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1 Introduction

In the oil and gas industry, producers often happen to own adjacent lands
in which they may do production in the future. Should their lands are not
next to each other, producers’ decision may become very well simple. Their
optimal operating strategy can be achieved by following a classical real option
approach, which has been addressed by many of the precedential real option
papers. However, it is worth noting that there is some difference when these
producers are adjacent. The network effect resulting from the reduced toll
rate charged by the pipeline company might motivate the leader(who starts
investment and production first) to build a larger gas plant so that the leader
can use a reasonable leasing rate to induce the follower to start production
earlier without building up its own gas plant. This paper will actually discuss
the the dynamics of leasing fee and the network effect and the interaction
between these two factors and the optimal entry point for both the leader
and the follower under some game theory consideration.
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2 The assumptions of the Model

In the model, there are two gas producers A and B. They have purchased
two adjacent lands for gas exploration and producing. There are two kinds of
uncertainties involved. The first is the technical uncertainty, i.e. the reserve
quantity in the land. We denote it as:

dQA = µA(QA)dt + σA(QA)dzA

dQB = µB(QB)dt + σB(QB)dzB

where the correlation ρ1 = corr(dzA, dzB).

More appropriately, we should model the Qt as a martingale since Et[Qt+1] =
Qt. Thus µA(QA) = µB(QB) = 0. Once starting the production, the reserve
quantity will become:

dQA = [µA(QA)− qA]dt + σA(QA)dzA = −qAdt + σA(QA)dzA

dQB = [µB(QB)− qB]dt + σB(QB)dzB = −qBdt + σB(QB)dzB

Model the exponentially declining production volume as

qA = αAQA

qB = αBQB

where the production rate is αA, αB. There are two constraints on the pro-
duction rate. One is the technological constraint α, which is determined by
the engineer. The other is the capacity constraint αc = qc

Q
, which is deter-

mined by the plant size. Therefore, we should restrain the production rate
α as follows:

α ≤ α, if α < αc (2.1)

α ≤ αc, if αc < α (2.2)

(Notice, all the above variables α, q,Q could have subscripts A or B to stand
for producer A or B.)

The second uncertainty is the economic uncertainty, i.e. the market price of
gas. We denote it as

dP = µ(P )dt + σ(P )dzP

2



where we assume the correlation ρ2 = corr(dzP , dzA) = 0 = corr(dzP , dzB).
The cost of constructing a gas plant with capacity of qc

A and qc
B has fixed and

variable components:
KA(qc

A) = aA + bAqc
A

KB(qc
B) = aB + bBqc

B

where the parameters aA, bA, aB, bB > 0. Therefore, if only A (or B) is
producing in A’s (or B’s) plant, qA ≤ qc

A and qB ≤ qc
B.

3 The leader and follower strategy

Suppose that both producers have no gas processing facility in their land at
the initial stage. If their lands are not adjacent, the problem could have been
a classical real option problem. The two producers both have a call option
on the gas in the land they have purchased and they will start to construct
the facility at the first moment that πt equals or exceeds the exercise value.
Here, we define the cash flow as πt : R × R → πt = f(Pt, Qt). This will be
discussed in detail in section 3. However, this paper will focus on the strat-
egy of two producers whose lands are adjacent. In this case, one’s operating
decision might affect on the other’s.

Basically, there are two factors need to be considered by the two producers.
First, the leader could charge the follower a leasing rate if the follower wants
to rent the leader’s facility to process gas. Of course, the follower could
choose either to rent the facility or to build his own gas plant. Second, there
is a toll rate charged by the pipeline company. If the leader and the follower
are both producing and transporting out gas, the pipeline company will be
able to reduce the toll rate because it can distribute its cost and profit over
the two customers, i.e, the leader and the follower. Keeping the above two
factors in mind, the two producers will follow a symmetric, subgame perfect
equilibrium entry strategies in which each producer’s exercise strategy is
value maximizing, while conditional upon the other’s exercise strategy. [5]
We can have two different exercise models: simultaneous and sequential
model.
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3.1 Equilibrium under simultaneous exercise: πt ≥ πF

Define πF :→ πF = f(PF , QF ) as the optimal trigger point of the cash
flow that maximizes the follower’s option value. As discussed by Grenadier
(1996), in the range where πt ≥ πF , if either producer begins construction at
a level of πt greater than πF , the other will enter immediately thereafter. In
this case, the equilibrium will be reached when one player enters an instant
after the other, this strategy is called a simultaneous entry strategy. This
simultaneous exercise strategy of two player model has already been discussed
in full detail in Steven Grenadier 1996’s paper “The Strategic Exercise of
Options: Development cascades and Overbuilding in Real Estate Markets”.
We won’t put more effort in it.

3.2 Equilibrium under sequential exercise: πt ≤ πF

By following the logic of Proposition 2 in Grenadier 1996’s paper, we can
spell out the optimal strategy of the two producers in the case of πt ≥ πF

Define πL :→ πL = f(PL, QL) as the optimal trigger point of the cash flow
for the leader to maximize his option value. If πt < πL, one producer will
wait until the trigger πL is reached. Any entry before πt hits πL will lead to
a value strictly less than the optimal value. However, if πt ∈ [πL, πF ), each
producer will try to build first. The first mover will win the game and start
production, and the slower producer is preempted and has to wait until the
trigger πF is reached.

4 The leader and the follower’s cash flow and

expected payoff

This paper will focus on the sequential exercise game when πt ∈ [πL, πF ),
which means the leader has already exists. The follower is preempted from
this stage and will wait until πt rises to πF . However, since the leader wants
to take the advantage of the network effect N (coming from the reduced
toll rate charged by the pipeline company), he wants to induce the follower
to start production earlier. Thus, the leader builds a bigger gas plant with
excess capacity and try to lease this excess capacity to the follower while
charging a leasing rate l. We denote the variable production cost as CL for
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the leader and CF for the follower.

Scenario 1: πt ∈ [πF ,∞): The leader and the follower build up a gas
plant to process their own gas separately. The leader starts at πL, the fol-
lower starts at πF , which means the leader’s cash flow range is [πL,∞), the
follower’s cash flow range is [πF ,∞), and πL < πF . Their cash flow will be:

πL = PLqL − (CL −N)qL (4.1)

πF = PF qF − (CF −N)qF (4.2)

The expected payoff to the leader and the follower are:

W 1
L(πL)0 = Ê0

∫ ∞

0

e−rtπLtdt−KL(qc
L) (4.3)

and W 1
F (πF )0 = Ê0

∫ ∞

0

e−rtπFtdt−KF (qc
F ) (4.4)

where the Ê0 is the risk-neutral expectations conditional on information avail-
able at time 0. Or we can use a certainty equivalent approach to model the
firm value as:

W 1
L(πL)0 =

∞∑
t=1

E0(πLt)

(1 + r)t
− λ

∞∑
t=1

t−1∑
n=0

bnL

(1 + r)t
−KL(qc

L) (4.5)

W 1
F (πF )0 =

∞∑
t=1

E0(πFt)

(1 + r)t
− λ

∞∑
t=1

t−1∑
n=0

bnF

(1 + r)t
−KF (qc

F ) (4.6)

Scenario 2: πt ∈ [πL, πF )
The leader builds up a bigger gas plant and lease the excess processing ca-
pacity to the follower while charging a leasing rate l. Thus the construction
costs for the leader has to change accordingly in order to build a bigger gas
plant which can process the amount qΩ

L ≥ qL + qF per unit of time.
The cash flows for the leader and the follower become:

π(l)L = PLqL − (CL −N)qL + qF l (4.7)

π(l)F = PF qF − (CF −N)qF − qF l (4.8)

The expected payoff to the leader and the follower are:

W 2
L(π(l)L)0 = Ê0

∫ ∞

0

e−rtπ(l)Ltdt−KL(qΩ
L) (4.9)

and W 2
F (π(l)F )0 = Ê0

∫ ∞

0

e−rtπ(l)Ftdt (4.10)
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We can also model the payoff using a certainty equivalent approach:

W 2
L(πL(l))0 =

∞∑
t=1

E0(π(l)Lt)

(1 + r)t
− λ

∞∑
t=1

t−1∑
n=0

bnL

(1 + r)t
−KL(qΩ

L) (4.11)

W 2
F (πF (l))0 =

∞∑
t=1

E0(π(l)Ft)

(1 + r)t
− λ

∞∑
t=1

t−1∑
n=0

bnF

(1 + r)t
(4.12)

Scenario 3: The leader builds up a gas plant to produce its gas, but because
of the leasing rate l and the construction cost K(qc

F ) is too high, the follower
chooses to wait until πt > πF . Therefore, the leader can not benefit from the
network effect. The cash flow to the leader is:

π3
L = PLqL − CLqL (4.13)

The expected payoff to the leader

W 3
L(πL)0 =

∞∑
t=1

E0(πL)t

(1 + r)t
− λ

∞∑
t=1

t−1∑
n=0

bnL

(1 + r)t
−KL(qc

L) (4.14)

5 The game on three decision variables: the

gas plant size (i.e. processing capacity),

the production volume and the optimal leas-

ing rate

The next step for this paper is to consider a complete way of modeling the
decision process before both producers initiating their investment. In this
model, we assume the gas price is purely competitive, and the reserve quan-
tity is random. Thus, the leader and the follower can only take the gas price
as given by the market and have no control on the reserve quantity (If there
exists asymmetric information about the reserve quantity, then the leader
and the follower can play game on this factor). But they can play games on
the gas plant size (i.e., the processing capacity), the production volume.

We first consider a simple situation in which the follower has signed a binding
contract with the leader. In this contract, the leader and the follower agree
that as long as the follower wants to produce, he has to rent the leader’s
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extra capacity, but the leasing rate is negotiable. The decision variables
are the plant size: qΩ

L , qc
F , which determine the construction costs KL(qΩ

L),
KF (qc

F ) and the production volume: qL, qF . (Remember that qL = αLQL,
qF = αF QF and the subscript L and F stands for the leader and the follower
respectively.) The parameters are the gas price: P and reserve quantity: QL,
QF .

The leader’s production volume is defined as qL(qc
L, αL, QL, P ). qc

L is the
leader’s capacity which is determined by the leader’s plant size. αL is the
leader’s production rate which is decided by the technician based on the
leader’s reserve quality. Since we have assumed that the leader and the
follower have signed a binding leasing contract in which the leader promises to
offer the follower the processing capacity qF,L. Thus, the follower’s production
volume can not exceed this offered amount, i.e. qF ≤ qF,L. Based on above
discussion, we have the following relationships:

qF,L = qc
L − qL (5.1)

qL = αLQL (5.2)

0 ≤ qL ≤ qL = αLQL, if qL < qc
L (5.3)

o ≤ qL ≤ qc
L, if qc

L < qL (5.4)

However, we have assumed that the leader is going to build a larger enough
gas plant to process both his and the follower’s gas. The leader will estimate
both producers’ need and build a gas plant with capacity qΩ

L ≥ qc
L. Therefore,

the above relationship can be simplified as:

qF,L = qΩ
L − qL (5.5)

qL = αLQL (5.6)

0 ≤ qL ≤ qL, because qL < qΩ
L (5.7)

In addition, both the leader and the follower will have to consider the effect
of leasing rate, l charged by the leader and the reduced toll rate (network
effect, N) charged by the pipeline company.

Assume that the follower will use up all the capacity from the lease, i.e.
qF = qF,L, we can solve for the optimal trigger price for the follower in terms
of qF , denoted as P ∗

F (qF , l). The leader’s objective will be to maximize the

7



leasing rate. Whilst, if the leader and the follower’s combined production vol-
ume reaches a certain level, the pipeline company will charge them a lower
toll rate, which will reduce both producers’ variable production cost due to
the network effect N . On the other hand, the follower also has the choice
between renting the processing capacity from the leader and start produc-
ing later. This means that the leader also does not want to drive away the
follower because if the follower is not producing, the pipeline company will
charge a relatively higher toll rate. Therefore, the leader wants to charge
the follower the highest leasing rate up to the point where the follower will
start to delay its production. In other word, the leader’s task is to find an
optimal solution for the leasing rate l, such that it can induce the follower
to start production by renting the leader’s gas plant at the same time when
P ∗

F (qF , l) = P ∗
L in order to take the advantage of the network effect N . This

will give an upper bound for the leasing rate, denoted as l̂.

Suppose that the leader knows the follower’s reserve quantity and production
rate QF and αF . The leader, therefore, builds a bigger gas plant which can
process the amount qΩ

L ≥ qL + qF per unit of time. It turns out to be
convenient to model present value of the leasing fee as the follower’s exercise
cost.

K = PV (qF l) (5.8)

For the lease to happen at the same time when the leader start produc-
tion, the gas price Pt must exceed the follower’s exercise hurdle P ∗

F (qF , l),
i.e. Pt ≥ P ∗

F (qF , l). For any certain level of l, we can calculate the a critical
price or exercise hurdle P ∗

F (qF , l). If P ∗
F (qF , l) > P ∗

L, indicates l is too high; if
P ∗

F (qF , l) < P ∗
L, indicates l is too low; Only when P ∗

F (qF , l) = P ∗
L, l is optimal

value l̂ for the leader.

The value of the follower’s option is the net proceeds from exercising:

W (P ∗
F )t = P ∗

F,t −K (5.9)

which is the famous value matching and smooth-pasting conditions.
The solution of the critical value for the follower is given as:

P ∗
F =

γ+

γ+ − 1
K (5.10)
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where,

γ+,− =
1

2
+

δ − r

σ2
±

√(1

2
+

δ − r

σ2

)2

+
2r

σ2
(5.11)

To make the discussion clearer, we list the functional relationship between
variables as follows (the superscript 1 and 2 stands for the scenario 1 and 2
in section 3 respectively) :

π1
L = π1

L(P, qL) (5.12)

W 1
L = W 1

L(π1
L, qc

L) = W 1
L(P, qL, qc

L) (5.13)

π2
L = π2

L(P, qL, qF , l) (5.14)

W 2
L = W 2

L(π2
L, qΩ

L) = W 2
L(P, qL, qF , l, qΩ

L) ∗ (5.15)

π1
F = π1

F (P, qF ) (5.16)

W 1
F = W 1

F (π1
F , qc

F ) = W 1
F (P, qF , qc

F ) (5.17)

π2
F = π2

L(P, qF , l) (5.18)

W 2
F = W 2

F (π2
F ) = W 1

F (P, qF , l) (5.19)

The key step is the leader’s decision on qΩ
L , and l. Once the two variables

are decided, we can solve for the rest. The actual results of the bargaining
game will depend on the amount information either the leader or the follower
occupies. We will discuss more in this aspect in next version of this paper.

6 One player model for the leader

The leader chooses the optimal time point to invest and start producing,
suspend or resume the operation depending on the market price P and re-
maining reserve quantity Q. Define that

V (P, Q,m) = the leader’s firm value

where, m = 0, if not investing

m = 1, if producing

m = 2, if suspending
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Then the free boundary conditions that L’s value must satisfy when he start-
ing the investment, suspending and resuming the production are:

V (P, Q, 0) = V (P, Q, 1)−K(q)

V (P, Q, 1) = V (P, Q, 2)−Ks

V (P, Q, 2) = V (P, Q, 1)−Kr

where, Ks = suspend cost

Kr = resume cost

Assume the dividend yield on the underlying asset is δ(P, t) therefore,

µ(P, t)− λβ(P ) = rP − δ(P, t)

where

β(P ) =
cov(dP, df)√

var(dP )var(df)

and r is the risk free interest rate. Similarly, the risk-neutral drift of Q is:

µ(Q)− q(m)− λQβ(Q) = µ(Q)− q(m)

where

β(Q) =
cov(dQ, df)√

var(dQ)var(df)
= 0

if m = 0 or 2, q(m) = 0 = q(0) = q(2)

if m = 1 , q(1) = q when producing at less than full capacity

or = qmax when producing at full capacity

If we assuming the P and Q are not correlated, the firm value must also
satisfy the following two dimensional PDEs:
when m = 0

1

2

[
σ2(Q)VQQ(P, Q, 0) + σ2(P )VPP (P,Q, 0)

]

+VQ(P, Q, 0) [µ(Q)− q(0)− λQβ(Q)]

+VP (P,Q, 0) [µP (P )− λP βP (P )] + Vt = rV (P, Q, 0)

⇓

10



1

2

[
σ2(Q)VQQ(P,Q, 0) + σ2(P )VPP (P,Q, 0)

]
+ VQ(P,Q, 0)µ(Q)

+VP (P,Q, 0) [µP (P )− λP βP (P )] + Vt = rV (P, Q, 0) (6.1)

when m = 1

1

2

[
σ2(Q)VQQ(P, Q, 1) + σ2(P )VPP (P, Q, 1)

]
+ VQ(P, Q, 1) [µ(Q)− q(1)]

+VP (P, Q, 1) [µP (P )− λP βP (P )] + Vt + π = rV 1(P,Q, 1) (6.2)

1

2

[
σ2(Q)VQQ(P, Q, 1) + σ2(P )VPP (P, Q, 1)

]
+ VQ(P, Q, 1) [µ(Q)− q(1)]

+VP (P, Q, 1) [µP (P )− λP βP (P )] + Vt + π(l) = rV 2(P, Q, 1) (6.3)

1

2

[
σ2(Q)VQQ(P, Q, 1) + σ2(P )VPP (P, Q, 1)

]
+ VQ(P, Q, 1) [µ(Q)− q(1)]

+VP (P, Q, 1) [µP (P )− λP βP (P )] + Vt + π3 = rV 3(P, Q, 1) (6.4)

when m = 2

1

2

[
σ2(Q)VQQ(P, Q, 2) + σ2(P )VPP (P,Q, 2)

]

+VQ(P, Q, 2) [µ(Q)− q(2)− λQβ(Q)]

+VP (P,Q, 2) [µP (P )− λP βP (P )] + Vt = rV (P, Q, 2)

⇓
1

2

[
σ2(Q)VQQ(P, Q, 2) + σ2(P )VPP (P, Q, 2)

]
+ VQ(P, Q, 2) [µ(Q)− q(2)]

+VP (P,Q, 2) [µP (P )− λP βP (P )] + Vt = rV (P, Q, 2) (6.5)
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7 Solve the one player model

We use explicit finite difference method, Euler methods and symmetric dif-
ference. We assume simple log-normal process for both P and Q, which is:

dP = µP dt + σP PdzP (7.1)

dQ = µQdt + σQQdzQ (7.2)

Also, assume a constant dividend yield rate δ0 which makes δ(P, t) = δ0P .
Thus,

µ(P )− λβ(P ) = µP P − δ0P = rP − δ0P (7.3)

µ(Q) = µQQ (7.4)

σ2(P ) = σ2
P P 2 (7.5)

σ2(Q) = σ2
QQ2 (7.6)

Discretize

Vt =
V (Pi, Qj, tk)− V (Pi, Qj, tk−1)

∆t
(7.7)

VP =
V (Pi+1, Qj, tk)− V (Pi−1, Qj, tk)

2∆P
(7.8)

VQ =
V (Pi, Qj+1, tk)− V (Pi, Qj−1, tk)

2∆Q
(7.9)

VPP =
V (Pi+1, Qj, tk) + V (Pi−1, Qj, tk)− 2V (Pi, Qj, tk)

(∆P )2
(7.10)

VQQ =
V (Pi, Qj+1, tk) + V (Pi, Qj−1, tk)− 2V (Pi, Qj, tk)

(∆Q)2
(7.11)

Then, equation 2.1 becomes

1

2
σ2

Qj2(∆Q)2V (Pi, Qj+1, tk) + V (Pi, Qj−1, tk)− 2V (Pi, Qj, tk)

(∆Q)2

+
1

2
σ2

P i2(∆P )2V (Pi+1, Qj, tk) + V (Pi−1, Qj, tk)− 2V (Pi, Qj, tk)

(∆P )2

+µQj∆Q
V (Pi, Qj+1, tk)− V (Pi, Qj−1, tk)

2∆Q
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+(r − δ0)i∆P
V (Pi+1, Qj, tk) + V (Pi−1, Qj, tk)

2∆P

+
V (Pi, Qj, tk)− V (Pi, Qj, tk−1)

∆t
= rV (Pi, Qj, tk) (7.12)

⇓
1

2
σ2

Qj2 [V (Pi, Qj+1, tk) + V (Pi, Qj−1, tk)− 2V (Pi, Qj, tk)]

+
1

2
σ2

P i2 [V (Pi+1, Qj, tk) + V (Pi−1, Qj, tk)− 2V (Pi, Qj, tk)]

+
1

2
µQj [V (Pi, Qj+1, tk)− V (Pi, Qj−1, tk)]

+
1

2
(ri− δ0i) [V (Pi+1, Qj, tk) + V (Pi−1, Qj, tk)]

+
V (Pi, Qj, tk)− V (Pi, Qj, tk−1)

∆t
= rV (Pi, Qj, tk) (7.13)

⇓
Finally, we get the recursive formula:

(1−σ2
Qj2∆t−σ2

P i2∆t−r∆t)V (Pi, Qj, tk)+(
1

2
σ2

Qj2∆t+
1

2
µQj∆t)V (Pi, Qj+1, tk)

(
1

2
σ2

Qj2∆t−1

2
µQj∆t)V (Pi, Qj−1, tk)+

(
1

2
σ2

P i2∆t +
1

2
(ri− δ0i)∆t

)
V (Pi+1, Qj, tk)

(
1

2
σ2

P i2∆t− 1

2
(ri− δ0i)∆t

)
V (Pi−1, Qj, tk) = rV (Pi, Qj, tk−1) (7.14)

There are three conditions for the input variables to ensure the stability of
the solution to the PDEs, for i and j within the recursive formula

(1− σ2
Qj2∆t− σ2

P i2∆t− r∆t) ≥ 0

(
1

2
σ2

Qj2∆t− 1

2
µQj∆t) ≥ 0

1

2
σ2

P i2∆t +
1

2
(ri− δ0i)∆t ≥ 0

1

2
σ2

P i2∆t− 1

2
(ri− δ0i)∆t ≥ 0

⇓
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1

∆t
− r ≥ σ2

P i2max + σ2
Qj2

max (7.15)

jmin ≥ µQ

σ2
Q

(7.16)

r ≥ δ0 (7.17)

imin ≥ r − δ0

σ2
P

(7.18)

8 Numerically search the solution

Since it is hard to explicitly solve the PDEs which contain two stochastic
variables. We use the numerical method to solve the systems of equations in
Section 6 and Section 7.
The solutions are displayed in the following graphs. [1] [6] [5] [10] [8] [9] [2]
[3] [7] [4]

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]
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