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Abstract 

A new stochastic harvesting model for pine even age stand was developed under wood 

stock geometrical logistic and price geometric Brown diffusions, with risky decision 

agents, for a single rotation period.  

 

The application of the model to a Chilean forest company stands increased the actual 

deterministic optimal cut volume in 70% average.  It also showed the dominant role 

played by wood stock diffusion in relation to price diffusion, which had a non significant 

effect.  

 

Two new convergent methods for estimating the parameter of the geometric logistic 

diffusion from unevenly spaced and highly concentrated series under stationary and non 

stationary state are presented.  
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1: INTRODUCTION TO THE EXPLOITATION OF PINE RADIATA STANDS  
 
 
Radiata pine exploitation in Chile  
 

Radiata pine harvest in Chile is an important economical activity, contributes with 3% of 

its GNP and 13% of its  exports, and generates more than 200.000 jobs. 

 

Radiata  pine  forest is an artificial plantation of homogenous even age stands. Each 

stand is harvested simultaneously. Its yield depends on the local condition of soil and 

climate and on the silviculture intervention on the stands.  

 

Optimal tree cutting models  
 

The firsts optimal tree cutting time models were deterministic (see Faustman, 1845; 

Fisher, 1907 and Samuelson, 1976), and did not consider the irreversibility of forest 

investment, its price and its growth uncertainty.   This investment type has significant 

operational flexibility, cutting time, soil abandonment and alternative soil use, which are 

the natural conditions for using Real Option models, (see Mascareñas et al, 2004).  

 

The majority of Real Options early papers (see Clark & Reed, 1989; Thomson, 1992; 

Platinga et al, 1998; Insley, 2002; Insley & Rollins, 2005) considered price stochastic 

diffusion. Very few papers, such as Morck et al (1989) and Alvarez & Koskela (2006), 

considered also the wood stock diffusion. This last paper is the only one that separates 

both types of diffusions, price and stock, using an impulsive control model, in an agent 

neutral risk environment, which can be considered as a stochastic extension of Fisher 

model.  

 

Research objective 

 

Most of the revised research papers refer only to stochastic price diffusion; the only two 

papers which also considered wood stock stochastic diffusion did not applied their 

methodology to a real case. Given the dominant character that wood stock stochastic 
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diffusion plays in the deterministic optimal cutting evaluations (see, Samuelson 1976; 

Faustaman, 1845), it is important to compare the impact in the optimal cutting policy of 

price and wood stock diffusions volatilities.  

 

The objective of this paper is to evaluate whether the wood stock sigmoid diffusion has a 

dominant impact on the stochastic optimal cutting policy under risky decision agents.     

 

2: OPTIMAL STOCHASTING HARVESTING MODEL   

 

Linear diffusion equations  

 

The model considers a geometric ITO diffusion for the wood stock and a geometric 

Brown diffusion for the wood price, respectively given by equations [1] and [2].  

 
dVt = µ(Vt) dt + σ(Vt) dW                                                                                                  [1] 
                                                                                          
 

dWPdtPdP ttt βα +=                                                                                                     [2] 
 
with: 
     
Vt          = Wood stock at time t    

 

µ(Vt)      = Wood stock diffusion drift rate     

 

σ (Vt)     = Tree growth volatility   

 

Pt               = Wood stumpage spot price at time t  

 

α            = Wood price diffusion drift rate   

 

β            = Wood price volatility  

Objective functional value  
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Under the assumption of a weak solution (Vt, t) of the diffusion equations [1, 2] and initial 

conditions (V0 ≥ 0, P0 ≥ 0), the Vicksellian single harvest functional objective is given by 

[3] (see Johnson, 2006; Alvarez & Koskela 2006), 
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=        )0:0inf(0 ≤≥= tVtt                                                   [3] 

 

Reformulation of the Vicksellian problem 

 

The stochastic model [1, 2, and 3] is difficult to solve. The following theorem 1   reduces 

it to a more amendable one dimensional stopping problem.  

 

Theorem 1:  A probabilistic measure Q exists and is equivalent to the actual metric P, 

such that     

)(
)(
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),( 00 tt

rtP

o

VPeE
tt

PVF −

≥∀
= = Po sup EQ [e-(r-α)t Vt ]                                                    [4] 

 

Furthermore, under the metric Q, the process Vt   follows the diffusion  

 

WdVdtVVdV ttttt σβσµ ++= }()({                                                                                       [5] 

 

Proof.  Replacing Pt = P0 e
αt Mt in [3],   since Mt = exp {βWt - 1/2β2t] is a martingale, a 

new metric Q can be defined via the Radon-Nikodym derivative as dQ/dP = Mt, and 

considering that in this case β is positive, a straightforward application of Girsanov´s 

theorems I and II (Oksendal, 2000, pages 155-157), yields [4] and [5]. 

 

Dynkins lemma can be use to developed an economic metric to optimize the stands 

growth.  

  

 

Lemma:  Dynkins formula, (see Oksendal, 2000) 
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Given a function g: [0, ∞ ] → R is C1, with continuous first derivatives for any weak 

solution Vt of [5]; the function g (Vt) satisfies de Dynkin formula [6] 

 

EQ[ e-(r-α)τ g(Vt) ] =  PoVo + EQ dtVge t
Tr )(

0

)( ∆∫
−−

τ
α                                                                         [6] 

 with ∆ g(Vt) = ½ σ2 g´´(Vt) + [µ(Vt) + βσVt] g´(Vt) – (r-α) Vt 

 

Corollary. Sience there is no correlation between price and volume diffusion, the 

expected net present value of the harvested stock at any future date T is given by 

 

EP(V0,P0)[ e
-rTPTVT] = P0 V0 + ∫

−−
T

s
TrQ dsVeEP

0

)(
0 )(πα                                                         [7] 

with the expected net economic wood stock  metric growth π(Vt) given by  

 

π (Vt) = µ(Vt) + βσ Vt – (r-α) Vt 

 

Proof. Applying the Dynkin formula to equations [4] and [5], and taking g(Vt) = Vt 

 

∆ Vt = π (Vt) = µ (Vt) + βσ Vt – (r-α) Vt 

 

and     

EQ[e-(r-α)τ ] = V0 + ∫
−−

T

s
TrQ dsVeE

0

)( )(πα  

which completes the proof. 

 

Obviously, if the metric π (V) is positive for all values of V, there is no admissible optimal 

cut strategy. If it is negative for all V, the optimal strategy is to cut the stands 

immediately.   If it is concave, it will achieve its maximum at the following Alvarez 

threshold point.                    
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In this late case the optimal solution of the optimal stopping problem [4] subjected to the 

linear diffusion [5] is given by the following Hamilton-Jacobi-Bellman [HJB] equation (see 

Johnson, 2006).  

 

Max[ ½ σ2V2 F´´(V) + [µ(V)-β σ(V)]  F´(V) – (r-α ) F(V) , V-F(V) ] = 0         V≥ 0              [9] 

 

Under the assumption of the existence of a frontier V* that divides the zone in two,  a  

continuation (no-cutting), and stopping (immediate-cutting), the solution to the equation 

HJB is finally given by: 

If V< V*, continuation region 

 

½ σ2 V2 F´´ (v) + [µ (V) – β σ(V)]  F´(V) - (r-α) F(V) = 0                                                 [10] 

 

If V≥V*, stopping region 

V-F (V) = 0                                                                                                                     [11] 

 

A solution of [10] is given by [12] (see Johnson T.C, 2006).   

 

F (V) = {
*

*)()(

VVV

VVVBVA

≥
<Φ+Ψ

                                                                                 [12] 

Where Ψ  (resp., Φ ) is strictly increasing (resp., decreasing), functions since the payoff 

function are bounded, and small and V are positive and should remain bounded and 

positive as V → 0, necessarily then B → 0.  The solution must also fulfill the so-called 

“smooth–pasting” condition at the free boundary point V*. So that 

 

A Ψ (V*) = V*   and    A Ψ ´ (v*) = 1                                                                               [13] 

 

A= v*/ Ψ (V*) = 1/ Ψ ´ (V*)              so V* must fulfill the following equation: 
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Ψ (V*) = V* Ψ ´(V*)                                                                                                       [14] 

W (V0,P0) =    {  *
*)('

)(
*

VV
V

V
Po

VVPoV

≥
≤

ψ
ψ                                                                            [15] 

This equation is similar to theorem 2.8 developed by Alvarez and Koskela (2006), using 

the characterization of the excessive functions for linear diffusion. 

 

3:   LINEAR DIFFUSION MODELS   

 

Diffusion characteristics  

 

Stands stochastic diffusion growing models are not common in the bibliography and its 

basic references are in the optimal cutting models. The geometric Brown diffusion and 

the geometric Ornestein-Ulhembeck are the most common models. The basic 

requirement of the stands growing diffusion is its sigmoid pattern (see Garcia, 2003).   

  

Geometric logistical diffusion   

                         

The logistic diffusion is an especial case of the geometric Ornestein-Ulhembeck model 

given by the expression [16]. 

 

dV = µ V (1- γ V) dt  + σ V dw                                                                                       [16] 

 

This expression grants the sigmoid form of the tree growing pattern, and the 

determination of its parameter can be easily done using the following ITO 

transformation:  

 

If V = Ln(V), then by ITO           dv/ dV = 1/V    and  d2v/ d2V = - 1/V2 

 

d Ln(V) = [ µ V ( 1- γ V)(1/V) - ½ σ2V2/V2] dt +( 1/V) σ V dw                                         [17] 
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which simplifies the differential equation [18]. 

 

dLn(V) = [µ - ½  σ2- µγ V ] dt + σ dw                                                                             [18] 

 

For a non homogenous time interval of the sample series  ∆t, equation [18] can be 

linearized by making dt = ∆t and  ttw δ∆=∂  , with  δt  = N( 0,1), and dividing equation 

[21] by ∆t we finally arrive at equation [19]  

 

dLn(V)/∆t  = [µ - ½  σ2 ]  - µγ Vt-1  + ( σ/√∆t) δt                                                                                             [19] 

 

which can be fitted using linear regression [20] 

 

Rt = a + b V t-1 + ε t                                                                                                                                                             [20] 

with    Rt = d Ln (V)/ ∆t,  

a = µ - ½ σ2       and b= - µγ                            

 

Volatility estimation by Quadratic variation of the stochastic processes   

 

The property of quadratic variation for the stochastic processes, can be expressed by 

equation [21], see Ewald C. and Yang Z. (2007) 

 

         d [ Vt,Vt] = σ2Vt
2 dt                                                                                               [21] 

 

Applying it to the discrete interval ∆t and isolating the volatility we arrive at 

 

                σt
2 =  

tt

tt

V

VV

∆
−+
2

2
1 ][

                 t= 1,2    ,n                                                          [22] 

Taking the mean value for the entire interval, we arrive at the following estimator of the 

volatility  
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1σ                                                                           [23] 

 

Stationary properties of the logistic diffusions  

 

 Merton (1975) showed that in the case of the geometric mean reversion, (logistical 

diffusion) the stationary Gamma equilibrium distribution is achieved when time tends to 

infinity, such as the age of the stands exploitation window. 

Ewald & Zhang (2007) showed that the stationary moments for the Gamma distribution 

can be evaluated by the following recursive equation as function of the diffusion 

parameters:   

 

                     E(V n+1)  = E(Vn)[ 1/γ +(n-1)σ2/(2µγ)]                                                        [24] 

 

with                  
n

V
VVE

n
n

i
nn
∑

== 1)(                                                                               [25] 

 

Since only the two first moments are independent, see equations [26,27],  the stationary 

parameter can be evaluate by equations  [28,29] and  the third parameter, the volatility 

“σ“,  can be evaluated by the quadratic variation method, as shown in equation [23].   

 

 E[V1] = 1/γ- σ2/(2µγ)   and                    [26]  

 

E[V2] = 1/γ[1/γ- σ2/(2µγ)]        with                                                                                 [27]                                      

 

γ= E(V1)/E(V2) and                                                                                                         [28] 

  

)1(2 1

2

Vγ
σµ
−

=                                                                                                                 [29] 
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4: EXPERIMENTAL DATA AND PARAMETER FITTING  

 

Experimental data  

 

The experimental data have been delivered by a Chilean forest company. These data 

pertain to 128 harvest stock of its stands between 1999 and 2005 and come from  

different  sample plots, which belong to places with site index between 30 and 35 meters 

and which represent sites with forest aptitude one. These data are concentrated in the 

narrow time window between 20 and 26 years and with its biggest concentration 

between 20 and 22 years. This window makes very difficult to form significant 

representative temporal series of the growing processes. The age of the stand was 

calculated in fraction of years of non homogenous time intervals. In order to form an 

increasing age series, similar age stands were randomly eliminated forming a 107 

temporal series single plot (see appendix 1).   The total volume of commercial wood per 

hectare, in m3/ha (VOLT/HECT), was calculated as the sum of pulp, industrial wood and 

pruning wood. The series for the complete site index range 30/35   is ploted in figures 

4.1. 
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Figure 4.1 VOLT/HECT (m3/tree) versus years, single plot 

 



 11 

The series was also disaggregated  by site index 30-31; 31 -32; 32-35 meters, in order 

to evaluate the impact of the site index in the stand volatility, see figure 4.2. 

 

Figure 4.2. VOLT/HECT (m3/tree) for different stands (sites index: 30-31; 31-32; and 

32-35 meters)   

 

Logistic diffusion fitting  

 

The Logistic diffusion model was fitted using the modified regression model, and the 

volatility was calculated using the quadratic variation method.  The results are 

summarized in table 4.1 for the annual single sample plots, and for the three 

disaggregate site-index stands. 

 
 
Table 4.1  Logistic diffusions, non stationary parameter estimation. 
 
Site Index Data a  b  σ  µ  γ  

30/35 107 107.209  -0.263 2.856 111.186 0.00233 

30/31 32   19.429  -0.053 1.451  20.481 0.00259 

32 50    73.072  -0.185 2.422  76.006 0.00243 

33/35 25    57.020  -0.134 1.417  58.024 0’.00231 

 

Observing table 1, it  is possible to conclude that the site index  has only  a moderate 

capacity to predict the stock volatility.  Since the most representative and reliable site 
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index 32 meters series only reduces the stock volatility of the  global site index  series 

30/35  in 15,17 %. 

 

Stationary parameter estimation  

 

The stands exploitation window must occur near or in the stationary or asymptotic state 

of the logistic diffusion. Under this assumption the logistic parameter was evaluated 

using equations  [28, 29], the results are shown in table 4.2.  

 

Table 4.2. Logistic diffusions, stationary parameter estimation   

Site Index Data 1V  2V  σ  µ  γ  

30/35 107 406.85 171,877.5 2.856 114.61 0.00237 

30/31 32 390.07 160,624.4 1.451  20.184 0.00243 

32 50 409,52 173,260.2 2.422   87.468 0.00236 

33/35 25 422.98 183,515.7 1.417  36.983 0.00230 

 

The results of table 4.2 show an important convergence between the stationary and the 

non stationary parameters estimation, especially for the more reliable series 30/35 and 

32 meters.   This convergence justifies the assumption of the stationary behavior for the 

exploitation window. 

 

Stands diffusions conclusions  

 

Two observations can be concluded from the fitting results of tables 4.1 and 4.2.  The  

first one is  based on the amount of data and  the aggregation level.   The site index 

series 30/35 and 32 are the more representative and reliable.   In the second place, 

given the stationary state assumption   of the logistic diffusion in the harvest window, it is 

better  to use the stationary parameter estimation to avoid the concentration gap.  
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Wood price diffusion  

 

Forest owners value their standing tree plantation in relation to stumpage price, 

discounting the harvest and transportation costs according to local market prices of the 

saw or pulp wood.    

 

Under the assumption that the stumpage prices are highly correlated to the commercial 

prices of the logs, we use the historical prices of Chilean markets between the years 

1985 and 2005 in order to fit the Brown diffusion for the commercial and pulp stumpage 

prices. The parameter of the price diffusion is shown in table 4.3. These results were 

corroborated by the stumpage commercial pulp prices (of) for a longer series of New 

Zealand, dating from 1955 to 2002. 

 

The historical volatility for the Brown geometric diffusion processes can be easily 

calculated from the following modified price diffusion, by the ITO expression,  

 

wtP ∂+∂−=∂ .)2/1()ln( 2 σσα                                                                                     [30]  

 

Linearicing this expression, by using tt ∆=∂ , )ln()ln( )1/ −=∂ tt PPP = rt  and Φ∆=∂ tw , we 

obtain the following equations [34] which were used to calculate those parameters. 

 

∑
=

=
n

t

t

n

r
r

1

   =   (α-1/2σ2)                         ∑
=

−
−

=
n

t
t rr

n 1

22 )(
1

1σ                                          [31]   

 

The standard deviation of this series is the estimator of the historical volatility and the 

mean is equal to the ITO modified drift expression. The summary of Brown diffusion 

parameters of the pulp commercial and stumpage prices is given in Table 4.4  
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Table 4.3.  Nominal Radiata Pine logs exportation prices  
Years   Saw logs  

US$FOB/mts3 

Pulp log  

US$FOB/mts3 

Years Saw logs  

US$FOB/mts3 

Pulp logs  

US$FOB/mts3 

1985 32 27 1996 65 52 

1986 34 28 1997 62 55 

1987 39 27 1998 52 54 

1988 45 27 1999 49 53 

1989 43 27 2000 46 42 

1990 49 32 2001 48 34 

1991 51 40 2002 46 41.6 

1992 47 40 2003 45.9 37.4 

1993 85 38 2004 48.6 33.0 

1994 63 46 2005 57.0 33.5 

1995 67 43    

 

Source: CONAF-INFOR 

 

 

 

Table 4.4 Brown geometric processes, price diffusion parameters 

WOOD ANUAL 

DRIFT 

(%) 

PRICE INCREASE 

DUE 

LOG THICKENING1  

DETERMINISTIC 

DRIFT % 

ANUAL 

VOLATILITY 

 % 

Saw Wood  2.89 0.86% 1.3 17.35% 80.67% 

Pulp wood 1.08 1.3% 1.9 13.17% 19.33% 

Stumpage wood  2.54 0.9% 1.42 16.7%  

TOTAL  3.44  2.32   

 

 

 

 

                                                 
1 See E. Navarrete, Doctoral thesis UAM, 2004 
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Capital cost determination   

 

The capital cost was estimated by CAPM model of the sector (see Brealey, Myers & 

Allen 2006): 

 

Ke = Rf  + β ( E(Rm) -  Rf)     = 5.3 + 0.67(12.7 – 5.3) = 10.3                                          [32]                

                                                   

With   

 Ke              : Chile equity capital cost                                                        

 Rf                     : Chile free risk rate                                                                          5.3% 

E(Rm)         : Expected return of Chilean the market                                        12.7% 

β                : Beta of Forest commercial company                                             0.67 

 

 

5:  RADIATA PINE STOCHASTIC VICKSELLIAN HARVESTING MODEL    

 

Deterministic solution  

 

Single rotation deterministic optimal cut  

 

In the case of the single rotation the deterministic optimal cutting must fulfill the following 

optimal condition:  

 

tt
tt VPr

t

VP
)(

)( λ−=
∂

∂
                                                                                                     [33] 

 

Given the following deterministic drift for price and wood stock  

 

t
t P
t

P λ=
∂
∂

t
t P
t

P λ=
∂
∂

                          and  )1( tt
t VV

t

V ηε −=
∂

∂
                                         [34]                                       
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With the initial conditions (V0, P0), these equations integrate to  

 

Pt= P0e
λt    and       

)(

1
)( ctt e

V +−+
= εη

   with c = ln
0

0

1 V

V

η−
                                            [35]    

 

 

Replacing these equations in condition [33], the optimal Vicksellian deterministic cutting 

is given by  

 

εη
λε r

V D −+=                                                                                                               [36] 

 

The deterministic parameters for the wood stock can be easily obtained linearizing 

equation [34] by using the method developed for the logistic drift without the ITO 

correction, and are equal to the estimations of  “a” and “b” of table 4.1.    Taking 

 λ = 2.32 and r= 0.103 and replacing this values in equation [36], the deterministic 

optimal cut is given in the table 5.1. 

  

Table 5.1: Deterministic optimal cut  

Site Index  a=ε  ba /−=η  Optimum  

 

Actual average 

30/35 107.11 0.00246 414.92 406.85 

32  73.02 0.00253 407.26 409.52 

 

 

Stochastic solution 

 

Alvarez and Koskela (2006) economic expected net growth of the harvested stock, π(V) 

is given by the expression [37] for the logistic wood stock diffusion:  

 

π(V)= µ V(1-γ V)+βσV – (r-α )V                                                                                     [37]     
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This is a concave function which achieves a maximum at the threshold VA, that makes 

its derivative cero.  

 

 
γµ

βσαµ
2

)( +−−= r
V A                                                                                                  [38] 

 

In this case the stochastic solution for the case of a logistic geometric diffusion, with  

µ (V) = µV (1- γV) and σV = σ V, is given by the following differential equation: 

 

½ σ2 V2  F´´ (v) + [µV (1-γV) +β σV]  F´(V) - (r-α) F(V) = 0                                             [39] 

 

Dixit & Pindyck (1994) propose the following function to solve the ordinary differential 

equation [29]: 

 

                           Ψ (V) = Vθf(V) 

 

Replacing W = A Ψ (V) = AVθf(V), the ordinary differential equation of the continuation 

region takes the following form:  

 

Vθf(V)[½ σ2 θ(θ-1)+(µ+βσ) θ–(r-α)]+Vθ+1[½ σ2Vf”(V)+(σ2θ+µ{1-γV-βσ}f´(V)-µγθ f(V)]= 0               

    

This will be true for all V>0 only if      

 

½ σ2 θ(θ-1)+(µ+βσ)θ –(r-α) =0   and                                                                             [40] 

 

½ σ2 Vf”(V)+(σ2 θ+µ{1-γV+βσ} f´(V)-µγθ f(V)=0                                                             [41] 

 

Taking the positive root of equation [40] 
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2
22
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)

2

1
(
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1

σ
α

σ
β

σ
µ

σ
β
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µθσ

−+−−+−−= r
  .                                                              [42]  

 

Equation [41]   corresponds to the Kummer equation with the following hipergeometric  

solution series   

 

++
++
+++

+
+++=

!3)2)(1(

)2)(1(

!2)1(

)1(

1
1);;(

32 x

bbb

aaax

bb

aax

b

a
baxM                                                    [43] 

 

with parameters x= 
2

2

σ
µγV

, a= θ    b=2θ + 
2

)(2

σ
βσµ +

  .                                                    

 

The solution of  ψ   for the continuation region is   

 

ψσ  = Vθ M{ 
2

2

σ
µγV

, θ , 2θ+  
2

)(2

σ
βσµ +

}                                                                         [44]   

 

The optimal solution optV  is given by the smooth pasting condition [14].    It was 

programmed in Maple and the optimal values are  shown in table 5.2 for annual 

VOLT/HECT 30/35 and 32 meters site index diffusion series.        

                                    

Table 5.2   Vicksellian optimal stochastic cut 
 
Site index  
(mts) 

µ  γ  σ  α  β  optV  
m3/ha 

30/35 114.61 0.00237 2.856 0.034 0.167 716.082 
32   87.47 0.00236 2.422 0.034 0.167 692.349 
 

Table 5.3 summarizes the optimal cut policy results for both site index models 30/35 and 

32 meters, and compares them with the deterministic optimal value DV  and the actual 

cut volume V in value and in % increase. For the 30/35 and the 32 site index series, the 

stochastic optimum increases the  deterministic optimal cut in  76,01% and 69,07% , and 

the actual average cut in a  75,58% and 70,00% respectively. 
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Table 5.3 Variable VOLT/HECT, optimal cutting results 

Site index  

(mts) 

optV  

m3/ha 

V  

m3/ha 

% de V  

 

DV  

m3/ha 

% de DV  

 

30/35 716.082 406.85 76.01 414.918 72.58 

32 692.349 409.50 69.07 407.258 70.00 

  

A sensitivity analysis of the effect of the stock and price volatility over the optimal 

stochastic cut was done. The results for the stock volatility are shown in figure 5.1 and 

for price volatility in figure 5.2.  

 

These figures clearly shows the dominant effect of the stock volatility.   A  20% increase 

in the actual stock volatility of the site index 30/35 series produces a 7,35% increase in  

the optimal cut.   The price volatility has no significant effect a similar 20% increase on 

the same series will only produce a 0, 00084 % increase of the optimal cut value.  This 

result is crucial for the application of Real Option models which normally evaluate this 

type of problems, without considering  the  wood stock volatility effect.  
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Figure 5.1. Optimal tree cut volume wood stock volatility sensitivity analysis 

 

Figure 5.2 Optimal tree cutting volume price volatility sensitivity analysis  

 

 

6: CONCLUSIONS AND RESULTS  

 

1. The actual cutting policy is similar to the Vicksellian deterministic optimal cutting 

volume, showing that the company gives no consideration to stochastic effects.  

 

2. The effect of diffusion stock and price volatility is significant, and from the 

theoretical point of view it increases the optimal stochastic cutting policy for the 

30/35 stand in 72,58%  from the deterministic optimal cutting.   

 

3. The wood stock diffusion is the dominant stochastic process. An increase of 20% 

of its volatility will increase the optimal cutting in 7, 53% for the site index series 

30/35.   A similar increase in the price volatility, 20%  does not produce a 

significant increase for the same series.   
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4. The site index 32 disaggregate  stands diminished natural wood stock  volatility  

of the aggregation 30/35 in more than 15,17% and actually is the only parameter 

that business uses to evaluate wood growth volatility. 

  

5. Obviously, the Vicksellian models are subjected to Samuelson (1976) critics, 

since they do not considers the rent of the land used as forest resource.  

Correction of this objection, such as Faustman (see Samuelson, 1976) model, 

should give a lower optimal cutting. 

 

6. The other important model restriction the narrow data windows, forces the 

logistical curves to achieve their stationary state.   This gap justifies the selection 

of the stationary parameter.   

 

7. Finally, several innovations are developed in the present article.   A new model 

for stochastic optimal harvesting with price and stock stochastic diffusion for risky 

decision agents from the Vicksellian point of view is proposed.    A solution based 

on the Hamilton-Jocobi-Bellman differential inequation is developed for the 

models.   Two approximate methods were developed to estimate the parameter 

of the logistical diffusion from data unequally distributed in time and highly 

concentrated.  The first method applies under the normal non stationary 

assumption state and the second applies under the stationary limiting state of the 

logistical diffusion.   Both methods produced convergent parameter that validate 

the state stationary assumption of the wood diffusion and justify the selection of 

the second method to reduce the effect of the concentration gap of the harvest 

window of data. 
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