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ABSTRACT 

 

A new class of real options models has recently emerged, characterized by the presence of 

“ambiguity” (or “Knightian uncertainty”) and based on recursive multiple-priors preferences. Ambiguity 

is typically described through a range of Geometric Brownian motions and solved by application of a 

maxmin expected utility criterion among them (worst case), but this reduces individual preferences to an 

extreme form of pessimism. In contrast, by relying on dynamically consistent “Choquet-Brownian” 

motions, we show that a much broader spectrum of attitudes towards ambiguity may be accounted for, 

improving the explanatory and application potentials of these appealing expanded real options models. In 

the case of a perpetual real option to invest, it is shown that ambiguity aversion may delay the moment of 

exercise of the option, while the opposite holds true for an ambiguity seeking decision maker. 

Furthermore, an intricate relationship between risk and ambiguity appears strikingly in our model.  

 

 

Keywords: Real Options; Ambiguity; Irreversible investment; Optimal stopping; Knightian uncertainty; 

Choquet-Brownian motions.   

JEL classification codes:  C61; D81; D92; G31 
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1. INTRODUCTION 

Dealing better with uncertainty may contribute to gaining competitive edge and foster value creation. 

Such ambition is at the very core of the real options approach to capital budgeting. But what sort of 

uncertainty entrepreneurs truly face? Is it objective or rather a matter of beliefs and/or tastes? How may a 

real option model be affected after introducing uncertainty? Over the last two decades, breakthroughs in 

decision theory certainly improved the understanding of uncertainty and its multiple forms. Still, giving 

axiomatic foundations to what derives from various psychological biases remains challenging. Transfering 

theoretical advances into practical recommendations is even more delicate, especially in dynamic settings.  

Recently, a new class of real option models was built, characterized by the presence of Knightian 

uncertainty or ambiguity (Nishimura and Ozaki, 2007; Asano, 2005; Trojanowska and Kort, 2010; Miao 

and Wang, 2009). Solving uncertainty by application of a maxmin criterion over the potential outcomes of 

decision, these recursive multiple-priors models identify a significant impact of ambiguity on real option 

valuations and timing of exercise, but only in the case of extreme aversion towards uncertainty. In this 

paper, real options models under uncertainty are expanded to account for the variety of preferences 

towards ambiguity. Indeed, many experiments and studies confirmed that if aversion may be a prevalent 

reaction to uncertainty, excluding  ambiguity seeking  a priori may often be unjustified. 

To account for a wider range of preferences towards ambiguity, we suggest the use of dynamically 

consistent Choquet-Brownian processes to model uncertainty (see section 2.2). This is the key originality 

of our model. In our Choquet expected utility framework, the impact of perceived ambiguity on the 

expected cash flows from a project is summarized by the value of a parameter c: it expresses the nature 

and intensity of the psychological bias revealed by decision makers under ambiguity, that we call c-

ignorance. The probabilistic case is a special case in our generalized real option model to invest, as well 

as the multiple-priors. Section 1 discusses the rationale behind the construction of such models, identify 

some limits, as well as underline how the real options theory is deeply concerned over uncertainty and 

contributes to its improved representation. Key notions and methodological choices are clarified.  
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1.1 Key definitions:  

As Real options
1
 (Myers, 1977) may appear quite frequently, getting a quantitative estimate of the 

cost of opportunity of acting now rather than later may be relevant in many situations. The core of the real 

options theory applies powerful techniques from financial options theory (derived from Black and 

Scholes, 1973, and Merton, 1973), in conjunction with decision analysis concepts, to achieve valuation of 

capital investments (Brennan and Schwartz, 1985; McDonald and Siegel, 1986; Pindyck, 1991; Ingersoll 

and Ross, 1992; Dixit and Pindyck, 1994). Valuing the flexibility inherent to most decision-making 

processes is especially crucial in front of large capital budget decisions bearing high uncertainty, such as 

R&D projects, M&A or intangible asset valuations
2
. Some limits of the standard approach of investment 

decision, net present value and/or discounted cash flow methods (Fisher, 1930; Williams, 1938) are 

improved. It has indeed been shown on many occasions (Dean, 1951; Hayes and Garvin, 1982 and others) 

that discounted cash flows can lead to non-optimal decisions, such as investing too early in projects while 

waiting would allow to create more value, or conversely to wrongly reject projects, for instance by 

ignorance of “growth options” (Myers, 1977). Not always easy to apply in practice, real options models 

may improve risk analyses by giving management the incentive and ability to actively manage sources of 

risks rather than passively following DCF threshold methods
3
. 

Next, if we turn to decision theory, many forms of uncertainty, not reducible to the usual concept of 

risk, have been described and shown to be meaningful. Moreover, preferences revealed by decision 

makers show repeatedly that they are typically not neutral towards uncertainty. Such preferences may be 

due to various psychological biases, whose multiple origins will not be debated specifically here
4
.  

                                                 
1
 A project combining the following three key characteristics is a standard real option: irreversibility (due to the 

presence of at least partially sunk costs), uncertainty (at least as regards to future payoffs) and managerial flexibility 

(regarding the timing of option exercise). 
2
 Mining and petroleum projects often benefit from real option approach. Other industries, such as pharmaceuticals, 

are now increasingly applying these models in their project analyses and management decisions. Hence the strong 

interest expressed towards real options by many theorists and practitioners alike. 
3
 Still, the success of real options theory should not be overestimated yet, as real options are often seen as too 

complex to apply and difficult to put into practice. Real option theory has also suffered from being misused to justify 

unrealistic valuation levels, especially during the internet bubble (for instance with a fraudulent use by Enron). 
4
 See for instance Heath and Tversky (1991) on the striking influence of the self perceived competence level on a 

decision-maker attitude towards ambiguity and subsequent decisions.   
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Let’s underline that we are not to discuss here the normative status of such attitudes towards 

ambiguity; rather, formalization is given to commonly observed revealed preferences in front of uncertain 

outcomes, challenging the well established expected utility framework. Our approach is axiomatic and 

subjective (the measure derives from the decision maker’s preferences), without reference to an objective 

probability distribution that would be subjectively distorted (although it could be an interpretation). 

If uncertainty remains a somewhat vague notion in the litterature, as many different interpretations 

coexist, a clear definition is needed to avoid confusion or misunderstanding
5
. The label “uncertainty” may 

be better used as a generic term, while a specific description is given to its different forms, such as risk or 

ambiguity. Even if the very distinction between risk and uncertainty remains often unfamiliar, or 

perceived as overly theoretical and/or unpractical, it should not be ignored in many settings. Dissociating 

risk and ambiguity was initiated by Knight (1921) and Keynes (1921). A risky situation is defined through 

the existence of a unique probabilistic model, known from the decision maker: it is well aware of the 

random nature of some elements at least, but remains perfectly confident that no model misspecification 

needs to be considered. This is equivalent to adopting a rational expectations framework. To the contrary, 

ambiguity appears when the decision maker is not fully confident that his beliefs on the possible states of 

the world are perfect, when uncertainty cannot be reduced to a single Kolmogorov type of probability 

measure. It may be typically necessary to rely on a range of probability measures.  

Another formulation would be to emphasize that under Knightian uncertainty the information is too 

limited to allow the use of precise probabilities. Experimental studies showed repeatedly that decision 

makers usually prefer to deal with known probabilities rather than imprecise ones and that applying the 

subjective utility model when confronted with ambiguity was consequently often misleading. Most 

typically, decision makers prefer more transparent settings if they are averse to ambiguity (see how the 

knowledge of urn composition dictates preferences in Ellsberg, 1961).  

                                                 
5
 Lets note that such difficulties once also prevailed immediately after the impact of attitudes towards risk was first 

identified in the literature. Following pioneer works (Pratt, 1964: Arrow, 1965) the need to incorporate psychological 

biases into dominant expected utility models has been gradually recognized, for instance in the financial asset pricing 

theory (see portfolio diversification in Kelsey and Milne, 1995) or in the insurance literature. 
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Accounting for preferences towards uncertainty may generate additional complexity in real options 

models. Minimizing this likely drawback is fundamental as such models without uncertainty are already 

often criticized as overly complex! The trade-off between empirical realism vs. tractability of the model 

needs to be recognized and assumed. Furthermore, modeling uncertainty still remains challenging, 

defining ambiguity and/or aversion to ambiguity remains controversial. We follow Schmeidler’s definition 

of aversion to ambiguity in relation to the convexity of capacities
6
. Finally, uncertainty frequently remains 

a somewhat confusing term (Smithson, 1988). Very often, especially in the finance literature, uncertainty 

is reduced to risk only. In this paper, we leave the Bayesian expected utility and its updating issues aside 

to look at the impact of “ambiguity” or “Knightian uncertainty”
7
. We exclude situations where 

fundamental uncertainty prevails
8
. In our framework, ambiguity is generated by missing information that 

could be known (Camerer and Weber, 1992). Moreover, to isolate the effect of uncertainty, the decision 

maker is assumed to be risk-neutral.  

1.2  Real option models under ambiguity: a recent proposal  

The introduction of uncertainty inside economic decision-making models confirmed that the effect of 

ambiguity is different from that of risk alone and is well documented. The real option literature so far 

almost only discusses the impact of increasing risk on valuation of real options and exercise timing
9
. 

Nevertheless, a small number of articles have recently suggested to expand real options models to 

ambiguity. Indeed, as illustrated by Miao and Wang (2009), a wide range of economic decisions may 

indeed be reduced to option exercise choices or optimal stopping problems under uncertainty. 

Furthermore, real options models were precisely developed to allow for a more efficient decision-making 

in presence of flexibility and irreversibility. Finally, as Montesano (2008) points out, ambiguity aversion 

                                                 
6
 Other definitions coexist: Ghirardato and Marinacci (1997) refer to «the neutrality towards uncertainty a priori » 

and Epstein (1999) suggests the use of sophisticated probabilities. Several competing notions coexists such as « the 

aversion towards uncertainty » (Châteauneuf, 1994), « pessimism » (Arrow et Hurwicz, 1972) or the preference for 

« randomization » (Eichberger et Kelsey, 1996). 
7
 These expressions may be used indifferently. Refering to Knightian uncertainty is frequent in the literature, but may 

seem a little farfetched if Knight’s original proposal is replaced in its context. 
8
 Even subjective probabilities should not be used if uncertainty is fundamental (Davidson , 1991; Vickers , 1994).   

9
 Contrary to the standard conclusion of neoclassical theory on investment (Markowitz, 1952; Tobin, 1958), an 

increase in risk (volatility) is almost always shown to have a positive impact on the valuation of real options (see 

McDonald and Siegel, 1986). Renewed controversy may be found in Sarkar (2000) and Lund (2005). 
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seem important in financial markets, where agents are concerned over the level of transparency (i.e the 

reliability of the probability distribution of outcomes they refer to). Real options decision makers should 

just be as concerned over it. This apparent lack of interest may be due to the relative distance between 

these fields of research and expertise or may result from the persistent fragmentation of the decision-

making research itself when dealing with ambiguity.  

Indeed, ambiguity representations generally translate into non-linearity of probabilities (Feynman, 

1963), while many non additive models coexist (Cohen and Tallon, 2001). Moreover, several technical 

and theoretical issues persist, especially the difficulty in insuring dynamic consistency. Dynamic 

consistency implies that decision makers, once committed to a contingent plan, are not changing plans 

later on during the process. This apparently limits freedom of choices at successive stages, but is a 

condition for rational inter-temporal behavior, preserving decision makers from irrational erratic behaviors 

(such as money pumps or Dutch books). Dynamic consistency remains a key prerequisite to using non-

additive models in a dynamic setting, one that often remains highly problematic. 

Adressing it, among many, two models have taken the lead: on the one hand, the multiple-priors 

preferences (Gilboa and Schmeidler, 1989) approach which is based on the maxmin criterion (optimization 

under a worst case scenario), and on the other one, the Choquet expected utility (CEU) models (Gilboa, 

1987; Schmeidler, 1989; Sarin and Wakker, 1992). None of them truly managed to gain full acceptance 

but they offer far more potential than most of their competitors, especially to deal with practical issues
10

. 

Another stream of literature has been associated with the representation of “Knightian ambiguity”, that of 

robust control
11

. Klibanoff et al. (2005) propose a promising smooth version of ambiguity, by adjusting 

subjective probabilities through a smooth functional. But so far, the most established model in the 

decision-making under uncertainty literature remains the recursive multiple-priors model, that was 

adapted to a dynamic setting by Chen and Epstein (2002).  

                                                 
10

 Let’s underline that when CEU applications are based on convex non-additive measure, then multiple priors and 

CEU may correspond (through the core), at least in a static framework. 
11

 Hansen et al. (2001) shed light on the relation between robust control and aversion to ambiguity, and relate it to the 

solving of a maxmin problem with multiplier preferences. Chen and Epstein (2002) underline some key differences. 
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This model uses properties from recursive utility functions
12

 and multiple-priors (Wald, 1950; Dreze, 

1961) to allow for dynamic consistency
13

, even in the presence of uncertainty (Epstein and Zin, 1989; 

Duffie and Epstein, 1992; Epstein and Wang, 1994; Epstein and Schneider, 2003). Most recently, Riedel 

(2009) develops a martingale theory for multiple-priors, generalizing existing optimal stopping theory 

under multiple-priors uncertainty. Overall, multiple-priors models helped re-interpret several apparent 

paradoxes in finance, especially when observations repeatedly contradicted predictions from standard 

expected utility models, such as the “equity premium” puzzle (as identified by Merha and Prescott, 1985) 

or the “home bias” puzzle (Epstein and Miao, 2003). Other articles have presented remarkable 

contributions, expanding applications to portfolio choices (Epstein and Wang, 1994), contract theory 

(Mukerji, 1998)
14

 or to explain the own-equity effect (Boyle et al., 2003). On the other hand, Choquet 

rationality
15

 may appear less intuitive than the maxmin optimization. But a few articles
16

 used it to 

describe the potentially striking impact of ambiguity in the financial markets. Montesano (2008) showed 

recently that uncertainty aversion with Choquet expected utility leads to decreasing trading volume on the 

call options market as ambiguity increases. These pioneer articles confirmed the explanatory potential and 

specificities of Choquet ambiguity representations.  

1.3.  Real option models under multiple-priors : 

Looking at a real option to invest, Nishimura and Ozaki (2007) show that ambiguity impacts the value 

of irreversible investments in a « drastically » different manner from that of “traditional uncertainty” 

(risk). In their model, increasing uncertainty affects negatively the investment value, while an increase in 

risk increases it. But as regards the timing of exercise, in both cases the value of waiting increases, thereby 

delaying option exercise. This notable conclusion illustrates the power of introducing ambiguity in real 

options models. Nevertheless, other articles have been less conclusive regarding the impact of ambiguity 

                                                 
12

 Koopmans (1960) and Lucas and Stokey (1984) paved the way for recursive utility framework. 
13

 We refer to Sarin and Wakker (1988), Machina (1989) and Eichberger and Kelsey (1996) for detailed discussion 

of dynamic consistency issues within such models. 
14

 Uncertainty aversion may lead to incompleteness of financial markets (Mukerji and Tallon, 2001), or to unstable 

portfolio preferences with no equilibrium identifiable (Dow and Verlang, 1992; Epstein and Wang, 1994). 
15

 The article on Choquet rationality by Ghirardato and Le Breton (1999) describes how the usual definition of 

rationality is expanded to englobe a larger set of beliefs, including non additive beliefs (or capacities). 
16

 See for instance the impact of Choquet preferences on portfolio allocation in Basset et al. (2004). 
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(early exercise or no, increased option value or not). Nishimura and Ozaki (2004) themselves showed that 

in a job search real option model, more ambiguity may lead to earlier option exercise.  

Other models at least converge in demonstrating that introducing ambiguity is not trivial. In 

Trojanowska and Kort (2010), ambiguity aversion has an equivocal impact on the value of waiting, 

accelerating investment only in certain situations. Asano (2005) show that an increase in uncertainty may 

delay adoption of environmental policies. Miao and Wang (2009) suggest to reconcile some contradictions 

in these results by considering the moment of resolution (or not) of ambiguity: the prospect of a persisting 

ambiguity after option exercise may possibly delay option exercise rather than accelerate it. Overall, these 

models confirm that ambiguity impacts real options valuation and timing of exercise. But by construction 

only the worst-case scenario is considered, which reduces the behavioral bias to pessimism
17

. 

Furthermore, ambiguity and attitude towards ambiguity are mixed and impossible to distinguish
18

.  It is 

arguable that through the size of the set of priors a belief towards the level of ambiguity may be expressed 

(the larger the set, the more ambiguity is introduced) but that is not sufficient. 

The remainder of the paper is organized as follows. In section 2, our alternative proposal to the 

recursive multiple-priors models is described, as dynamically consistent Choquet-Brownian motions
19

 

(CBM) are used to model uncertainty. Section 3 applies this approach to a real option to invest and 

identifies the threshold project values. Section 4 provides with a sensitivity analysis illustrating the 

characteristics of our new optimal investment rule. Some analytical results are established, then 

complemented by simulations, as standard in the literature on real options models with multiple-priors, in 

order to get clear comparison of results. Section 5 discusses main results in relation to previous works and 

presents our concluding remarks.  

                                                 
17

 To avoid ignoring the existence of a whole range of probability measures, several other criteria have been 

proposed. Ghirardato and Marinacci (2004) following Arrow and Hurwicz (1972) have for instance proposed to 

combine worst case scenario with best case in a convex combination. See also Chateauneuf, Eichberger and Grant 

(2006) on neo-additive capacities, or Schroder’s non dynamically consistent proposal (2007).  
18

 This is much weaker than the dichotomy established for risk: risk is determined by the shape of the probability 

distribution of outcomes, while risk aversion results from the curvature of the decision maker’s utility function.  
19

 A Choquet-Brownian motion (Kast and Lapied, 2008) is a distorted Wiener process, where the  distorsion derives 

from preferences towards ambiguity. It was shown to be the continuous time limit of a specific kind of random walk, 

the Choquet Random Walk (CRW). A Choquet Random Walk may be described as a binomial lattice (Bernoulli 

model) with equal capacities (instead of additive probabilities) on the two states at each node. (See 2.2.2) 
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2. RECURSIVE MULTIPLE-PRIORS PREFERENCES VS. CHOQUET-BROWNIAN PROCESSES 

2.1. Recursive multiple-priors:  

Suppose the profit flow of a project (patent, etc) at the disposal of a decision maker is described as 

following a geometric Brownian motion (GBM) with a drift
20

. Launching the project has a defined cost 

(construction, etc), which is sunk (irreversibility). So far, this set up may be assimilated to that of a 

classical financial call option, allowing to rely on financial options pricing techniques. But suppose the 

decision maker is not perfectly confident about the extent to which the GBM actually model properly the 

expected profit flow dynamics. Ambiguity is consequently introduced and takes the form of a distortion 

from the original GBM. Chen and Epstein (2001) proposed the use of a set of density generators to build a 

range of probability measures representing small deviations from the original probability measure. Small 

deviations only are allowed as the subjective beliefs are constrained by adopting an additional boundary 

condition. A constant is used to limit the scope of the accepted deviations in a range  ,  . Chen and 

Epstein refer to the concept of  -ignorance, where constant  derives from a fundamental hypothesis, 

rectangularity, in order to guarantee dynamic consistency. Such construction is possible in application of 

Girsanov’s theorem
21

 on equivalent probability measures (applying a density generator to a Brownian 

motion results indeed in another Brownian motion). Nishimura and Ozaki (2007) offer a detailed 

presentation of such a construction, including clear explanations of the crucial hypothesis in the Epstein 

model, that of rectangularity, which insures dynamic consistency
22

. To sum it up, ambiguity is introduced 

in a limited way inside an optimal stopping model, through a set of geometric Brownian motions which 

differ only by their drift. The subsequent optimization is solved by dynamic programming and use of Ito’s 

                                                 
20

 This special connection between stochastic processes and finance roots back to Bachelier’s dissertation (1900). 

Success of such processes have to be balanced with some limits, especially due to the basic reduction of real life 

phenomena (such as share prices moves for instance) to an overly simple geometric Brownian motion. Controversy 

is further discussed in many articles and recent financial crises led to strong criticism of models based on GBM.  
21

 Girsanov’s theorem applies to finite time intervals only (Karatzas and Shreve, 1991). But it is a common 

approximation in the literature on financial options when referring to infinite horizon. We adopt it here as well. 
22

 On rectangularity: beliefs are constrained to a set of “one-step-ahead” conditional probabilities in Chen an Epstein 

(2002), Epstein (2003) and Roorda (2004). The rectangularity property allows for recursivity, which in turn insures 

dynamic consistency (Sarin and Wakker, 1998). This property is sometimes referred to as time-consistency or 

stability under pasting. We refer to Kast and Lapied (2008) for a discussion of the rectangularity hypothesis in the 

context of Choquet-Brownian motions. 
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Lemma in order to identify the continuation region (values V of the project for which it is not yet optimal 

to invest so no action is recommended) and the critical value *V , such that it is optimal to invest only 

once *V V . It is typical to consider a profit flow following a geometric Brownian motion (t)0≤t≤T, 

where T  is the expiration date, 0  > 0, Bt is the standard Brownian motion with respect to the original 

probability measure (towards which the decision maker is perfectly confident) and  and   are some real 

numbers, with  > 0 and  < , where  > 0, is the firm discount rate. In the absence of uncertainty, the 

profit flow is then represented by the following expression:   
t t t td dt dB   

 
        (1) 

This contrasts with the result obtained under Knightian uncertainty and recursive multiple- priors 

model, as a set of stochastic differential equations is now to be used. By construction, 
t t tdB dB dt   , 

so now we obtain the following modified expression for the profit flow:  

                    ( )t t t td dt dB                                   (2) 

The difference between adopting ambiguity (2) or not (1) is then resumed in a single modification, as 

  is simply replaced by ( )  . The absence of ambiguity is included as a special case, when 0  . 

this is sufficient to demonstrate that uncertainty has an impact different from risk alone. But as the 

decision maker considers only the worst case, ambiguity aversion leads to a unique case: only the lowest 

possible value of the project cash flow growth rate is considered. 

2.2 Uncertainty through Choquet-Brownian processes  

2.2.1. Foundations 

In this paper, we adopt another approach to model uncertainty, in order to avoid some limits inherent 

to the maxmin criterion. As usual, the decision maker expresses preferences relative to the uncertain 

payoffs generated by a real option project at various dates. But this time they are taken into account in a 

different way, by referring to capacities (instead of additive probabilities) to weight likelihood of events 
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and by relying on discounted Choquet integrals to compute payoffs value
23

. Let’s first clarify these key 

notions before showing how the dynamics of the real option cash flows will consequently be represented 

by a distorted kind of Brownian motions (that we call Choquet-Brownian motions) rather than by a 

standard geometric brownian.  

A capacity on a finite set of states of nature S is a real-valued function   on the subsets of S such 

that: ( ) 0, ( ) 1;v v S   ( ) ( ).A B A B     So one of the key characteristic of a capacity is to be 

nonadditive, which can be used to explain preferences for known probabilities (Ellsberg) and represent a 

wide range of attitudes towards ambiguity. Why capacities rather than probabilities? Schmeidler (1989) 

linked the convexity of capacities with a representation of ambiguity aversion
24

. This behavioral 

interpretation of capacities is at the basis of our construction. Let’s note that a capacity is convex if: 

( ) ( ) ( ) ( ).A B A B v A B         

When beliefs are represented by capacities, the resulting expected utility cannot be computed through 

Lebesgue integrals for several reasons, such as the violation of monotonicity. A specific notion of 

integration is required, which in particular will take into account the rank of outcomes (see Rank 

Dependant Expected Utility in risk models). To compute the decision maker preferences, which take the 

form of cash valuations regarding future uncertain payoffs, we need to use a criterion allowing 

computation of a certainty equivalent when integrals are non-linear. Using Choquet integrals allows just 

that in our setting. We adopt the framework described in Kast and Lapied (2007), including 

axiomatization of dynamic consistency
25

 and discussion of conditioning. In this setting, preferences of the 

decision maker for a process of payoffs  X = (X0,…, XT) are represented by the discounted Choquet 

expectations, at rate r, with respect to a capacity  . The certainty equivalent of the process is then:  

0

( ) ( ) ( )
T

t

t

DE X r t E X


 , where: 



E (X t )  X t (st )(st )
st St

 ,               (3) 

                                                 
23

  The « expected value » of an outcome on a given capacity may be computed through the use of Choquet integral. 

Applying Choquet integrals and capacities was suggested in modern decision theory by Schmeidler (1982, 1986).   
24

  Epstein (1999) or  Ghirardato and Marinacci( 2002) discuss the equivalence convexity/ ambiguity aversion. 
25

  One of the key axioms used being the property of additivity of Choquet integrals for co-monotone functions. 
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with the usual notation for a Choquet integral for which, if, for instance, Xt(s1) ≤…≤ Xt(sN), 

(sn) = ({sn,…, sN}) – ({sn+1, …, sN}), with {sN+1} = , for notational convenience. It is then possible 

to compute the Choquet expected value over the Choquet-Brownian motions (CBM) that are used to 

describe the dynamics of uncertain future cash flows in our real option to invest model.  

CBM may be better understood as dynamically consistent continuous-time limits of Choquet 

Random Walks
26

 (CRW). CRW are defined in discrete time by refering to a binomial lattice representing 

uncertainty with equal capacities (rather than probabilities) on the two states at each node. In order to 

characterize a CRW, suppose that for any node st at date t (0 ≤ t < T), if s
u

t+1 and s
d

t+1 are the two possible 

successors of st at date t+1 (for, respectively, an “up” or a “down” movement in the binomial tree), the 

conditional capacity is a constant c. Suppose we consider a symmetrical random walk (when “up” and 

“down” movements are of the same magnitude
27

), such that:  



(st1
u /st) (st1

d /st )  c , with 0 < c < 1.  

The constant conditional capacity c plays a key role in such setting: it summarizes the decision 

makers’attitude towards ambiguity. Indeed dynamics is now described by a discrete time motion in which 

probability ½ is replaced by this constant c : it represents the ambiguous weight that the decision maker is 

putting both on the event « up » and the event « down » instead of the unambiguous ½. Just like  is used 

to describe  - ignorance
28

, we may use the expression c-ignorance in relation to the value of c. 

When the decision maker is ambiguity averse, the capacity is sub-linear: this is the case if and only if 

parameter c < 1/2. This relates to Yaari’s definition of aversion to risk as a result of sub-linearity (1969, 

1987)
29

. Obviously if c=1/2 then we get back to the probabilistic framework, as a special case. Let’s 

underline that an increase in perceived ambiguity in our setting means that the value of parameter c is 

going further away from its central key anchor ½: the capacity becomes more convex (increasing 

ambiguity for an ambiguity averse) or more concave (increasing ambiguity for an ambiguity seeker). 

                                                 
26

  Just like a standard binomial tree converges to a Brownian motions  in continuous time. 
27

  Expansion to non symmetrical random walks would be possible in this setting, at least in discrete time. 
28

 As a continuous time counterpart, in a different context, to  -dissemination, where  represents the degree of 

“contamination” of confidence in the probability measure (Chen and Epstein, 2002). See also the relation with i.d.d 

uncertainty (“independently and indistinguishably distributed”). 
29

 See Montesano (1990, 1991) for discussion of competing definitions of aversion to risk (mean preserving spreads 

versus risk premium) and impact of adopting non-expected utility models. 
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2.2.2 Convergence towards Choquet-Brownian motions: 

A symmetrical CRW was shown to converge in continuous time to a general Wiener processes with 

distorted mean 2 1m c   and variance 
2 4 (1 )s c c  . This allows to solve basic optimal investment 

problems, such as real option models under uncertainty. Overall, not only is taken into account the impact 

of the intrinsic randomness of trajectories due to the stochastic nature of profit flows and project value 

(which is already typically achieved by using geometric Brownian motions), but also simultaneously the 

level of c-ignorance, hence the attitude towards ambiguity. What are the consequences of adopting this 

framework? The profit flow is modified as follows:  dt =  t dt +  t dWt,                         (4) 

with dWt = m dt + s dBt, where Wt is a general Wiener process with mean m = 2c–1 and variance 

s
2
 = 4c(1–c). So that we derive the following modified equation:  dt = ( + m ) t dt + s  t dBt          (5) 

This relation is naturally of the same type as the one obtained in the no ambiguity case (1) or with the 

maxmin ambiguity (2). In both cases, parameter uncertainty replaces model uncertainty after a change of 

measure. Only this time parameters m and s, directly deriving from c, are introduced to represent the 

decision maker’s attitude towards ambiguity. Some implications appear clearly: if for instance the 

decision maker is ambiguity averse, then parameter c<1/2. Consequently, 0< c < ½ implies – 1 < m < 0 

and 0 < s < 1, and then  +m <   and 0 < s < .  We already get an insight into the potential impact of 

Choquet-Brownian uncertainty, at least on the profit flow: it introduces a reduction of the instantaneous 

mean, but also of the volatility in the case of aversion to ambiguity.  

The last result was not necessarily expected. Overall, (5) leads to different results from the case for 

risk only, as well as the maxmin recursive model, for which the profit flow is also modified but only its 

drift
30

 (Epstein and Schneider, 2003). With Choquet-Brownian uncertainty, to the contrary, the effect of 

the Choquet distortion on the standard profit flow is equivocal, reducing both the instantaneous mean and 

the volatility for an ambiguity averse decision maker. Introducing ambiguity with CBM is not neutral, but 

consequences remain unclear at first.  

                                                 
30

 Ambiguity into a multiple-priors model is reduced to risk, which may be questionable. 
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3. MODEL: A REAL OPTION TO INVEST UNDER AMBIGUITY 

Suppose a decision maker enjoying an option to invest into a new project (for instance a patent). 

This project presents the essential characteristics of a real option: it is irreversible (once decided, 

investment is instantaneous while its cost, noted I is sunk); it is only affected by time decay; its exercise 

can be delayed and the choice of timing belongs exclusively to the decision maker. Decision will be taken 

based exclusively on observed information about stochastic cash flows. In the absence of uncertainty, 

McDonald and Siegel (1986) presented the seminal version of such irreversible investment decision. 

Notice that we adopt a continuous time horizon
31

, time being indexed by 0t  . If the project has finite 

life, T  is the expiration date of the project. All information available at each t  is represented by an 

increasing filtered probability space ( , , )TF P . The decision maker is risk neutral and cash flows are 

discounted at rate 0  . Cash flows for the project have to be estimated. They move over time at least 

partially in a random way, so we need to rely on some sort of stochastic processes, combining dynamics 

with uncertainty. Over a given sequence of possible stochastic payoffs, an optimal stopping time has to be 

identified, maximising the expected overall result
32

. 

Proposition 1.  Suppose a decision maker considering a real option to invest in a project at sunk cost I 

and facing Knightian uncertainty. Suppose that this uncertainty affects the profit flow ( )s s t 
, expected 

from exercising the option, and that this state variable follows a Choquet-Brownian motion, as 

characterized earlier in section 2. Then, the project value 
tW  at time t , with expiration time T , is equal, 

once exercised, to the expected value 
PE of the discounted

33
 cash flows with respect to the probability 

measure P conditional on the filtration
tF defined previously, such that:  

   ( ), /
T

P s t

t s t
t

W t E e ds F   
                         (6) 

                                                 
31

 Continuous time models leads to more explicit computations, but sometimes by using numerical methods. 
32

 Optimal stopping problem grew in the 1960s (see Chow and Robbins (1961, 1963, 1971) following original 

generalization of sequential analysis by Snell (1952). In general, stopping rule problems do not have closed form 

solutions and methods of finding approximate solutions must be used. 
33

 At exogenous discount rate  , such that   in order to avoid triviality. 
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Proof: Simply derived and slightly adapted from standard demonstration in the literature since 

McDonald and Siegel (1986). For more progressive treatment, we refer to Dixit and Pindyck (1994, 

chapter 4 to 6). Trojanowska and Kort (2010) offer clear and detailed proofs in the context of real options 

under ambiguity with multiple-priors. The same holds true for proposition 2, 3 and 4. 

The decision maker has to determine the optimal moment 't ,  ' ,t t T when to exercise the option 

to invest. This 
tF -optimal stopping time is the one which maximises the value in 0t   of the project, 

over the whole period considered (principle of optimality), taking into account the discounted cost of 

investing, at discount rate  . The stopping time is a random variable that described the exercise date of 

the option. We rely on dynamic programming
34

 to identify optimal sequential decision under uncertainty
35

. 

Proposition 2.  Option value 
tV at time t, while still not exercised, is the following: 

 
( ) ( ' )

'' ( , )
max /

T
P s t t t

t s t
tt t T

V E e ds e I F    



  
                                 (7) 

Proof: As justified earlier.  

As proved many times, (see for instance Asano, 2005), we obtain from (6):  

( )( )( , ) exp( ( )( )) (1 )
T

T tt

t t
t

W t s t ds e  
   

 

       
          (8) 

If the project is perpetual, then computation is much eased: it is indeed common assumption to adopt 

an infinite planning horizon and a never expiring project (cf. Dixit and Pindyck, 1994, or Trigeorgis, 

1996). We will then proceed by adopting a stationary model.  

Proposition 3. Under stationary hypothesis, the value for the project is the standard expected value of a 

perpetual profit flow, which can be simplified as such:  ( ) t
tW




 



            (9) 

Proof:  See for instance Dixit and Pindyck (1994, p72). 

                                                 
34

 See Stokey, Lucas and Prescott (1989) for deep treatment of dynamic programming in economic settings. 
35

  See Markov stopping rule problems in Chow, Robbins and Siegmund (1972) and Shirayev (1973). 



 17 

It is not possible to apply ordinary rules of derivation to Ito processes. But the use of Ito’s lemma 

allows differentiation and integration of functions of stochastic processes. In the absence of ambiguity, we 

obtain the following expression by applying Ito’s lemma to (9):    
t t t tdW W dt W dB  

        
(10) 

Under Choquet-Brownian ambiguity, this relation is naturally of the same type as for the cases of no 

ambiguity or maxmin ambiguity, only this time m   and s  in place of  and . Hence, we rewrite 

the formula (10), as described earlier in previous section: (       ) t t tdW m W dt s WtdB             (11) 

Project value (9) is consequently rewritten to take into account the presence of ambiguity:  

( )
( )

t
tW

m




  


 
                                  (12) 

Proposition 4.  If the project value W is now technically supposed to be independent from physical time t , 

then the option value 
tV  only depends on 

tW . Consequently, it is a solution of the following „Hamilton-

Jacobi-Bellman‟ type of function, which will be solved by dynamic programming:  

 ( ) max , ( ) ( )P

t t t t t tV W W I E dV F V W V W dt                         (13) 

Proof: As justified earlier. See for instance Nishimura and Ozaki (2007),  p681. 

We now clearly identify characteristics of the optimal investment strategy: existence of a (unique) 

critical value *W such that option is exercised if and only if 
*

tW W ; if not, option is kept moving 

forward, defining a continuation region where 
*

tW W . In the right side part of (13), the first term 

tW I represents the value of investing now by exercising the option, while the second term corresponds 

to the value of waiting. Notice that both terms on the right hand side of (13) must be equal in the 

continuation region. Hence, in this continuation region: ( )P

t t tE dV F V W dt                  (14) 

Applying Ito’s lemma to expand ( )tdV W , supposing that V is twice differentiable in the continuation 

region and ' 0V  , if we now combine (14) and (11) we obtain:   

' 2 2 ''1
( )(( ) ) ( ) ( )

2
t t t t t t tdV V W m W dt s W dB s W V W dt            (15) 
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From (15), the relation obtained is satisfied for every dt , then we derive the following second-order 

ordinary differential equation for V , as:  

                

2 2 '' '1
( ) ( ) ( ) ( ) ( ) 0

2
t t t t ts W V W m WV W V W                    (16) 

Further assumptions are necessary in order to solve equation (16), holding in the continuation region. 

We adopt the following standard boundary conditions: value matching, smooth pasting and absorbing 

barrier. If we note 
*W the critical value (or reservation value) triggering the option exercise, then: 

* *( )V W W I    “value matching condition”
36

                                 (17) 

' *( ) 1V W    “smooth pasting condition”             (18) 

(0) 0F    “absorbing barrier condition”             (19) 

We explicitly solve (16) under conditions (17) to (19) in order to get the option value in the 

continuation region, ( )tV W  as well as the critical value (or free boundary) 
*W , so we obtain

37
:  

1( ) ( )
1

t t

I
V W W  



 


   
*

tW W     (20) 

and 
*

1
W I







          (21) 

In the exercise region, 
*

tW W , ( )t tV W W I  .                (22) 

and  is a constant
38

, whose value depends on parameters , , ,c   , so defined:  

2

2 2 2

2

1 1
(( ) ( ) ) ( ) ( ) 2 ( )

2 2

( )

m s m s s

s

       




 
       


    (23) 

with m = 2c–1 and  s
2
 = 4c(1–c) (see section 2). 

                                                 
36

 (17) implies that investing in the project gains a net payoff equal to *V I . (18) is derived from the first-order 

condition when maximizing project value. (19) if the investment value has no value, then the option is worthless. 
37

 See for instance Dixit and Pindyck for simple treatment (1994, p142-143), getting solution through dynamic 

programming (using linear combination), as well as description of fundamental quadratic’s intuition.  
38

 1   so that W* and V are well defined, which in the multiple-priors also holds as   and 0  (see 

Nishimura and Ozaki, 2007, Annex A.5.).  
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Let’s summarize our optimal stopping problem in the context of ambiguity represented by CBM: 

Proposition 5. Assuming a real option to invest under Choquet-Brownian ambiguity as defined in 

propositions 1-4, optimal strategy and value of investment  are summarized in (20), (21), (22) and (23).  

This is of course close from what is obtained in the case of absence of uncertainty, which becomes 

a special case. We observe the introduction in key formulas of parameters m and s, directly deriving from 

c, which resumes the attitude of the decision maker towards ambiguity.  

4. COMPARATIVE STATICS 

After identifying the optimal investment rule, what happens if parameters change? We compare the 

effect of a change in risk (that is an increase in volatility) with that of a change in Knightian uncertainty 

(either represented by  in the multiple-priors or by c with Choquet-Brownian ambiguity). We obtain 

several analytical results, more specifically regarding the impacts of risk and ambiguity on project values 

in the stopping region. Regarding the critical reservation value and the timing of option exercise in the 

presence of ambiguity, we use some simulations
39

 results, as standard in the real option under ambiguity 

literature, to show the critical impact of changing parameters and examine the characteristics of the 

optimal investment rule when analytical results are not easily computable.   

4.1. An increase in risk  

In the absence of ambiguity, the well know result of an increase in risk consists in the increase of 

the value of the project in the continuation region and in the reservation value, while the value of the 

project once the option has been exercised does not change. Exercise of the option is delayed. If now we 

introduce ambiguity, we show that a change in risk also impacts the exercised project value. Differences 

in original attitude towards ambiguity may explain why the same variation in risk may be looked over 

differently by decision makers revealing different attitudes towards perceived uncertainty, with potentially 

drastic consequences in terms of valuation.  

                                                 
39

 Simulation results have often to be taken with a pinch of salt. Different parameters may likely influence each other 

and interpreting can be hazardous at time. Nevertheless, simulations are an important tool in practice when dealing 

with real options. From collecting adequate data on past demand for instance, are generated prospective future 

demand trajectories. Stochastic dynamic programming in the context of real options rely on quality of information 

used, that is sound data collection, analysis and industry expertise. 
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Proposition 6. In the presence of ambiguity, a change in risk levels impacts project value in the stopping 

region. An increase in risk leads to an increase in the value of the project once the option has been 

exercised if and only if the decision maker is ambiguity lover (c>1/2). The opposite holds true if the 

decision maker is averse to ambiguity (c<1/2).  

 Proof: See appendix A 

4.2. An increase in ambiguity (c-ignorance):  

In this subsection we now wish to analyze the effect of a change in c-ignorance on project value, 

continuation value, reservation value and timing of exercise
40

.  

 4.2.1. Project value in the stopping region 
*

TW W : 

This time let’s recall that in the presence of Choquet-Brownian uncertainty ( )m  replaces , so:    

( )
( )

t
tW

m




  


 
          (12) 

The impact of an increase in c-ignorance in the stopping region is the following: if the decision maker is 

ambiguity averse,  + m , thus project value W in the stopping region decreases. The opposite holds 

true for an ambiguity lover. This result generalizes the multiple-priors model, in which an increase in  - 

ignorance always translates into a decreased value for the project (indeed the decision maker remaining 

averse to ambiguity and only considers the lower born).  

 4.2.2. Project value in the continuation region 
*

TW W :  

From now on, computation is not trivial and we cannot derive analytical solutions through 

simplifying derivatives. Using simulation, here we find that if we fix , ,   : if the decision maker is 

ambiguity averse, an increase in ambiguity leads to a decrease in project value in the continuation region. 

The opposite holds true for an ambiguity lover.  

                                                 
40

 Let’s recall first that an increase in perceived ambiguity in our setting means that the value of parameter c is going 

further away from its central key anchor ½ (corresponding to the limit probabilistic case, that of an absence of 

ambiguity). Possible deviations are confined in a range and c represents the index of the intensity and nature of 

perceived ambiguity (or c-ignorance).  
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  4.2.3. Reservation value: 
*

1
W I







 

Let’s note that when , 1,    then the hysteresis factor
1



 

41
; this means the reservation 

value decreases. As shown in the previous section,  depends on 4 parameters, the degree of c-ignorance  

c (which in turn determines the values for s and m), the growth rate  , the discount rate  , as well as the 

volatility .  

We may summarize briefly some side results concerning growth rates  and discount rates  , 

identifying how they also impact reservation values and timing of exercise of option: 

- If , ,c    are fixed, then according to our simulation:   , that is an increase in the growth 

rate decreases  , which in turn means the reservation value *W increases (see fig.1 in appendix B).  The 

attitude towards ambiguity (lover, averse, neutral) does not change the direction of the trend, but an 

ambiguity lover’s reservation value is always higher than that of a neutral or averse one.  

- Now if , ,c    are fixed, then according to our simulation:   , that is an increase in the 

discount rate increases  , meaning the reservation value *W decreases (see fig.2 in appendix B). The 

attitude towards ambiguity does not affect the trend, but an ambiguity lover reservation value is once more 

always higher than that a neutral or averse one.  

Let’s now turn to our main point of discussion, the impact of a change in c when all other 

parameters are fixed: if , ,   are fixed, then if the decision maker is ambiguity lover, an increase in c-

ignorance will lead to a decrease in α. Reservation value increases. The opposite holds true for an 

ambiguity averse (see fig.3 in appendix B). In the case of aversion towards ambiguity, the observed 

decrease in reservation value is similar to that in Nishimura and Ozaki (2007). But we also establish the 

opposite result for an ambiguity seeker.  

                                                 

41
 Let’s note that as long as 1,  1

1







. Hence 

* 1W  , which is sufficient to rule out as incorrect the 

traditional static NPV criterion. 
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4.3.4. Value of waiting 

Next, we explore the connection between a change in reservation value and the subsequent impact 

on timing of option exercise. If we reinterpret the reservation value *W  in terms of a reservation profit 

flow * , then from adapting (12), we get: 
*

*
( )

W
m



  


 
that can be rewritten: 

 * ( ) *m W      . In our model
42

, simulations on reservation profit flow π* show two distinct 

areas depending on the nature of c-ignorance (seeker or averse): π* is increasing with the degree of 

ambiguity for an ambiguity averse (that is the value of waiting increases), while decreasing for an 

ambiguity seeker. This leads to the adoption of opposite behaviors, with an accelerated (ambiguity seeker) 

or a delayed (ambiguity averse) option exercise (See fig.4 in appendix B). 

It does not come as a huge surprise at this stage that preferences towards perceived ambiguity play 

such a defining role when deciding over the optimal moment of exercise of our real option. Just like 

project and option valuations are affected by individual preferences, the timing of exercise is modified 

according to the nature of the attitude of the decision maker towards ambiguity. For an ambiguity averse, 

the present value effect (decrease in the net present value of the project) dominates the option value effect 

(the cost of opportunity of acting is reduced), and exercise is delayed. The opposite holds true for an 

ambiguity seeker. Let’s summarize our findings:  

Proposition 7.  A change in the level of perceived ambiguity has an impact on project value as well as on 

reservation value, consequently impacting the timing of exercise of real options with Choquet-Brownian 

motions. While an ambiguity averse decision maker will delay option exercise, an ambiguity seeker will 

exercise it earlier than if he was neutral towards ambiguity. 

 

                                                 
42

 See Nishimura and Ozaki (2007) and Trojanowska and Kort (2010) for discussion of this relation in the context of 

multiple-priors. In the latter especially, the impact of Knightian uncertainty on triggers *W  and *  appears 

equivocal for finite life projects: an increase in reservation value may not lead to delayed investment (for instance, 

larger life-times finite projects are negatively associated with investment enhancing). For perpetual projects, to the 

contrary, monotonicity is demonstrated, with *  increasing with ambiguity. 
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5. CONCLUSION 

Few articles within the real options literature have so far explored the impact of ambiguity. 

Moreover, the few pioneer real options models under Knightian uncertainty are based on the multiple-

priors model. They have given great insight into the importance of addressing the existence of preferences 

towards perceived ambiguity. Unfortunately such models are also very restrictive by definition, as they 

rely exclusively on a maxmin criterion.  

By introducing a wider spectrum of attitudes towards ambiguity represented through Choquet-

Brownian motions, we show that individual preferences matter and lead to significant and contrasted 

impacts on option valuations and subsequent timing of exercise. Indeed, aversion towards ambiguity will 

increase the value of waiting and delay exercise, while ambiguity loving preferences will encourage an 

earlier exercise of a real options to invest. So far in the literature only the result for an averse ambiguity 

had been established in the case of a perpetual option (Nishimura and Ozaki, 2007).  

Real options models under ambiguity so far concur in underlining that ambiguity should not be 

purely and simply ignored. Considering the limited number of papers on this subject, that some points of 

debate remain open, such as the moment of resolution of ambiguity (Miao and Wang, 2009), is hardly 

surprising and actually bodes well for further research. Let’s notice that the very effect of risk itself on 

options may still be subject of debate (see Sarkar’s controversial stance, 2000; discussed in Lund, 2005).  

Furthermore, in our model a complex inter-relation between risk and ambiguity, often completely 

ignored in the literature, appears and raises new questions. In the combined presence of ambiguity and 

risk, individual revealed preferences towards such forms of uncertainty may deeply impact real option 

valuations and subsequent actions: as we pointed out, even a risk neutral decision maker will react to 

changes in risk if he is not neutral towards ambiguity. This relation may appear more strikingly here than 

in the multiple priors approach where ambiguity is largely “assimilated” to risk. 

To conclude, we wish to underline that more research will be necessary to deepen the understanding 

of ambiguity revealed preferences, to compare their various representations and ponder their respective 
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interest and limits. Even the interpretation of ambiguity itself remains somehow controversial and a better 

distinction between beliefs and tastes may be desirable.  

Recently axiomatized Choquet-Brownian motions are tractable enough to be adapted to more 

complex real options settings, including compound options or multiple sources of ambiguity such as 

typical stochastic costs (see Kast, Lapied and Roubaud, 2010). Besides, expanding our model to finite life 

projects would allow comparisons with research on finite life projects in the context of multiple-prior 

(Trojanowska and Kort, 2010; Gryglewicz, Huisman and Kort, 2008).  

As decision makers’ preferences towards ambiguity matter, they should often be taken into 

consideration when examining the timing and valuation of real options projects. Obviously it may be 

helpful when assessing decisions ex-post, to better understand why in practice real options may be 

exercised much later (or sooner) than predicted in the expected utility framework. But it may also 

contribute to a better framing a priori of the impact of ambiguous key drivers on a real option project, if 

only through additional sensitivity analyses including ambiguity parameters.  

The multiple-priors approach corresponds to a cautious attitude in front of potential model 

misspecification, a “robust decision rule” for an investment. From a managerial point of view, ambiguity 

should not necessarily be feared though: embracing it when strategically justified may prove wise and 

source of competitive advantage, when caution would prevent from undertaking potentially profitable 

investments. Obviously the intuition of managers will not be replaced by quantitative estimates, but those 

who adopted the real options approach often underline that it contributes to better thinking, planning and 

conducting of projects under uncertainty. Adopting some sort of ambiguity parameter should just help 

them in doing that in a more explicit way! 

Finally, at this early stage of real options models under ambiguity, it may be argued that they already 

contribute to the idea that dominant models in finance should maybe more often than not take ambiguity 

preferences into consideration… if only by making the hypothesis of “ambiguity neutrality” at least as 

explicit than its omnipresent “risk neutral” counterpart! 
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Appendix A.  Comparative Statics for risk 

 A. An increase in risk in the absence of ambiguity: the standard case 

A.1. Project value after exercise, 
*

TW W : 

Parameter
2 representing risk has no impact on the value of the project once launched. Indeed, if 

there is no ambiguity, then 2 1 0m c    and ( ) t
tW




 



 .  In the absence of ambiguity, a change 

in risk does not modify the project value in the stopping region (the agent is risk neutral by hypothesis). 

A.2. Project value in the continuation region, 
*

TW W : 

Regarding the option value in the continuation region, let’s recall that ( )tV W
 
is given by (20):  

1( ) ( )
1

t t

I
V W W  



 


. This time, as parameter
2 plays a key role in computation of  in (23), the 

value of the project will change in the continuation region. We need to look at the sign of a few 

derivatives to identify the impact of an increase in risk, which implies some calculations (Nishimura and 

Ozaki, 2007):  sign of 
2








< 0,  sign of 

( )tV W






< 0 ; hence, by combining, 

2

( )tV W






> 0. An increase in 

risk increases the value of the project in the continuation region. 

A.3. Reservation value  
*

1
W I







: 

Again, parameter 
2 plays a key role in computation of  , so that we again need to establish the 

signs of:   

*W






< 0, and 

2








< 0, (Nishimura and Ozaki, 2007) ; hence, 

*

2

W






> 0 

B.An increase in risk in the presence of ambiguity: a striking impact on project value! 

If the decision maker is not neutral towards ambiguity, a change in risk in the presence of 

ambiguity will impact the project value in the stopping region (ceteris paribus). Indeed, if 
2 increases, 

then ( )m  now increases if and only if m>0, that is if c>1/2, which in turn implies that 

( )
( )

t
tW

m




  


 
increases. Consequently, project value in the stopping region increases for an 

ambiguity seeker when risk increases. The opposite holds true if the decision maker is ambiguity averse
43

.  

                                                 
43

 Let’s note that in the multiple-priors, as 0  , an increase in risk also leads to a decrease in project value, as 

( )

t

tW


  


 
. This is just a special case in our model, that of ambiguity aversion under maxmin 
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Appendix B. Comparative Statics for ambiguity (1/2) 

 

 

Fig. 1. Reservation Value W* as a function of   for decision makers expressing various attitudes towards 

ambiguity (with 20%   ; 15%   ;  0.1;0;0.1   and 100I  ). 

 

 

Fig.2. Reservation Value W* as a function of   for decision makers expressing various attitudes towards 

ambiguity (with 20%  ; 1.5%  ;  0.1;0;0.1   and 100I  ). 
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Appendix B. Comparative Statics for ambiguity (2/2)    

 

Fig.3. Reservation Value W* as a function of the degree of c-ignorance (with 5%  , 2.5%  , 

8%   and 100I  ). 

 

Fig.4. Reservation Profit Flow π* as a function of the degree of c-ignorance (with 5%  , 2.5%  , 

8%   and 100I  ). 
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