time the value of the 

option should be significantly lower than during the time frame considered.  

 

The base cash flow of sugar production is modeled as the expected value of a 

geometric mean reversion, and the parameters were obtained from the historical 

series (Figure 3). The starting value for cash flow of quarterly production of sugar, 

is: CFs0 = R$ 33.057 million, and the long term level to which it reverts: CFs = 

R$ 22.633 million. The yearly discount rate used, in real terms, is: K = 11.87% and 

the risk free rate Rf = 6.18%. This yields a base case present value of R$ 795.8 

million which is consistent with the values of acquisitions and mergers presently 

occurring in Brazil. 

 

 At each node of the binomial lattice, we have a value of the multiple RE/A. In 

cases where it is lower than 1, the cash flow of the production of sugar is higher 

than that of ethanol production from the same quantity of processed sugarcane. In 

cases where it is higher than 1, the cash flow of ethanol production is that of the 

production of sugar, multiplied by the ratio: RE/A. The initial value (at time t0 = 0) 

of the variable RE/A is 0.78969. This indicates that at the start of the projection, the 

free cash flow of the production of ethanol is lower than that of sugar. This value 

is one of the lowest of the whole series analyzed and should be an inhibitor of the 

investment in the expansion for ethanol production. Nevertheless the high 

volatility of RE/A should almost certainly attribute some value to the expansion 

option. 

 

Initially a lattice is constructed with the values of RE/A according to the stochastic 

process chosen for modeling this variable, with 40 quarterly steps. With the values 

of RE/A modeled in a MR lattice, the values of the free cash flow of ethanol 

production is calculated by multiplying the values of RE/A by the deterministic 

value of the Sugar production cash flows at that step. With the values of the 

ethanol production cash flow, a second lattice is calculated for the present values 

of the expansion project, starting from the end of the 10th year  (40 quarters). At 

this point at each nod we calculate the present value of the production of ethanol 

from its perpetuated cash flows discounted four quarters at the risk free rate (time 
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necessary for starting of operation after decision) minus the cost of expansion, or 

that of the perpetuated sugar production cash flows, whichever is higher.  

 

We then proceed backwards to step 39, where the value at each node is calculated 

as follows: the values from the previous step (step 40), weighted by the risk 

neutral probabilities of the RE/A lattice, and discounted by the risk free rate to 

which is added the ethanol cash flow at the node, or the sugar cash flow, 

whichever is higher, and the value of expansion: the present value of the 

production of ethanol from its perpetuated cash flows discounted four quarters 

minus the cost of expansion. 

We proceed backwards up to step 0.  At step 0 we finally have the present value 

of the project with the expansion option. 

 

3.2.  Comparison of the Modeling of RE/A with the both MR Lattices 

 

The stochastic variable in this option is the rate of cash flows of ethanol 

production to that of sugar production: RE/A. We modeled it as a geometric mean 

reversion using the binomial lattice models presented in the section 2. To verify 

the precision of both the censured and non-censored models, we will show the 

results of the modeling of RE/A as a geometric MR process according to the model 

1 of Schwartz (1997) as defined by Eq. .  

[ ]
2

ln
2

dR x R Rdt Rdz
σ

η σ
η

 
= + − + 

 
     (15) 

where: 

( )lnt tx R= ,  and 

( )dx x x dt dzη σ= − +   

For this model, it is necessary to determine the values of the following 

parameters: 

Ro – initial value (in t = 0) of stochastic variable RE/A t 

x0 = ln(Ro) 

x  – long term mean level to which ( )lnt tx R=  converges 

η – mean reversion speed 
σ – volatility of the process 
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∆t – discreet time interval  
 

The expected value for RE/A behaving according to Equ. (15) is: 

[ ] ( ) ( ) ( ) ( )( ) ( )( )0 0 0

0

2 2
2

exp ln ln 1 1
2 4

t t t t t t

t tE R R e R e e
η η ησ σ

η η

− − − − − −   
= + − − + −  

   
 (16)  

 

It is important to note that Eq. (16) converges to a long term value 

( )2exp 4R x σ η∗ = +  (see Schwartz, 1997). Geometric binomial models with 

( )expt tR x=  must converge to a value: ( )2exp 2R x σ η= + .  Therefore if we 

have ( )2exp 2R x σ η∗ = +  as the long term mean, this transforms the process 

defined by Eq. (15)  to: [ ]( )ln lndR R R Rdt Rdzη σ∗ = − +   

which means that ( )2exp 4R R σ η∗= −
 

From the historical data available of RE/A t the parameters required to 

model the stochastic variable as e geometric mean reversion were derived by 

running the following regression:     [ ] [ ] [ ]1 0 1 1log log logt t tR R Rβ β ε− −− = + +  

The mean reversion coefficient η  is obtained from the regression output as 

( )
t∆

+−
=

1log 1β
η , the volatility is given by 

( )

( )
1

2

1

2log 1

1 1t
ε

β
σ σ

β

+
=

 ∆ + −
 

 where 2

εσ  

is the variance of the regression’s errors, and the long term mean is given by 

2

0

1

exp
2

R
β σ

β η

 
= − + 

 
. For a more detailed discussion of the parameter definition 

in mean reverting models we refer the reader to Bastian-Pinto, Brandão & Hahn 

(2009).  

Parameters for equation (15) were found to be: 

η = 1.97 (per year) 

σ = 30.30 % (per year) 

EA
R  = 1.0388 

In Figure 4 and Figure 5, both censored and non-censored MR lattices for RE/A are 

shown compared with indication of probability of occurrence of each nod (size of 

blue dots), censored nods (red dots) in the case of censored lattice, expected value 



 

from the lattice (solid blue line), expected value from analytic expression (sol

red line), together with 95% certainty analytical interval (dotted red line) and 

equilibrium level (solid green line).
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One difference that is apparent in the lattices is that the expected value for the 

censored lattice differs from the analytical value obtained from equation (16), 

whereas the expected value from the non-censored lattice closely approximates it. 

We then checked the values obtained analytically and from each lattice for the 1st 

and 2nd moment (expected value and variance) of the process described, for the 

first five years (20 periods of ∆t = 0.25). These are plotted in Figure 6. 

 

Figure 6 – Expected Value and Variance from both Lattices and Analytical form 

 

 

We can note that the non-censored lattice closely matches the expected value of 

the Schwartz model 1 (1997) process, but its variance estimate although in the 
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initially diverges from that of the analytical solution, due to the construction 

characteristics of this particular lattice, and then converges to the long term mean. 

Its variance, although at first also diverging from that of the analytical form, then 
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variance, whereas the censored lattice will on the contrary slightly undervalue it 

due to the divergence in the expected value. But it is important to remember that 
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for mean reversion might yield different results. 
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3.3. Results for the Real Option Estimation 

In order to value derivatives, options and real options, a risk neutral price process 

is required since it allows the use of the risk-free interest rate as the adjusted price 

appreciation rate. We then use the Capital Asset Pricing Model to estimate the risk 

premium λ of the stochastic variable RE/A. This was done by regressing the log 

return of RE/A against the return of the Ibovespa stock index of Brazil stock 

market, in order to find the β factors (the beta coefficient of the CAPM), for RE/A. 

It was found to be not statistically different from 0, indicating that the risk 

premium for the stochastic variable can also be considered zero. This is 

reasonable since the variable RE/A is a rate of two cash flows and should have no 

correlation with market risk. Therefore for the stochastic processes considered in 

this paper, the risk premium is zero, and the parameters found for these are 

already risk adjusted for the real option calculation. 

Valuing the expansion option of the sugar processing plant into a flexible 

ethanol/sugar plant with the two lattices developed in this paper yields the results 

shown in Table 1: 

Table 1 – Expansion Option Value 

 Total value $ Option Value  $ (%) 

Base case R$ 795.8 million  

With expansion option 
Censored lattice method 

R$ 847.6 million 
R$ 51.8  million 

(+6.51%) 

With expansion option 
Non-Censored lattice method 

R$ 858.8 million 
R$ 63.0 million 

(+7.91%) 

 

As expected, the option has value and it differs slightly while using each different 

model of lattice. In this particular case, the non-censored lattice seems to approach 

more closely the behavior of the stochastic uncertainty, as its expected value 

replicates more precisely the values of the analytic estimation. Therefore the 

option value calculated by the non-censored lattice probably is more precise than 

with the censored lattice. In this example the initial value of the stochastic 

variable differs significantly (-24%) from the equilibrium level to which it 

converges at a considerably high reversion speed (η = 1.97). Because of the 

construction characteristics of the censored lattice, the expected value calculated 

from it diverges initially from the true analytic result, therefore yielding a lower 

value for the option than what is the correct one. 
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This particular example of the value estimation of a hypothetical real option, 

although based on real data, has the purpose of demonstrating the applicability of 

the non-censored MR process lattice developed in this article, and to show how 

different stochastic modeling may alter the value of a real option. We note that 

this simplified case does not consider any restrictions that may apply in sugar-

ethanol plants such as supply contracts and logistic limitations. 

 

4. Conclusions 

Binomial lattices are an accurate, robust and intuitively appealing approach for 

option valuation. In this article we have developed a non censored lattice model 

for MR processes which has some distinct advantages over currently available 

models. We compare this model with the censored lattice model of Ramaswamy 

(1994) as extended by Hahn and Dyer (2008) and show some of its advantages. 

We then apply both models to the valuation of American options by an mean 

reverting stochastic process, which are typically only modeled with much more 

computationally complex methods such as trinomial lattices or least square 

simulation approaches.  
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Appendix 1: Derivation of up and down values and up probabilities 
for the non-censored binomial lattice for MR process 

Writing 
t

e
η− ∆

  as a Taylor series, we have: 

( )
( )

( ) ( )
2 3

0

1 ...
! 2! 3!

n

t

n

t t t
e t

n

η η η η
η

∞
− ∆

=

− ∆ − ∆ − ∆
= = + − ∆ + + +∑   (17) 

Since a binomial lattice approach implies that we are using short time intervals, 

we can consider all ∆t with an exponent greater than 2 to converge to 0. This 

yields: 

1te tη η− ∆ ≈ − ∆         (18) 

With this relation, we can write Eq. (7) and Eq. (8) as: 

[ ] ( )( )0 0 01 ( )tE x x x x t x x x tη η≈ + − − ∆ = + − ∆    (19) 

[ ] ( )
2

21 1 2
2

tVar x t t
σ

η σ
η

≈ − + ∆ = ∆      (20) 

With ∆t = t – t0, from the binomial process (9), we have: 

[ ] ( )1tE x pU p D= + −       (21) 

For the variance, we also have: 

[ ] [ ]
22

t t tVar x E x E x = +        (22) 

[ ] ( ) ( )( )
22 21 1

t
Var x pU p D pU p D= − − + −  

[ ] ( ) ( ) ( )
22 2 2 2 21 1 2 1tVar x pU p D p U p D p p UD= + − − − − − −  

[ ] 2 2 2 2 2 2 2 2 2 22 2 2tVar x pU D pD p U D p D pD pUD p UD= + − − − − + − +  

[ ] 2 2 2 2 2 2 22 2tVar x pU p U p D pD pUD p UD= − − + − +  

[ ] ( ) ( )2 2 2 2 22 2tVar x p U D UD p U D UD= + − − + −  

[ ] ( )( )
2

1tVar x p p U D= − −       (23) 

Then have the moment matching equations: 

Eq. (19)  ≡ Eq. (21), Eq. (20) ≡ Eq. (23) 

From the first relation above, with 0
o

x x∗ ∗= = , we have: 

( )( ) 1tx t pU p Dη∗− ∆ ≡ + −        

From the second relation: 

( )( )
22 1t p p U Dσ ∆ ≡ − −        
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Therefore we have two equations with three unknowns: p, U and D. In order to 

stay with only two unknowns, we make a consideration that turns the binomial 

tree into a recombining lattice: D = - U. So these equations are now: 

( )( ) 2 1tx t p Uη ∗− ∆ ≡ −       (24) 

 ( )2 24 1t p p Uσ ∆ ≡ −       (25)   

Writing Eq. (24) 2 + Eq. (25): 

( )
2

2 2 2 2

t
x t t Uη σ∗− ∆ + ∆ =  

and substituting in Eq. (24)2, we obtain: 

( ) ( ) ( )( )2 222 2 2 2 22 1
t t

x t p x t tη η σ∗ ∗− ∆ = − − ∆ + ∆  

( )

( )
2

2 2 2

2 1
t

t

x t
p

x t t

η

η σ

∗

∗

− ∆
− =

− ∆ + ∆

       

( )

( )
2

2 2

1 1

2 2t

t

x

t

x t
p

x t

η

η σ

∗

∗

− ∆
= +

− ∆ +

    (26)   

This yields an expression for p as a function of the process parameters (η, σ) and 

the time step ∆t, as well as the value 
t

x ∗ . It is easy to verify that this expression for 

p will always be in the range from 0 to 1, and therefore there is no need for 

censoring as in the Nelson and Ramaswamy (1990) model. With 

t
x tθ η∗= − ∆  we can write p as: 

2 2
0,5 1p

θ

θ σ

 
= + 

+ 
 

Thus, for p > 1 to happen it is necessary that: 2 2θ θ σ> + , which is impossible, 

independently of the sign of θ . 

Furthermore, for p < 0, to happen it is necessary that 2 2θ θ σ− > + , which is 

also impossible.  

Although it is not necessary to censor this lattice, we still have a lattice of up 

movements probabilities  p(i,j) which is dependent of the values of ( , )i jx
∗ . The 
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subscripts i and j represent the number of up movements (i) and down movements 

(j) in the trajectory leading to node ( , )i jx
∗  from the starting point: 

0 0x∗ = .  

To derive the magnitude of the up and down movements, from Eq. (24) we have: 

( )2 1
tx t

U
p

η∗− ∆
=

−
 

with: 

( )
( )

2
2 2 2( )t t

t

x t x t t
U

x t

η η σ

η

∗ ∗

∗

− ∆ − ∆ + ∆
=

− ∆
 

( )
2

2 2 2

tU x t t Dη σ∗= − ∆ + ∆ = −       

However, the expression ( )
2

2 2

t
x tη ∗− ∆  prevents the tree of recombining because 

even with U = - D, it is still a function of xt and therefore does not allow that the 

result from a superior node be equal to that from a low nod. Nonetheless, we can 

consider that ∆t
2 � 0, if we are considering small time intervals. We thus use: 

U D tσ= − ≡ ∆         

So, for this non-censored mean reversion model, of mean 0 and starting point 0: 

x x tσ∗+ ∗= + ∆  

x x tσ∗− ∗= − ∆  

( )

( )
2

2 2

1 1

2 2t

t

x

t

x t
p

x t

η

η σ

∗

∗

− ∆
= +

− ∆ +
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Appendix 2: Derivation of the censored mean reversion model of 
Nelson and Ramaswamy (1990) 

In order to get to Nelson & Ramaswamy (1990) model, from Eq. (26), we first 

consider that in this model there is a long term mean x : 

( )

( )

22 2 2

22 2

1 1 1

2 2
t

t

p

x x t t

x x t

η σ

η

= +
− ∆ + ∆

− ∆

 

( )

2

22

1 1 1

2 2
1

t

p

x x t

σ

η

= +

+
− ∆

 

We then consider that with small values of ∆t, the expression 
( )

2

22

t
x x t

σ

η − ∆
 is 

large when compared to 1, and we can therefore simplify the above equation by 

taking out the 1 from the denominator: 

( )1

2 2

tx x t
p

η

σ

− ∆
≡ +  

Comparing this equation to Eq. (4) we have: 

( ) ( ), tx t x xα η= − , and 

( ),x tσ σ=  

After the simplification above, note that we might get negative values or values 

above 1: 

If  ( )t
x x t σ− ∆ > , then 1

tx
p >  

If  ( )t
x x t σ− ∆ < − , then

 
0

tx
p <  

In these cases, the value of pt needs censoring as shown: 

p





≡ 



( )1
           if 0 and 1

2 2

0                                      if <0 ,  is censored

1                                      if >1 ,  is censored

t

t t

t t

x x t
p p

p p

p p

η

σ

− ∆
+ ≥ ≤

 

These conditions match those already shown by Eq. (6). 

 

 


