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Abstract We consider an investment problem such as a construction of power plants.

The uncertainties, which are considered in this investment problem, are the evolution of

cash flows obtained from the plant operation, and the catastrophic event, which drives

the value of the project to zero due to external factors, such as earthquake. We show the

model of a sequential investment as well as that of a single investment, and show the

effect of the catastrophic event on the flexibility of the sequential decision by comparing

the option values of the single investment and the sequential one. Additionally, in a

case where both costs associated with the construction and the catastrophic event are

dependent on the location, we determine simultaneously the optimal investment timing

and location of the plant.

Keywords Sequential investment · Investment timing · Catastrophic event · Location

of plants · Real options

1 Introduction

The option valuation theory of investments as real options has gained much attention

in the past few decades. Real options theory, pioneered by Brennan and Schwartz

(1985), and McDonald and Siegel (1986), and summarized in Dixit and Pindyck (1994),

and Trigeorgis (1996), is a useful methodology for the economic evaluation and analysis

of various investment projects under uncertainty. The timing of decision-making in

various investment problems and the investment value can be shown by using real
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options theory. Especially, real options theory is useful in evaluating the investment of

multi-stage sequential investment.

Many researchers have studied the analysis of sequential investments as natural re-

source (Brennan and Schwartz, 1985; Cortazar et al., 2001), R&D (Schwartz and Moon,

2000), information (Schwartz and Zozaya-Gorostiza, 2003), and power plants (Gollier

et al., 2005; Siddiqui and Maribu, 2009). Real options theory enables us to show the

value of flexibility such as multi-stage sequential investments. Particularly, in the study

of the power plants investment such as Gollier et al. (2005), the sequential investment

of modularity is investigated, and the value of the sequential investment is shown.

Although it is found that there exists the flexibility value in the sequential decision,

when a catastrophic event occurs as in Schwartz and Moon (2000) and Schwartz and

Zozaya-Gorostiza (2003), the event affects the investment decision.

For example, in Japan, the Niigata-Chuetsu-Oki earthquake occurred in Niigata

Prefecture on July 16th 2007. The earthquake led to automatic scram of units 2, 3, 4

and 7 of Kashiwazaki-Kariwa Nuclear Power Station, and currently, all seven units are

shut down. The power plants have been constructed sequentially with the increase in

the demand regarding the value of the flexibility. However, all plants were shut down

because of the occurrence of the earthquake. This seems to be the loss in the value of

flexibility. When there is a catastrophic risk as a earthquake, it is necessary to consider

the location of the plant.

In this paper, we analyze the two-stage sequential investment taking into account

the catastrophic risk. Especially, the dependence of the investment value on the cata-

strophic risk is shown. Additionally, we propose a model that enable us to determine

the timing of the investment and the plant location simultaneously.

The remainder of this paper is organized as follows. Section 2 describes the model

for the single investment and the two-stage sequential investment problems. In Section

3, we presents the model for the sequential investment with a catastrophic risk, and

analyze the effect of the catastrophic risk on the investment problem. Section 4 provides

the model for determining the investment timing and the location of the plant. Finally,

Section 5 concludes the paper.

2 The model

In this section, we consider two investment problems such as a single investment project

and a sequential investment one. The flexibility value of the sequential investment is

shown by comparing each value of project.

2.1 Single investment

We begin by describing the basic investment timing model which is based on McDonald

and Siegel (1986). Consider a firm that starts operating a plant of the capacity Q by

incurring the investment cost I. After the investment decisions, the cash flow Xt per

unit is generated. The evolution of the cash flow follows a geometric Brownian motion:

dXt = µXtdt + σXtdWt, X0 = x, (1)

where µ is the instantaneous expected growth rate of Pt, σ is the associated volatility,

and Wt is a standard Brownian motion. The investment problems for the firm maximize
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the expected discounted value by selecting the investment time τ . Thus, the value

function of the investment is represented by the following equation,

F0(x) = sup
τ∈T

E
»Z ∞

τ
e−ρtQXtdt− e−rτ I

–
, (2)

where T is the set of admissible stopping time, and ρ is the discount rate. Given

the constant threshold of the investment x∗, the optimal investment time τ∗ has the

following form:

τ∗ = inf
˘
t ≥ 0 | Xt ≥ x∗

¯
. (3)

The following differential equation, which is satisfied by the investment value, is derived

from Bellman equation (See, for example, Dixit and Pindyck (1994)),

1

2
σ2x2F ′′0 (x) + µxF ′0(x)− ρF0(x) = 0 (4)

The general solutions of this equation is given by the following equations,

F0(x) = a1xβ1 + a2xβ2 (5)

where a1 and a2 are unknown constants, and β1 and β2 are the positive and the

negative roots of the characteristic equation 1
2β(β− 1) + µβ− ρ = 0, respectively. The

investment value must satisfy the following boundary conditions,

F0(0) = 0, (6)

F0(x
∗) =

Qx∗

ρ− µ
− I, (7)

F ′0(x
∗) =

Q

ρ− µ
. (8)

Condition (6) requires that the investment option becomes zero if the cash flow is close

to zero, thus, from this condition, a2 = 0. Conditions (7) and (8) are the value-matching

and smooth-pasting conditions, respectively. From these conditions, we can obtain the

threshold value x∗ and the unknown constant a1:

x∗ =
β1

β1 − 1

ρ− µ

Q
I, (9)

a1 =
I

β1 − 1

»
β1 − 1

β1

Q

ρ− µ

1

I

–β1

(10)

2.2 Sequential investment

In this section, we consider two-stage sequential investments as in Dixit and Pindyck

(1994). Suppose that the total values for the investment cost of first stage, I1 and of

second stage, I2 are equal to the investment cost of the single project, I, and likewise,

for the capacity of the plant, Q1 + Q2 = Q. As in the previous section, the optimal

investment rule and the investment value in the sequential investment are calculated.

The firm’s problem is to maximize the expected discounted value by selecting the first
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investment time τ1 and the second investment time τ2. Therefore, the value function

of the two-stage sequential investment is given by the following equation.

F1(x) = sup
τ1,τ2∈T

E
»Z τ2

τ1

e−ρtQ1Xtdt− e−ρτ1I1 +

Z ∞

τ2

e−ρt(Q1 + Q2)Xtdt− e−ρτ2I2,

–
.

(11)

Given the constant thresholds of first and second investments, x1 and x2, each optimal

investment time has the following form:

τ∗1 = inf {t ≥ 0 | Xt ≥ x1} , (12)

τ∗2 = inf {t ≥ 0 | Xt ≥ x2} . (13)

We can solve the investment problem by working backwards, first finding the value

of the second investment, and finally finding the value of the first investment. The

differential equation, which is satisfied by the second investment value, is given by the

following equation,

1

2
σ2x2F ′′12(x) + µxF ′12(x)− ρF12(x) + Q1x = 0 (14)

The general solutions of this equation is given by the following equation,

F12(x) = a3xβ1 +
Q1x

ρ− µ
(15)

where a3 is unknown constant. For the threshold value of the second investment x12,

the value of the second investment must satisfy the following the value-matching and

smooth-pasting conditions,

(
F12(x12) =

(Q1+Q2)x12
ρ−µ − I2

F ′12(x12) = Q1+Q2
ρ−µ

(16)

From these conditions, we can obtain the threshold value of the second investment x12

and the unknown constant a3 as follows,

x12 =
β1

β1 − 1

ρ− µ

Q2
I2, (17)

a3 =
I2

β1 − 1

»
β1 − 1

β1

Q2

ρ− µ

1

I2

–β1

. (18)

Likewise, the threshold value of the first investment and the value of the two-stage

sequential investment are calculated. Using standard method as above, the value of

the first investment is given by the following equation,

F11(x) = a4xβ1 (19)

where a4 is unknown constant. For the threshold value of the first investment x11,

the value of the first investment must satisfy the following the value-matching and

smooth-pasting conditions,

(
F11(x11) = a3x11

β1 + Q1x11
ρ−µ − I1

F ′11(x11) = β1a3x11
β1−1 + Q1

ρ−µ

(20)
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Fig. 1 Value of the flexibility for the sequential investment. Each dashed line represents the
value of the sequential investment, and the solid line shows the value of the single investment.

From these conditions, the threshold value of the first investment x11 and the unknown

constant a4 can be obtained as follows,

x11 =
β1

β1 − 1

ρ− µ

Q1
I1, (21)

a4 = a3 +
I1

β1 − 1

»
β1 − 1

β1

Q1

ρ− µ

1

I1

–β1

. (22)

As can be seen from equations (17) and (21), the sequential exercising of these invest-

ment options must be ensured by the following condition:

I1
Q1

<
I2
Q2

. (23)

In this paper, the parameters which satisfy the above condition are used.

2.3 Numerical analysis

Using two models of the single and the sequential investments presented above, the

value of the flexibility regarding the sequential investment is shown by comparing each

investment value.

The threshold values of the single and the two-stage sequential investments are

given by equations (9) and (21), respectively. As shown in these equations, the threshold

value is dependent on the investment cost per unit capacity I
Q . Thus, the sequential

project exercises the investment option earlier than the the single project when I
Q >

I1
Q1

, and vice versa.
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The base case parameters used in this analysis are as follows: µ = 0.01, σ = 0.2,

ρ = 0.04, I1 = 4.0, I2 = 6.0, Q1 = 1.0, Q2 = 1.0 (i.e., I = 10.0, Q = 2.0), and x = 0.1.

For these base case parameters, the threshold value of the single and the sequential

projects are x∗ = 0.3686, x11 = 0.2949, x12 = 0.4423, respectively, and the investment

values of the single and the sequential projects are F0(x) = 1.6154, F11(x) = 1.6540,

respectively. The investment values as a function of the first investment cost I1 in

the sequential project are shown in figure 1. Each dashed line represents the value of

the sequential investment for Q1(Q2) = 0.1(1.9), 1.0(1.0), 1.9(0.1) 1, and the solid line

shows the value of the single investment. As can be seen from this figure, for each case,

the value of the sequential project is larger than that of the single project. Therefore,

it turns out that there exists the flexibility value of the sequential investment decision.

3 Investment with catastrophic risk

In previous section, the flexibility value of the sequential investment is demonstrated.

In this section, we consider two-stage sequential investments with a catastrophic risk.

The catastrophic risk implies that the occurrence of the event suddenly drives the value

of the project to zero, and the life time of the project is a random variable and follows

a Poisson process with intensity λ. Therefore, there is probability λdt that it will be

permanently abandoned during the next short interval of time dt. By this setting, we

present the dependence of the optimal investment rule on catastrophic risk, and shown

the effect of the catastrophic risk on the flexibility value.

The project value with a catastrophic risk after the investment decision is given by

the following equation,

E
»Z ∞

0

Z t

0
e−ρsλe−λtQXs ds dt

–
= Q

Z ∞

0
λe−λt

Z t

0
e−ρsxeµs ds dt

= Qx

Z ∞

0
λe−λt 1− e−(ρ−µ)t

ρ− µ
dt

=
Qx

ρ + λ− µ
.

(24)

Similarly, using a standard method in the literature as Dixit and Pindyck (1994), we

can drive the following differential equations that must be satisfied by the value of the

investment option with catastrophic risk for the first and second investments,

1

2
σ2x2F ′′21(x) + µxF ′21(x)− (ρ + λ)F21(x) = 0, (25)

1

2
σ2x2F ′′22(x) + µxF ′22(x)− (ρ + λ)F22(x) + Q1x = 0. (26)

The general solutions of these equations are given by the following equation,

F21(x) = a5xβ11 , (27)

F22(x) = a6xβ11 +
Q1x

ρ + λ− µ
, (28)

1 In actual case, the investment cost seems to be dependent on the capacity of the plant. In
this analysis, however, various parameter values for the capacity are used in order to show the
flexibility value.
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where a5 and a6 are unknown constants, and

β11 =
1

2
− µ

σ2
+

s„
µ

σ2
− 1

2

«2

+
2(ρ + λ)

σ2
.

Likewise, we can solve the investment problem by working backwards. For the threshold

values of each stage x21 and x22, the investment values must satisfy the following the

value-matching and smooth-pasting conditions,

(
F22(x22) =

(Q1+Q2)x22
ρ+λ−µ − I2,

F ′22(x22) = Q1+Q2
ρ+λ−µ ,

(29)

(
F21(x21) = a6x21

β11 + Q1x21
ρ+λ−µ − I1,

F ′21(x21) = β11a6x21
β11−1 + Q1

ρ+λ−µ .
(30)

From these conditions, we can obtain the threshold values in each stage and unknown

constants.

x22 =
β11

β11 − 1

ρ + λ− µ

Q2
I2, (31)

a6 =
I2

β11 − 1

»
β11 − 1

β11

Q2

ρ + λ− µ

1

I2

–β11

, (32)

x21 =
β11

β11 − 1

ρ + λ− µ

Q1
I1, (33)

a5 = a6 +
I1

β11 − 1

»
β11 − 1

β11

Q1

ρ + λ− µ

1

I1

–β11

. (34)

Figure 2 shows the dependence of the threshold value on the Poisson intensity.

The solid line represents the threshold value of first investment, and the dashed line

shows the threshold value of second investment. It is shown that as the catastrophic

risk increases, each threshold value increases, especially, that the gap between the two

threshold grows as the catastrophic risk increases. It is found that it is difficult to enter

the second stage due to the occurrence of the catastrophic event.

Figure 3 shows the dependence of the investment value on the catastrophic risk. The

solid line represents the value of the sequential investment. As can be shown from this

figure, as the catastrophic risk increases, the investment value decreases. Additionally,

the dashed line shows the difference of the value between the single project and the

two-stage sequential project. It can be seen from this figure that as the catastrophic risk

increases, the difference of the value becomes smaller. It turns out that the increases

in the catastrophic risk leads to a loss in the value of flexibility.
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Fig. 2 Threshold values as a function of the Poisson intensity. The solid line represents the
threshold value of first investment, and the dashed line shows that of second investment.
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Fig. 3 Investment values as a function of the Poisson intensity. The solid line represents the
value of the sequential investment. The dashed line shows the difference of the value between
the single investment and the sequential one.
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Fig. 4 Determination of the plant location, and catastrophic risk and investment cost as a
function of the distance.

4 Investment timing and location

As in the previous section, we consider the two-stage sequential investment with the

catastrophic risk. In this section, suppose that the catastrophic risk and the construc-

tion cost are dependent on the location. By this setting, we determine not only the

investment timing but also the plant location. This means that, for the setting in pre-

vious section, the location of plants for the first and the second investments is same

one.

The setting and the assumption of the model in this section are as follows. As

illustrated in Figure 4, suppose that the location of plant 1 is fixed, and the location

of plant 2 must be determined. Additionally, we assume that the catastrophic risk

and the construction cost are dependent on the distance from the location of plant 1,

d, and that the catastrophic risk (i.e., the Poisson intensity) is a decreasing function

of distance, and the location cost is an increasing function. The Poisson intensity of

the catastrophic event regarding plant 2 is assumed to be expressed by the following

equation,

λ2(d) = λ1e−αd, (35)

where λ1 is Poisson intensity of the catastrophic event regarding plant 1, and α is

constant. The Poisson intensity of the catastrophic event regarding plant 1 is assumed

to be uncorrelated with that regarding plant 2 2. Additionally, we assume that the

investment cost regarding the construction of plant 2 is the quadratic function for the

2 In actual catastrophic event, especially, as earthquake, the Poisson process of the cat-
astrophic event for plant 1 appears to be correlated with that for plant 2. For simplicity,
however, we assume that there is no correlation of the Poisson process between regarding
plant 1 and plant 2.
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distance,

I2(d) = I1 + c1d + c2d2, (36)

where c1, and c2 are constants.

The firm maximizes the value after the second investment by choosing the optimal

location of the second plant. Thus, the optimal location of the second plant for any x

can be obtained from this equation:

d∗(x) = arg max
d

Q1x

r + λ1 − µ
+

Q2x

r + λ2(d)− µ
− I2(d) (37)

The following nonlinear equation for the optimal location d∗ is obtained from Equa-

tion (37),

αe−αd∗Q2x2

(r + λ2(d∗)− µ)2
− c1 − 2c2d∗ = 0. (38)

For the threshold value of the second investment x32, the value of the second investment

must satisfy the following the value-matching and smooth-pasting conditions,

(
a7x32

β21(d
∗) + Q1x32

r+λ1−µ = Q1x32
r+λ1−µ + Q2x32

r+λ2(d∗)−µ
− I2(d

∗)

β21(d
∗)a7x32

β21(d
∗)−1 + Q1

r+λ1−µ = Q1
r+λ1−µ + Q1

r+λ2(d∗)−µ
,

(39)

where

β21(d) =
1

2
− µ

σ2
+

s„
µ

σ2
− 1

2

«2

+
2(r + λ2(d))

σ2
.

We can obtain the threshold value of the second investment x32, the optimal location

of plant 2 d∗, and the unknown constant a7 by solving equations (38) and (39) simul-

taneously. Likewise, for the threshold value of the first investment x31, the value of

the first investment must satisfy the following the value-matching and smooth-pasting

conditions,

(
a8x31

β11 = a7x31
β21(d

∗) + Q1x31
r+λ1−µ − I1

β11a8x31
β11−1 = β21(d

∗)a7x31
β21(d

∗)−1 + Q1
r+λ1−µ

(40)

From these conditions, we can obtain the threshold values of the first investment x31

and unknown constant a8. In this analysis, we use the base case parameters presented

above, and the following parameters: λ1 = 0.01, α = 10.0, c1 = 5.0, and c2 = 20.0.

The dependence of the threshold value on the catastrophic risk is shown in figure 5.

The solid line represents the threshold value in the model of this section, that is the

model taking into account the location, and the dashed line shows the threshold value

in the model of the previous section. It can be seen from this figure that since, for

this model, the location of the plant can be determined, and the determination of the

location decreases the risk, the threshold value of the investment taking into account

the location becomes small compared with that without the location.

Figure 6 shows that the dependence of the investment values and the optimal

location on the catastrophic risk. For the investment values, the solid line shows the

value for the model in this section, F31(x), and the dashed line represents that of

the model in previous section, F32(x). Although the investment values for each case

decrease with the catastrophic risk, the value of the investment with the determination

of the location is large compared with that without the location. This is because the

investment value increases by determining the location, and avoiding the catastrophic
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Fig. 5 Threshold values as a function of the Poisson intensity. The solid line represents the
threshold value of the investment with the determination of the location. The dashed line
shows the threshold value of the investment without the determination of the location.
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Fig. 6 Investment values and the optimal location as a function of the Poisson intensity. For
the investment values, those of the investment with the determination of the location (solid
line) and the investment without the determination of the location (dashed line) are shown.
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Fig. 7 Threshold values and the optimal location as a function of the volatility. The solid
lines represent the threshold values of the first and second investment. The dashed line shows
the optimal location.

risk. For the optimal location of the second plant, as shown in this figure, the optimal

location of plant 2 becomes far from that of plant 1 as the catastrophic risk increases

due to avoiding catastrophic risk.

The dependence of the threshold value and the optimal location on the volatility

of cash flows are shown in Figure 7. The solid lines represent the threshold values

of fist and second investments. As the volatility becomes large, the opportunity of the

investment decreases. The dashed line shows the optimal location. The cash flow at the

time of the investment decision becomes large as the uncertainty increases. Therefore,

the decision of the optimal location tends to decrease the catastrophic risk even if the

construction cost becomes large.

Figure 8 shows that the dependence of the threshold value and the optimal location

on the slope coefficient of the Poisson intensity function, α, in Equation (35). The solid

and dashed lines represent the threshold values of fist and second investments, and the

optimal location, respectively. As can be seen from this figure, since the catastrophic

risk converges on the location of plant 1 as the slope coefficient increases, the threshold

values and the optimal location decreases due to decrease in the effect of avoiding the

catastrophic risk. As the volatility becomes large, the opportunity of the investment

decreases. On the other hand, for small slope coefficient, it is found that the threshold

value for plant 2 and the optimal location decreases because of the equalization of the

catastrophic risk, that is the dominant effect of the investment cost.

5 Conclusions

In this paper, we have analyzed the two-stage sequential investment when the lifetime

of the project follows a Poisson process. We showed the dependence of the investment
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Fig. 8 Threshold values and the optimal location as a function of the slope coefficient of the
Poisson intensity function. The solid lines represent the threshold values of the first and second
investment. The dashed line shows the optimal location.

value on the catastrophic risk. It was founded that the catastrophic risk and decreases

the flexibility value of the sequential investments. Additionally, we proposed a model

for analyzing the timing and location of investments. Using this model, the effect of

catastrophic risk on the optimal investment rule and location was examined.

In the future, we will analyze actual construction problems of several power plants,

and problems taking into account the possibility for the restart of constructions and

operations. Furthermore, we will elaborate the construction and location costs, incor-

porate the cost functions into the model in this paper.
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