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Abstract 
 
In this paper we show how a multidimensional American real option may be solved using a 
computer-based simulation procedure.  We implement an approach originally proposed for a 
financial option and show how it can be used in a much more complex setting.  We extend a well-
known natural resource real option model, originally solved using finite difference methods, to 
include a more realistic 3 factor stochastic process for commodity prices, more in line with current 
research.  We show how complexity may be reduced by adequately choosing the implementation 
variables. Numerical results show that the procedure may be successfully used for multidimensional 
models, notably expanding the applicability of the real options approach. 
 
Scope and purpose 
 
Even though there has been an increasing literature on the benefits of using the contingent claim 
approach to value real assets, limitations on solving procedures and computing power have often 
forced academics and practitioners to simplify these real option models to a level in which they 
loose relevance for real-world decision making.  Real option models present a higher challenge than 
their financial option counterparts because of two main reasons:  First, many real options have a 
longer maturity which makes risk modeling critical and may force considering many risk factors as 
opposed to the classic Black and Scholes one-factor model.  Second, many times real investments 
have a more complex set of interacting American options available, making them more difficult to 
value.  In recent years new approaches for solving American options have been proposed which, 
coupled with an increasing availability of computing power, have been successfully applied to 
solving long-term financial options and opening new hopes for increasing the use of this modeling 
approach for valuing real assets. 
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1.  Introduction 
 
Even though in the last two decades there has been an increasing literature on the benefits 
of using the contingent claim approach to value real assets, limitations on solving 
procedures and computing power have often forced academics and practitioners to simplify 
these real option models to a level in which they loose relevance for real-world decision 
making. 

There are two main reasons why real option models may present a higher challenge 
than their financial option counterparts to be solved.  First, many real options have a longer 
maturity which makes risk-modeling critical and may force the inclusion of several risk 
factors, as opposed to only one, like in the classic Black and Scholes-1973 stock-option 
model.  Second, real investments many times have a more complex set of interacting 
American-options available for the decision maker, making them more difficult to value.  

Until some years ago, most commodity price models included only one risk-factor 
and considered constant risk-adjusted returns. These earlier models have several 
undesirable implications, including that all futures returns should be perfectly correlated 
and exhibit a similar volatility, which is not in line with empirical evidence. In recent years, 
however, many multifactor models of commodity prices have been proposed being much 
more successful than previous one-factor models in capturing the stochastic behavior of 
commodity prices like mean-reversion and a declining volatility term-structure. [Gibson 
and Schwartz (1990), Schwartz (1997), Schwartz and Smith (2000), Casassus and Collin-
Dufresne (2004), Sorensen (2002) and Cortazar and Schwartz (2003)].  
  On the other hand, the real options literature has also expanded so models take into 
account the different types of flexibilities available to decision makers when managing their 
projects.  These flexibilities include the option to abandon, to shut down production, to 
delay investments, to expand capacity, to reduce costs through learning, among many 
others.  [Hsu and Schwartz (2003), Schwartz (1997), Kulatilaka (1995), Bernardo and 
Chowdry (2002)] 

The higher complexity of including multifactor price models into real option models 
with several flexibilities has increased the difficulty of solving them to a point where the 
traditional numerical approaches, like the finite difference methods, are becoming 
inadequate.  This has spanned new research on using some sort of computer-based 
simulation procedure for solving American options, which coupled with an increasing 
availability of computing power, has been successfully applied to solving multifactorial 
financial options. [Bossaerts (1989), Tilley (1993), Barraquand and Martineau (1995), 
Raymar and Zwecher (1997), Broadie and Glasserman (1997), Andersen (2000), Haugh y 
Kogan (2001)].  One of the most promising new approaches in this literature is the method 
proposed by Longstaff and Schwartz (2001) (LS01) which has been successfully tested for 
some financial options of limited complexity [Stentoft (2004), Moreno and Navas (2003), 
Clement, Lamberton and Protter (2002)]. 

In this paper we show how multidimensional American real option models may be 
solved using a computer-based simulation procedure.  We extend the Brennan and 
Schwartz (1985) natural resource investment one-factor model, originally solved using 
finite difference methods, to include a more realistic 3-factor stochastic process for 
commodity prices, more in line with current research.  We implement the LS01 procedure 
showing how to apply it in a much more complex setting and solve this extended real 
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option model. Numerical results show that the procedure may be successfully used for 
high-dimensional models, notably expanding the applicability of the real options approach. 
  The paper is organized as follows.  Section 2 presents the problem to be solved. It 
describes the classic Brennan and Schwartz (1985) real option model of a natural resource 
investment and how we extend it to include a multifactor model of commodity prices.  A 
brief explanation on the real options approach for valuing investments is also included.  
Section 3 presents the proposed solution.  It describes the computer-based simulation 
procedure and how to implement it so high-dimensional models may be solved.  Section 4 
discuses the results of the numerical solution to the original and to the extended Brennan 
and Schwartz model. Finally, Section 5 concludes. 
 
2. The problem 
 
2.1 The Real options approach to valuation 
 
Real Option Valuation, or ROV, can be understood as an adaptation of the theory of 
financial options to the valuation of investment projects. ROV recognizes that the business 
environment is dynamic and uncertain, and that value can be created by identifying and 
exercising managerial flexibility.  

Options are contingent claims on the realization of a stochastic event, with ROV 
taking a "multi-path" view of the economy.  Given the level of uncertainty, the optimal 
decision-path cannot be chosen at the outset.  Instead, decisions must be made sequentially,   
hopefully with initial steps taken in the right direction, actively seeking learning 
opportunities, and being prepared to switch paths appropriately as events evolve. 

ROV presents several improvements over traditional Discount Cash Flow (DCF) 
techniques.  First it includes a better assessment of the value of strategic investments and a 
better way of communicating the rationale behind that value. In most traditional investment 
valuations, a base DCF value is calculated. Then, this base value is "adjusted" heuristically 
to capture a variety of critical phenomena. Ultimately, the total estimated value may be 
dominated by the "adjustment" rather than the "base value."  With ROV, the entire value of 
the investment is captured rigorously. Conceptually, this includes the "base value" and the 
"option premium" obtained from actively managing the investment and appropriately 
exercising options.  

Second, ROV provides an explicit roadmap or “optimal policy” for achieving the 
maximum value from a strategic investment. Most traditional investment valuations consist 
on a number, and perhaps a set of assumptions underlying that number. However, the 
management actions required over time to realize that value are not clearly identified. With 
ROV, the value estimate is obtained specifically by considering these management actions. 
As a result, ROV indicates precisely which events are important, which milestones to watch 
for and the necessary actions required to achieve maximum value. 

There is a broad literature on ROV and how to maximize contingent claim value 
over all available decision strategies.  Among them, Majd and Pindyck (1989) include the 
effect of the learning curve by considering that accumulated production reduces unit costs, 
Trigeorgis (1993) combines real options and their interactions with financial flexibility, 
McDonald and Siegel (1986) and Majd and Pindyck (1987) optimize the investment rate, 
and He and Pindyck (1992) and Cortazar and Schwartz (1993) determine two optimal 
control variables.   
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 The ROV approach has been used to analyze uncertainty on many underlying 
assets, including exchange rates (Dixit (1989)), costs (Pindyck (1993)) and commodities 
(Ekern (1988). Real assets models have included natural resource investments, 
environmental and new technology adoption, and strategic and competitive options 
(Trigeorgis (1996), Brennan and Trigeorgis (2000), and Dixit and Pindyck (1994)).   

In this paper we will extend the classic Brennan and Schwartz (1985) model for 
valuing natural resource investments.  Other papers on natural resource investments include 
Paddock, Siegel, and Smith (1988), Cortazar and Schwartz (1997), and Cortazar and 
Casassus (1998), Smith and McCardle (1998, 1999), Lehman (1989), and Trigeorgis 
(1990).  

Recently real options analysis is gradually advancing into the domain of strategic 
management and economic organization. Bernardo and Chowdry (2002) analyze the way in 
which the organization learns from their investment projects. A related model is presented 
in D´ecamps, Mariotti and Villeneuve (2003). They study the choice between a small and a 
large project, where choosing the small project allows one to re-invest later in the large 
project. Lambrecht and Perraudin (2003) introduce incomplete information and preemption 
into an equilibrium model of firms facing real investment decisions. Miltersen and 
Schwartz (2004) develop a model to analyze patent-protected R&D investment projects 
when there is imperfect competition in the development and marketing of the resulting 
product. Finally, Murto, Nasakkala and Keppo (2004) present a modeling framework for 
the analysis of investments in an oligopolic market for a homogenous commodity. 

  
2.2  The Brennan and Schwartz (1985) Model  
 
The valuation of a copper mine in Brennan and Schwartz (1985) (BS85) laid the 
foundations for applying option pricing arbitrage arguments to the valuation of natural 
resource investments. In the model the value–maximizing policy under stochastic output 
prices considers the optimal timing of path–dependent, American–style options to initiate, 
temporarily cease or completely abandon production.  We now briefly describe the BS85 
optimization problem: 

Let S(t) be the spot price of copper, assumed to evolve exogenously according to a 
one-factor model, as in equation (1):  
 

  
dS dt dz
S

µ σ= +
                                                                                                  (1) 

in which µ is the instantaneous return, σ is the return volatility and dz is an increment to a 
standard Gauss-Wiener process. 

It can then be shown that the risk-adjusted process for commodity prices can be 
written as: 
 

( )dS C dt dz
S S

ρ σ= − +          (2) 

 
with ρ being the risk-free interest rate and C being the convenience yield that accrues to the 
holder of the commodity but not to the holder of its futures. 
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Let V(S,Q,t) be the market value of a copper mine that produces copper at time t, 
when the spot copper price is S and the mine has total reserves of Q and that is currently 
producing (the mine is open). Similarly, let W(S,Q,t)  be the mine under the same 
conditions, but when it is closed.  Both values are not the same, because there is a cost of 
switching between the open and the closed states, with k1 being the cost of closing an open 
mine and k2 the cost of opening a closed mine.   

When open, the mine produces at a constant rate of q, with a unit cost of A and 
subject to the annual income and royalty tax payment Τ.  When closed, the mine has no 
earnings, but incurs in a maintenance annual cost of M.  In addition there is an annual 
property tax amounting to λ1 or λ 2 of market value, depending on whether the mine is open 
or closed. Finally, the mine is abandoned when market value reaches zero. 

The optimal solution to this model considers three critical spot prices S*
0 , S*

1 , S*
2  at 

which the mine switches between closed and abandoned, between open and closed, and 
between closed and open, respectively.   The following is the problem to be optimized: 
 

2 2
1{ }

1 ( ) ( ) ( ) 0
2 SS S Q tq

Max S V S C V qV V q S A T Vσ ρ ρ λ⎡ ⎤+ − − + + − − − + =⎢ ⎥⎣ ⎦
                        (3) 

 
2 2

0
1 ( ) ( ) 0
2 SS y S tS W S C W W M Wσ ρ ρ λ+ − + − − + =

                                                         (4) 
 
Subject to: 
 

( , 0, ) ( , 0, ) 0V S Q t W S Q t= = = =                                                                                (5) 
 

* *
2 2 2( , , ) ( , , ) ( , )W S Q t V S Q t K Q t= −                                                                              (6)                             

                                                    
* *
1 1 1( , , ) max ( , , ) ( , );0V S Q t W S Q t K Q t⎡ ⎤= −⎣ ⎦           (7) 

                                     
*

* 1
1

( , , )
( , , )

0
S

S
W S Q t

V S Q t
⎧ ⎫

= ⎨ ⎬
⎩ ⎭     if:    

*
1 1
*
1 1

( , , ) ( , ) 0

( , , ) ( , ) 0

W S Q t K Q t

W S Q t K Q t

⎧ ⎫− ≥⎪ ⎪
⎨ ⎬

− ≤⎪ ⎪⎩ ⎭          (8) 
 

* *
2 2( , , ) ( , , )S SW S Q t V S Q t=                                                                      (9) 
*
0( , , ) 0SW S Q t =                    (10) 

 
Brennan and Schwartz (1985) show that the value of the mine depends on calendar 

time only because the costs and the commodity convenience yield depend on time, and that 
if it can be assumed that there is a constant inflation rate, calendar time simplifies from the 
model.  This simplified, time-independent model is then solved using finite difference 
methods. 
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2.3 Extending the Brennan and Schwartz (1985) Model  
 
Initial applications of the real options approach were made in the natural resource sector 
mainly because of their high irreversible investments and the well developed futures 
markets characteristic of this sector.  Even though real option models, like the one we just 
described, have been successful in capturing many managerial flexibilities, in general they 
have considered very simple specifications of the risk processes, which have hindered the 
applicability of this approach in real-world situations.  

Probably the initial reason for this simple uncertainty modeling was that when this 
approach was developed more than two decades ago, that was the state-of-the art in 
commodity price modeling.  In the last two decades much research has been done to 
adequately capture the stochastic process in a more sophisticated way, but real option 
models have not kept pace with this commodity price research, probably due to the added 
complexity to obtain numerical solutions in a multi-factor setting.   

Given that the main goal of this paper is to show how more complex problems may 
be solved using computer-based simulation procedures, in this section we extend the 
Brennan and Schwartz (1985) model to include a multifactor specification for uncertainty, 
model which in later sections will be solved numerically. 

Commodity price processes differ on how convenience yield is modeled and on the 
number of factors used to describe uncertainty. Early models assumed a constant convenience 
yield and a one-factor Brownian motion. Later on, mean reversion in spot prices began to be 
included as a response to the evidence that volatility of futures returns declines with maturity. 
One-factor mean reverting models can be found for example in Laughton and Jacoby (1993 and 
1995), Schwartz (1997), Cortazar and Schwartz (1997).  With one-factor models, however, all 
futures returns are assumed to be perfectly correlated which is not consistent with empirical 
evidence.  

To account for a more realistic stochastic behavior, two-factor models, with mean 
reversion, were introduced. Examples are Gibson and Schwartz (1990), Schwartz (1997) and 
Schwartz and Smith (2000).  Finally, Cortazar and Schwartz (2003) propose a three-factor 
model for commodity prices and estimate it using oil futures.   

In this paper we use the Cortazar and Schwartz (2003) (CS03) three-factor model for 
commodity prices, calibrated using copper futures, and include it in an extension to the Brennan 
and Schwartz (1985) model of a copper mine.  

We now describe the three-factor CS03 model. The model has three state variables, 
the commodity spot price, S, the demeaned convenience yield, y, and the expected long-
term spot price return ν.  Both y and ν are mean reverting, the first one to zero and the 
second one to a long-term average ν .  The authors show that the three factors allow for a 
greater flexibility in the shape of the futures price curves. 

The dynamics of the state variable are: 
 

( ) 11SdzSdtydS σν +−=        (11) 

22dzydtdy σκ +−=        (12) 
( ) 33dzdtad σννν +−=        (13) 

with 
dtdzdz 1221 ρ= , dtdzdz 1331 ρ= , dtdzdz 2332 ρ=        (14) 
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Defining λi as the risk premium for each of the three risk factors, the risk-adjusted 
processes are: 

( ) ∗+−−= 111 SdzSdtydS σλν        (15) 

( ) ∗+−−= 222 dzdtydy σλκ        (16) 

( ) *
333)( dzdtad σλννν +−−=        (17) 

with 
* *
1 2 12( )( )dw dw dtρ= , * *

2 3 23( )( )dw dw dtρ= y * *
1 3 13( )( )dw dw dtρ=                              (18) 

 
Cortazar and Schwartz (2003) calibrate this model for oil prices. To calibrate the 

model for copper prices we use all copper futures traded between 1991 and 1998 at Nymex, 
obtaining the following parameter values: 

 
 
 

Parameters Value 
1λ -0,032 
2λ -0,392 
3λ - 0,193 

a  1,379 
κ  2,85 
ν -0,007 

1σ 0,257 
2σ 0,906 
3σ 0,498 
12ρ 0,215 
23ρ 0,841 
13ρ -0,229 

 
Table 1 Parameter values of the CS01 three-factor price model for copper 
 calibrated using all futures traded at NYMEX in the 1991-1998 period 

 
To illustrate the fit of the price model to observed data, Figure 1 presents a 

comparison of empirical and model futures volatilities as a function of maturity.  It can be 
seen that the price model fits very well the data.  
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Volatility of Copper Futures Returns 1991 to 1998
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Figure 1 Empirical and model volatility term structure for copper futures 1991-1998 
 
 
The three-factor price model can now be used to extend the Brennan and Schwartz (1985) 
real option model. With this specification, Equations (3) and (4) become: 
 

( ) ( )

2 2 2 2
1 2 3 1 2 12 1 3 13 2 3 23

{ }

1 2 3

1 1 1
2 2 2

( ) ( ) ( ) ( ) 0

SS yy Sy S y

q

S y T Q

S V V V SV V V
Max

y SV y V a V q S a Tax S V qV rV

νν ν ν

ν

σ σ σ σ σ ρ σ σ ρ σ σ ρ

ν λ κ λ ν ν λ

⎡ ⎤+ + + + +⎢ ⎥
⎢ ⎥
⎢ ⎥+ − − + − − + − − + − − − − − =⎣ ⎦

    (19) 

 
 
 

( ) ( )

2 2 2 2
1 2 3 1 2 12 1 3 13 2 3 23

1 2 3

1 1 1
2 2 2

( ) ( ) 0

SS yy Sy S y

S y T

S W W W SW W W

y SW y W a W W M rW

νν ν ν

ν

σ σ σ σ σ ρ σ σ ρ σ σ ρ

ν λ κ λ ν ν λ

+ + + + +

+ − − + − − + − − − − − =
                      (20) 

 
with the appropriate border conditions.   
  

This model, even though theoretically may be solved using traditional finite 
difference methods, may be solve much more easily using the new simulation methods 
shown in the following sections. 
 
3. The Solution 
 
In this section we start by a brief explanation of the Longstaff and Schwartz (2001) (LS01) 
method for valuing American options. For illustration purpose we use, as our example, a 
very simple copper mine that may extract all available resources instantaneously at any 
moment during the concession period, and a one-factor model for copper prices.   

Later, we use the LS01 method to solve a simple copper mine acting as a European 
option with a fixed exercise-time, but with copper prices following a three-factor model.  
This problem has a known analytic solution and helps us to validate our proposition to use a 
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reduced-base implementation of the model that could extend the use of the LS01 method 
even with a very high number of risk factors. 

Finally, we use the LS01 method, with the proposed reduced-base implementation, 
to solve the extended Brennan and Schwartz (1985) model with prices following three risk 
factors.   
 
3.1 The basic LS01 method  
 
 In this section we briefly explain the Longstaff and Schwartz (2001) (LS01) 
approach for the valuation of American-style options. To do this we focus on a simplified 
copper mine operation in which the inventory of the mine, Q, may be instantaneously 
extracted (at an infinite extraction rate) once the decision to produce is made. The unit 
production-cost is A and the copper spot-price is S which follows a one-factor geometric 
Brownian motion:  
 

( )dS r dt dz
S

δ σ= − +                    (21) 

 
with r the risk-free interest rate and δ the convenience yield. 
 
The method starts by simulating a discretization of Eq. (21):   
 

[ ] 1 11 ( ) ( )t t t tS r t S S t tδ σ ε− −= + − ∆ + ∆                            (22) 
 
with  t∆  the time interval in years and tε  a random variable with a standard Normal 
distribution.  
 Then, Eq. (22) is simulated through time, obtaining a price-pathω . The process is 
repeated N times, and a price matrix S with N price paths over a time horizon T is obtained.  
 Like in any American option valuation procedure, the optimal exercise decision at 
any point in time is obtained as the maximum between the immediate exercise value and 
the expected continuation value.  Given that the expected continuation value depends on 
future outcomes, the procedure must work its way backwards, starting from the end of the 
time horizon, T.  
 Then, we start with the last price of each path, Tω , and, given that at expiration the 
expected continuation value is zero, we compute the option value in T for the price path ω  
as: 
  

( ) ( ( );0)
T T

C S Max Q S Aω ω= −                 (23) 
 
One time-step backward, at t T t= − ∆ , we repeat the process for each price path, 

but now we need to estimate the expected continuation value.  The LS01 method makes its 
main contribution by proposing the use of a least square regression on a linear combination 
of functional forms (linear and nonlinear) of the current values of all model state variables 
in order to estimate the expected continuation value. 
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 Let jL , with j= 1 to M, be the basis of functional forms of the state variable
T t

Sω −∆
 

used as regressors to explain the realized present value in trajectory ω , then the LS01 least 
square regression  is equivalent to solving the following optimization problem:     

 
{ } 1 1

( ) ( )
T T t

M
r t

j j
j

C S e a L SMin ω ω
ω

−∆

2
Ν

− ∆

= =

⎡ ⎤
 −  ⎢ ⎥

⎣ ⎦
∑ ∑

a

                           (24) 

 
The optimal coefficients â  are then used to estimate the expected continuation 

value ˆ ( )
T t

G Sω −∆
:   

  
1

ˆ ˆ( ) ( )
T t T t

M

j j
j

G S a L Sω ω−∆ −∆
=

= ∑                 (25) 

Figure 2 shows the adjustment of the expected continuation function to the realized present 
value of all the simulated paths (N) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Cash flows from simulations in a 1 factor price process and a sample 
regression in LSM method 
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Then, the optimal decision for each price path is to choose the maximum between 

both values: the immediate exercise and the expected continuation value.  
Once we have worked ourselves backwards until t=0, we have a final vector of 

continuation values for each price-path, which averaged provides us with an estimation of 
its expected value, which in turn, when compared with the immediate exercise value gives 
the option value at time t=0:  
       Option Value =   0 0

ˆ[ ( ); ( )]Max Q S A G S−                                                             (26) 
 
3.2 A reduced-base implementation of the LS01 method in a multi-factor setting 
 
As seen on the previous section, the LS01 method is a very simple way of estimating the 
continuation value of an American option based on standard least-square regressions on 
functional forms of the state variables.  The way these functional forms are chosen, 
however, is not straightforward and only some general recommendations are provided 
which, as is discussed later in this section, may prove difficult to implement in a high-
dimensional setting. 

To explain our proposition we start by assuming a general multidimensional model 
to later use the three factor model described earlier as an illustration. 

Let’s assume that the dynamics of copper prices is driven by a correlated stochastic 
process for the vector of state variables x . Then, the expected continuation value function is 
the vector ˆ ( )

t
G ωx :  

  
1

ˆ ˆ( ) ( )
t t

M

j j
j

G a Lω ω
=

= ∑x x                  (27)

   
Longstaff and Schwartz (2001) propose for multidimensional implementations of 

their method that the functional forms include basis functions from Laguerre, Chebyshev, 
Gegenbauer, Jacobi polynomials, or even simple powers of the state variables and their 
cross products.  For example, if the state variables where only two, X and Y, a simple 
order-two expected continuation value function would have six regressors, namely:  
  2 2

0 1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , )G X Y a a X a Y a XY a X a Y= + + + + +              (28) 

 This procedure for finding the basis has the benefit of being simple, but may present 
numerical and performance problems with multidimensional models due to its high number 
of regressors.  Figure 3 illustrates how the number of regressors increases with multi-
dimensional problems as the order of the base is increased.  To control for this high number 
of regressors, many times multidimensional problems are estimated using a low-order base, 
with the obvious loss of accuracy.  
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Number of Regressors as a function of the Order and 
Dimension of the problem
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Figure 3 Number of regressors as a function of the dimension of the problem and the 
order of the base. 
 

This procedure for specifying the base, having the advantage of being very simple, 
does not take advantage on the structure of the problem to be solved.  Given that in most 
financial options optimal exercise depends on expected spot prices and volatilities, we 
propose using this knowledge on the determinants of option value for the base selection.  
Then, instead of using functions of all combinations of the state variables, we propose using 
powers of expected spot prices which should dramatically reduce model complexity, while 
providing an accurate computation of option value.  
  So Eq. (27) becomes under our specification: 

0
1

ˆ ˆ ˆ( ) ( )
N

i
N i

i
g a a E S

=

= + ∑x                  (29) 

where E(S) is the expected spot price under the risk-adjusted measure, i.e., the futures 
price.  Using this reduced-base specification we can obtain similar valuation accuracy in a 
much simpler way, as will be seen in the next section. 
 
3.3 Testing the reduced-base for valuing a three-factor European Option.   
 

To test our reduced-base proposition we value an option that has a closed-form 
solution and compare the analytic solution to alternative implementations of the LS01 
method.  The example used is the pricing at time t of the option to extract and sale q pounds 
of copper in T.  This is a European option (instead of an American one), but we include a 
three-factor model for the stochastic process of copper prices.  Also, given that American 
options in their last exercise opportunity become in practice a European one, we can 
compare the expected continuation value function at the last exercise date obtained from 
the LS01 method with the analytic expression for a European option with T-t maturity.    

Using the three-factor model shown earlier, we let ln( )t tx S= , then using Ito’s 
lemma to obtain the discrete-time form for simulating the state variables when 0t∆ → : 
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2
1 1 1 1

1 2 2

1 3 3

1 1 1 1 2 0 0
0 1 0 0 0 0
0 0 1 0 0

t t

t t

t t

x x
y y t t

a a

σ σ ε
κ σ ε

υ υ ν σ ε

−

−

−

⎡ ⎤⎛ ⎞− −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − + ∆ + ∆⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

B      (30) 

 
where B is the Cholesky decomposition of the instantaneous correlation matrix  in three 
dimensions: 
 

21 1

31 2 3

1 0 0
0B ρ

ρ

⎛ ⎞
⎜ ⎟= Ρ⎜ ⎟
⎜ ⎟Ρ Ρ⎝ ⎠

  2
1 211 ρΡ = − 23 21 31

2
1

ρ ρ ρ−
Ρ =

Ρ
  

2
31 2

3
1

1 ρ− − Ρ
Ρ =

Ρ
         (31) 

 
 

1 2 3, , (0,1)Nε ε ε ∼   
 
The closed-form value for the European option is:  

1ln( ) ln( ) ( ) ( )2
1 2( , , , , ) N( ) N( )t T t TE S Var S r T t r T t

t t tC S y t T q e d K d eυ
+ − − − −⎡ ⎤

= −⎢ ⎥
⎣ ⎦                              (32)

        
 where N is the cumulative normal distribution,     
                

1
ln( ) ln( ) ln( )

ln( )
t T t T

t T

E S Var S Kd
Var S
+ −

=
;  

2
ln( ) ln( )

ln( )
t T

t T

E S Kd
Var S

−
=

             (33)    
  
 
 

( ) ( )

232
1 1

( ) ( ) 22
32

(ln( )) (1 e ) / (1 e ) /
1( )( )
2

(e 1) (e 1)( ) /

T t a T t
t T t t t

T t a T t

E S x y a

T t
a

a a

κ

κ

κ ν
λλν λ σ

κ
λ ν λ
κ

− − − −

− − − −

= − − + −

 + + − − − −  

+ − + − −
                         (34) 
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κ κ

κ

σσ
κ κ κ

σ

ρ σ σ
κ κ

ρ σ σ

ρ σ

− − − −

− − − −

− −

− −

⎡ ⎤= − +  − − −  + −⎢ ⎥⎣ ⎦

⎡ ⎤+ − − −  + −⎢ ⎥⎣ ⎦
⎡ ⎤− − − −⎢ ⎥⎣ ⎦
⎡ ⎤+ − − −⎢ ⎥⎣ ⎦

− ( ) ( ) ( )( )3 1 1 1( ) (1 e ) (1 e ) (1 e )T t a T t a T tT t
a a a

κ κσ
κ κ κ

− − − − − + −⎡ ⎤− − − − − + −⎢ ⎥+⎣ ⎦

                       (35) 

 
Once we have a closed-form solution to our problem we compare two different 

specifications for the regression base: first the original recommendations and then our 
reduced-base implementation. 

We did several numerical implementations of LS01 method using Legendre, 
Laguerre, Hermite, Chebyshev polynomials, all of them converging to the known analytic 
solution in a similar way. 
  We then implemented our reduced-base proposition for different number of 
regression terms. Figure 4 compares the RMSE of both approaches as a function of the 
number of regressors. It can be seen that even though introducing more regressors to the 
base lowers the RMSE for both approaches, using our reduced-base proposition requires a 
much lower number of regressors to achieve a given level of the RMSE. 
 

Regression Adjustment Level to Analytic in Chebyshev Polynomials and 
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Figure 4 Regression RMSE as a function of the number of regressors for Chebyshev 
Polynomials and the reduced-base form. 
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4. Model Implementation and Results  
 
In this section we show how to implement the Longstaff and Schwartz (2001) method to 
solve the extended Brennan and Schwartz (1985) model.  The reduced-base implementation 
proposed earlier in this paper is used to solve this real option model under prices that follow 
the Cortazar and Schwartz (2003) three-factor commodity price model, calibrated for 
copper. 

Then, we restrict the commodity price model to match the one-factor model used in 
the Brennan and Schwartz (1985) paper and compare their results using finite difference 
methods with those from our simulation method.  Finally, we present our results for the real 
option model with the three-factor price process. 

 
4.1 Model Implementation.  
 
In a previous section we described the extended Brennan and Schwartz (1985) model 
including the options to abandon a mine, to close an open mine and to open a closed mine.  
Also we described the computer-based simulation approach that will be used for solving the 
model.  Figure 5 may be useful to understand the nature of the problem by describing all 
possible states during the simulation.  It can be seen that as time evolves from 0 to T, the 
state variables that describe the dynamics of copper prices, [ , , ]

t t t t
S yω ω ω ωυ=x , evolve 

following different paths. At any point in time, and for any value of the price state 
variables, the mine may have any amount of copper reserves between zero and the initial 
reserves Qmax.  In addition, the mine at that point may be open or closed with market values 

( , )
t

V Qωx or ( , )
t

W Qωx , respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 State-space representation of the extended Brennan and Schwartz (1985) 
model extended with a multi-factor price process 
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 For every state of the system and operating policy, there is an associated cash flow 
for the firm.  For example, when the mine is open and the operating policy is to remain 
open during t∆  years producing q*, the cash flow, CF, is: 
   ( , *) * ( )

t t
CF S q q t S A Taxω ω= ∆ − −                              (36) 

Recall that for any price model, the spot price depends on the state variables x, i.e. 
( )

t t
S fω ω= x .  In particular, for the three-factor CS01 model used in this paper, we have: 

( ) '
t t t

S fω ω ω= =x h x with [ ]' 1 0 0=h                             (37) 
 

 Also, as noted previously, the mine may be open, closed or abandoned, and may 
switch from one operating state to another incurring in fixed costs. 

Figure 6 summarizes the cash flows of an open mine which will either remain open, 
be closed or abandoned during time t.  Figure 7 shows the same information, but for a 
closed mine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.   Cash flows and Value of an Open Mine as a function of Operating Policy   
 

  
 
 

 
 

 
 
 
 
 
 
 
 

Figure 7   Cash flows and Value of an Open Mine as a function of operating policy  
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As described in a previous section, after simulating all price paths from time zero to 

time T, the method requires making optimal decisions starting at time T and then working 
backwards until the initial time zero is reached. The optimal decision at each point is taken 
by maximizing market value among all available decision alternatives. 
 At time T, given that the concession ends, the value of both the open and the closed 
mine is zero: 
 ( , ) ( , ) 0 ,

T T
V Q W Q Qω ω ω= =         ∀       ∀x x                  (38) 

 Then, at t T t= − ∆  there is no time left to change the operating policy so there is no 
need to estimate an expected continuation value. So the market values are:  

1( )( , ) ( ( , *);0)
T t T t

r tV Q Max CF S q e λ
ω ω−∆ −∆

− + ∆=x   Q∀                    (39) 
0( )

2( , ) ( ( , *) ;0)
T t T t

r tW Q Max CF S q K e λ
ω ω−∆ −∆

− + ∆= −x   Q∀                            (40) 
            Then, at  2t T t= − ∆  we must estimate the expected continuation value.  We regress 
mine value on a linear combination of functional forms of the state variables L(X), for each 
inventory level Q:        

2 , , 2 , , 2( , ) ( , ) ( )
T t T t T t V Q T t W Q T tV Q W Q L a a e

−∆ −∆ − ∆ − ∆ − ∆
⎡ ⎤ ⎡ ⎤= +⎣ ⎦⎣ ⎦X X X                                         (41) 

Once the optimal coefficients are found we can estimate expected continuation 
values for any mine:  

 , , 2 , , 2 , , 2 , , 2
ˆ ˆ ˆ ˆ( )V Q T t W Q T t t V Q T t W Q T ta a− ∆ − ∆ − ∆ − ∆

⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦G G L X                         (42) 

 Thus, the expected continuation value at time 2t T t= − ∆ , as a function of the price 
state variables x, may be computed.  For example, the value of an open mine with Q units 
of resources, conditional on keeping the mine open would be: 

, , 2 , , 2
1

ˆ ˆ( ) ( )
M

V Q T t V Q T t j
j

g a L− ∆ − ∆
=

= ∑x x                (43) 

 Given that we can compute the expected continuation value for all mines (open or 
closed and with any amount of reserves left), we are now able to obtain the optimal 
operating decisions by maximizing current cash flows plus the present value of expected 
continuation values.  
 For example, when the mine is open there are three operating alternatives available: 
to continue open, to close down operations, or to abandon the mine.  Adding current cash 
flows to discounted expected continuation values for each of the three alternatives, the 
decision maker may choose which is the best course of action.     

Figure 8 shows, for each of the three alternatives, the expected present value (at 
time t), the optimal decision should this expected present value be the maximum among the 
alternatives, and the final value at time t using actual realizations of the price simulation 
(instead of expected values to avoid known biases) at time t+1.   Figure 9 shows the same 
information, but if the mine is initially closed. 
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Figure 8 Expected and Realized Value of an Open Mine as a function of Operating Policy 
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Figure 9 Expected and Realized Value of a Closed Mine as a function of Operating Policy. 
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This procedure is repeated from 2t T t= − ∆  until 2t t= ∆ . At t t= ∆  mine values are 
averaged over all price paths to provide an initial estimate of the expected continuation 
value for the mine: 

1

0

( )
, , 0

1

1ˆ ( ) ( , )
s

r t
V Q q t tg V Q q t e

s
λ

ω ω
ω

− + ∆
− ∆ =

=

= − ∆∑x x                  (44) 

0

0

( )
, , 0

1

1ˆ ( ) ( , )
S

r t
W Q tg W Q e

S
λ

ω ω
ω

− + ∆
=

=

= ∑x x                (45) 

 Figures 10 and 11 show the initial mine values depending on the initial status and 
operating policy of the mine 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 Open Mine values as a function of the initial operation decision. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 11 Closed Mine values as a function of the initial operation decision. 
 

Finally, to determine the optimal operating policy, described by the critical values 
for the state variables over or under which it is optimal to switch between mine states 
(abandoned, closed and open) the method must find the critical state variables, xc 
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equate expected present values for different operating decisions.  
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Figure 12 shows how to find the critical state variables to close an open mine, to open a 
closed mine, or to abandon from an open or from a closed mine.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 Conditions to determine critical state variables xc for switching mine 
operating policy 
 
 
4.2 Results for the original Brennan and Schwartz (1985) model.  
 
 
To validate the proposed procedure, in this section we solve the Brennan and Schwartz 
(1985) real options model that was originally solved using traditional finite difference 
methods. Recall that the main difference between this model and its extension, which will 
be solved in the following section, is the price process with one or three risk factors, 
respectively. 
 A simple way of validating our method is to see the one-factor price process as a 
particular case of the more general three-factor process. In this way by restricting certain 
parameter values we can perform a better test on the algorithm by using the same computer 
program to solve both models. 
 Table 2 shows how the Cortazar and Schwartz (2003) three factor model may be 
restricted to behave as the one-factor model used in Brennan and Schwartz (1985): 

 

Optimal Policy 

Open to Abandon

Closed to Open

Open to Closed

Equilibrium Condition

Closed  to Abandon

, , 1 , 1,ˆ ˆ( , *) ( ) ( )c c c
V Q q t t W Q tCF q g K M t g− ∆ −+ = − − ∆ +x x x

, 1, 2 , ,ˆ ˆ( ) ( , *) ( )c c c
W Q t V Q q t tM t g K CF q g− − ∆− ∆ + = − + +x x x

, ,ˆ( , *) ( ) 0c c
V Q q t tCF q g − ∆+ =x x

, 1,ˆ ( ) 0c
W Q tM t g −− ∆ + =x
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Cortazar-Schwartz  
Model Parameters 

Equivalence to  
Brennan-Schwartz  

1λ  0 0 1( )y rυ δ λ− − − =

2λ  0≈  

3λ  0≈  

a  1 

κ  1 

ν  0≈  

1σ  σ  

2σ  0≈  

3σ  0≈  

12ρ  0≈  

23ρ  0≈  

13ρ  0≈  

oy  2 /λ κ  

oυ  
3 / aν λ−  

Table 2 Restrictions on the parameters of the Cortazar and Schwartz (2003) model 
which induce a one-factor price process similar to Brennan and Schwartz (1985). 

 
 
The proposed computer-based simulation program was run for 50000 price paths, 

assuming a concession that lasted for 50 years (the original model assumes an infinite 
concession), and there are three opportunities/year to switch between operating states.   

Table 3 compares the finite difference values reported in Brennan and Schwartz 
(1985) with those obtained using the above simulation procedure.  It can be seen that the 
simulation method converges very nicely to the known solution. 
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Mine Value 
Finite difference method 

reported  in Brennan-Schwartz (1985) 

Mine Value 
Simulation method 

 

Spot Price 
(US$/lb.) 

Open Closed Open Closed 

0.4 4.15 4.35 4.2 4.4 

0.5 7.95 8.11 7.93 8.12 

0.6 12.52 12.49 12.51 12.49 

0.7 17.56 17.38 17.51 17.31 

0.8 22.88 22.68 22.8 22.6 

0.9 28.38 28.18 28.29 28.09 

1.0 34.01 33.81 33.89 33.69 

 
Table 3 Open and Closed Mine Value as a function of spot price. 
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Figure 13 Critical prices for opening, closing or abandoning a mine, as a function of 
reserves   

 
Our simulation procedure may also provide the optimal operating policy.  Figure 13 

shows the critical prices for abandoning, opening a closed mine, and closing an open mine, 
as a function of reserves. Results are very similar to those reported in Brennan and 
Schwartz (1985), which concludes the validation of our method.  
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4.3 Results for the three-factor extension of the Brennan and Schwartz (1985) model.  
 

We now report the solution to the Brennan and Schwartz (1985) model extended to 
include the Cortazar and Schwartz (2003) three-factor commodity price model.  The used 
parameter values are those estimated from all copper futures prices traded at NYMEX 
between 1991 and 1998 and reported in section 2.3. 

The computer-based simulation is run for 10,000 price paths, assuming a 30 year 
concession horizon, and three opportunities to switch operation mine state per year.  
 To value the mine for a particular date, say January the 14th, 1999, we must first 
determine the values of the state variables corresponding to that date, which we report in 
Table 4. 

 
State Variable                                    Value 

oS  0,65 

oy  0,465 

oυ  0,417 

 
Table 4 Values of the state variables for January the 14th, 1999 

 
We now run the simulation and the procedure described in 4.1 obtaining for that 

date a value for the open mine of MMUS$ 16,75, and for the closed mine of MMUS$ 
16,68. 
 To explore how mine value changes according to daily variations in price 
conditions, we solve for the value of the mine for a 5 year time span, at each date between 
January 1999 and December, 2003.  Results are reported in Figure 14.  
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Figure 14 Daily values of the extended Brennan and Schwartz (1985) open mine 
according to historical copper pricing conditions from January 1999-December 2003 
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It is interesting to note that mine value exhibits mean reversion.  Even though it is 

well known that copper prices do exhibit mean reversion, given that a mine produces 
copper during a long time span it could be thought that current spot prices would not affect 
too much mine values, so this value would not display mean reversion. Figure 14 shows 
this is not the case.  

To make comparative static analysis on how mine value changes with variations in 
the spot price, or in any individual state variable or parameter value, is rather 
straightforward.  For example, Figure 15 shows how mine value increases with copper spot 
prices. Also it is interesting to note that mine values are convex, as with all options, 
because as value approaches zero the mine increases the probability of abandonment. 
Finally, the same figure compares mine value computed with the real option model to a 
simple net present value calculation which does not recognize operating flexibilities to 
abandon or close operations.  It can be seen that when spot prices are lower, option values 
are greater and these two valuation methodologies diverge by the most.  By the same token, 
when prices are high, flexibilities are not too valuable and both valuations converge. 

Mine Value Extended Brennan Schwartz (1985):
 y = 0.01, v = -0.1
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Figure 15 Mine Value using ROV and NPV as a function of spot price 
 

We can repeat the comparative static analysis for any of the state variables. For 
example, in Figure 16 we compare Real Option and traditional NPV values as a function of 
the short term price deviations, y.  We assume a rather low initial spot price of only 
US$0.4.  Recall that our three-factor price model assumes that short-term price variations, 
y, mean revert to zero. Thus, if at any point in time y exhibits a high positive value, future 
prices are expected to be much lower than current ones, and given our low initial spot price 
assumption, mine value should basically be explained by its option value.  This can be seen 
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in Figure 16 where for large values of y the NPV shows a negative value, while the ROV 
value is slightly positive. 

Mine Value Extended Brennan Schwartz (1985):
S = 0.4, v = 0.3
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Figure 16 Mine Value using ROV and NPV as a function of short-term price 
deviations 
 

Comparative static analysis can also be performed on optimal policy results.  For 
example Figure 17 shows how critical spot prices to open a closed mine depend both on 
price conditions, in this case the value of the short  term price deviations y, and on the state 
of the mine, represented by the reserves left for extraction.  

Optimal Opening Prices as a function of Short Term 
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Figure 17 Critical spot prices for opening a closed mine as a function of short term 
price deviations and mine reserves 
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Sometimes optimal policy evolves in a non-monotonic way with the state of the mine. 
For example in Figure 18 where as reserves are lower, critical closing prices first decline to 
later sharply increase. 

Optimal Closing Prices as a function of Short Term 
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Figure 18 Critical spot prices for closing an open mine as a function of short term 
price deviations and mine reserves 
 
 
5. Conclusions 
 

Real options valuation (ROV) is an emerging paradigm that provides helpful 
insights both for valuing and for managing real assets.  It provides more precise 
quantifications on the value of available strategic and operational flexibilities than 
traditional discounted cash flow techniques. 
 Despite its potential, the ROV approach has not yet made a strong inroad in 
corporate decision-making due to several reasons, one of which is the requirement to keep 
models too simple to obtain solutions within a reasonable amount of effort. 
 In this paper we show how it is possible to solve very complex multidimensional 
American options resorting to new computer-based simulation procedures. We show how 
to lower complexity by using a reduced-base implementation of the procedure and we 
validate our proposition solving a multidimensional option with known analytical solution. 
 We then extend a known real option model proposed by Brennan and Schwartz 
(1985) and solve it using the proposed methodology. Results on different comparative static 
analysis are provided. 
 This paper makes the case why these new computer-based simulation methods have 
the potential of expanding significantly the use of the ROV approach without having to 
compromise rigorous modeling for solving requirements. 
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