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Abstract

In this paper we present an original model, with the purpose of de-
termining the value and timing of an investment opportunity (IO) that
is shared by several companies, in a competitive environment. We as-
sume that the market can accommodate a finite number of firms (N ),
which are assumed to enter the market stochastically. Accordingly, the
IO matures with the last ”admitted” company’s entrance and, after
that moment, the option to invest disappears. Since companies can in-
vest anytime up to, but not including, the random maturity date, it’s
important to determine the optimal timing to invest, in this context.
We provide an example that shows the value and the optimal timing
for investing for several situations. As expected, the value of the IO,
and its trigger value for investing, decreases as the available ”places”
in the market decreases, or (and) as the probability of a competitor
entrance increases. The example also shows that the IO’s value and
the optimal timing tend to the value and to the optimal timing of a
perpetual American option as N assumes higher values or (and) when
the probability of a competitor entrance tends to zero. At the end of
the paper we present several possible extensions to the basic model.
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1 Introduction

To the traditional question: ”Should the company invest in the project?”, modern
capital budgeting, influenced by the insights of the real options literature, says it
must be complemented with another, extremely important, one: ”When should
the company invest?” In other words it is important to determine at what point in
time is it optimal to pay the investment cost K in order to receive the gross value
V. Instead of saying: ”Invest if V > K” (NPV rule), the real options theory says:
”Invest if (when) V ≥ V*, where V* is some critical value for V.

A problem may arise because, commonly, and in addition of being deferrable,
the investment decisions can be, at least in part, irreversible, since the investors
can’t, without penalty, step back and recover the position prior sinking the im-
plementation cost1; however, the decision to defer the project implementation is
reversible: the company can, anytime, decide to stop deferring, choosing to ex-
ercise the option to invest. This asymmetry has a major impact, both on the
project’s value and on the (optimal) timing to invest2.

To act (invest) optimally, the company must trade-off the benefits from de-
ferring (in order to obtain more information about the project, reducing the un-
certainties) and the costs that the decision to postpone introduces (e.g.: the lost
cash-flows).

However, in this context, the firm has to determine, or to predict (as in most
real world situations), until when it will have the capacity to defer the project
implementation. After that particular moment - that is called the maturity date -
the option disappears, and the company loses the chance to invest.

Related to this, there are three possibilities: (i) there is no finite maturity
for the option to invest, meaning the company has perpetual right to invest; (ii)
the maturity is finite, but its date is known with full certainty; (iii) finally, and
possibly the most common, the maturity date is finite but its occurrence is, for
several reasons, uncertain.

There is some prior research that focus (theoretically or empirically) on the (op-
timal) timing to invest, for example: Titman (1985), McDonald and Siegel (1986),
Paddock, Siegel and Smith (1988), Pindyck (1988), Bjerksund and Ekern (1990),
Trigeorgis (1990a), Ingersoll and Ross (1992), Kemna (1993), Lee (1997), McDon-
ald (2000) and Pereira, Armada and Kryzanowski (2002). But basically, in all
these papers, investment opportunities are treated like European calls, American

1In fact, the decision to invest now kills the option to invest later in the same project,
which means that an irreversible project that can be deferred competes with itself delayed
in time. This introduces a mutually exclusive problem between the project now and itself
later in the future.

2For details, see two excellent surveys: Dixit and Pindyck (1994), and Trigeorgis
(1996b)
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calls, perpetual (American) calls or American exchange options, so it is assumed
that either the maturity does not exist, or, if it is finite, it is known with certainty
(a deterministic maturity is assumed).

Excluding the perpetual situation, and on contrary to the financial options3,
the determination of maturity date plays an important role in the real option
valuation, particularly if we think of it as a random variable.

Since the maturity is the moment after which the investment opportunity dis-
appears, it’s important to think about what contributes to the maturity’s occur-
rence, and, also important, to its (possible) randomness. Starting with the non-
stochastic situations, we can say that maturity can depend on some (pre-defined)
contractual length of time to explore some natural resource - the concession period
(e.g.: offshore oil properties, mining exploration, etc.), or to start producing some
protected product (patents), where the protection ends in some (known) future
date.

Additionally, there are some (maybe few) situations where the option to invest
lives forever; a typical example is the option to construct (e.g.: a building) in a
vacant land, since the owner of the land has the perpetual right to postpone the
construction.

But, in the majority of the situations, the maturity date is neither contractual
(and, as a consequence, certain) nor perpetual. In most real world investment
opportunities, the maturity date depends on some exogenous (to the firm) factors
that, after occurring, vanish the option to invest. That’s the case, for example,
when, in a monopoly, some firm enters earlier, destroying the chance for all the
others4.

In practice, possibly as a consequence of being strongly influenced by actions
of others and by the competition among companies, the maturity date tends to be
random.

Additionally, this competition aspect is frequently ignored, since most of the
real options models assume that the firm has an exclusive right on the investment
opportunities. However, the companies’ real options are rarely proprietary; on
contrary, investment opportunities are (most of the times) shared options.

As a consequence, and in addition to the traditional factors that influence
the real options value, the firm must incorporate the competitors’ actions, due
to its impact on the option to invest. That’s what some authors do when study
the preemption possibility in a monopoly market5, or study the leader/follower
optimal action in duopoly market6.

3The financial options’ maturity is known in advance, as part of the traded contract.
4That’s also the case for the R&D competition, since the first to do the discovering gets

an exclusive right against its competitors (in this R&D context the maturity occurrence,
corresponding to the discovery occurrence, is a ”good” event for the company, but a ”bad”
one for its competitors).

5See Trigeorgis (1991b).
6See, for example, Smit and Ankum (1993), Trigeorgis (1996b), Paxson and Pinto
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By introducing a new methodology7 for valuing and determining the optimal
timing of shared investment opportunities, our work makes a contribution, dealing
with the problem in a more general way: we assume the market can accommodate
N firms, and not only one or two8.

As we will note, the ”shared” characteristic of the real options, and its random
maturity are, in our model, intimately related: if the market can accommodate N
companies, then the maturity occurs exactly when the N th competitor enters the
market. At this (critical) random moment, the option to invest disappears, and
the company loses the chance to undertake the project; in other words, at this
moment, the investment opportunity turns worthless.

In the next section (section 2), the assumptions and the model are presented.
Section 3 presents some numerical results for some hypothetical examples. Finally,
in section 4 some conclusions are derived and some avenues for future research are
presented.

2 The Model

2.1 Basic Characteristics and Assumptions

A firm is facing an opportunity to invest in a project. This investment opportunity
is shared with some other competitors (note that a problem treated in this paper
only exists if the number of possible entrants is higher than the ”available places”
in the market). In this model, we assume the market can ”accommodate” N
companies exploring the same ”business”. If N=1 the market is monopolistic,
if N=2 the market if duopolistic, and if N assumes higher values that means
more companies can be placed tending to a more competitive market. As we can
easily see, a company having some shared investment opportunity can defer the
decision to invest until the number of the companies already in place equals N ;
until then the company has the chance to enter, because the market stills having
available ”space”. This means that, after N entrances (which will be modeled as
Poisson jumps), the option to invest becomes worthless, because the market has
no capacity to accommodate more firms. At that moment, the maturity occurs.
Note that, since the entrance of other companies is stochastic (Poisson ”events”),
then the maturity date is, also, stochastic.

Accordingly, the company can invest anytime until all the ”admitted” firms
have already entered the market. If all the companies that the market can ac-

(2003).
7Some very basic ideas where taken from Carr (1998). However our specific objectives,

assumptions and formulae are totally different.
8Monopolies and duopolies could be looked as particular cases of this model. Note

however that, as we will see, we assume that the actions of the competotors are exogenous
to the model.
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commodate are already in, the option to invest turns worthless, since there is no
possibility to invest afterwards. This type of option is similar to an American op-
tion with an important difference: at the maturity date, the option to invest does
not have the traditional payoff max[V-K, 0]. At that moment the company cannot
invest because the last admitted firm has already arrived, so, at the maturity date
the value of the option to invest is zero. In other words, the option to invest is not
entirely like an American option, because the company can invest anytime up to,
but not including, the random maturity date.

As we said, the entrances of the competitors are modeled as Poisson jumps, and
the maturity happens with the Nth jump. Additionally, the jumps are assumed
to be independent from each other, independent from the projects’ value, and
constant in time.

There is, also, no time decay associated with the option to invest. In our model,
the company gets closer to maturity, not as time passes, but as jumps occurs.

Finally, it is also assumed that the market is ”homogeneous”, meaning that all
admitted (or installed) firms produce (or sell) the same type of goods (or services);
and the firms are identical in terms of market dimension and profitability.

We can present several examples of businesses that can be modeled this way,
but we just mention three: (i) franchise opportunities (the franchiser generally
defines how many franchise units are allowed in a region; when all units are in
place, no more will be allowed); (ii) construction industry (in the presence of some
large vacant land, the construction companies have the shared option to buy a
part of the land and construct a building there; but after completely urbanized
there’s no more chance for construction); (iii) malls and shopping centers (usually,
local authorities define the allowed number of this large commercial spaces, when
all are in place there’s no chance to construct more).

2.2 Building-In the Model

A risk-neutral firm has the chance to invest in a project, sinking the investment cost
K, whose gross value V is assumed to evolve according to the following geometric
Brownian motion with drift:

dV = (r − δ)V dt+ σV dZ (1)

where r is the risk free rate, δ is the ”dividend-yield” (corresponding to the op-
portunity cost of the decision to defer), σ is the volatility of V, and dZ is the
increment of the Wiener process.

Additionally, as we said, the value of the investment opportunity is, also, func-
tion of N (the available ”places” in the market9) that follows a Poisson process of

9At the beginning, when no company has entered the market, N represents the total
number of firms that it can accommodate; after, N represents the available ”places”.
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the form:
dN = −dq (2)

where:

dq =

{
1 with probability λdt
0 with probability 1− λdt (3)

Each jump corresponds to the entrance of a new company (the Poisson ”event”)
reducing the available places in the market by 1, and this happens with the inten-
sity λ, where λ represents the mean arrival rate of the event during the infinitesimal
period of time dt.

Under risk-neutrality, the option’s value, which is a function of V and N,
F (V,N) ≡ FN (V ), must satisfy the following equilibrium condition:

rFN (V )dt = E [dFN (V )] (4)

Expanding dFN (V ) using Ito’s lemma, we get the differential equation (5)
which must be satisfied by FN (V ), during the ”continuation” period (whenever
V< V ∗N , where V ∗N is the option’s trigger value10):

σ2

2
V 2∂

2FN (V )
∂2V

+ (r − δ)V ∂FN (V )
∂V

+ λ [FN−1(V )− FN (V )] = rFN (V ) (5)

It’s important to note that λ [FN−1(V )− FN (V )] captures the real option’s
expected loss due to the entrance of a new company in the market, during the
infinitesimal length of time dt. If a company joins the market, the shared option,
instead of maturing at the Nth, jumps will mature after Nth-1. As a consequence,
both the real option’s value and the trigger value will be lower after the entrance
(because the time-to-maturity11 has been, suddenly, reduced).

Rearranging (5) we get:

σ2

2
V 2∂

2FN (V )
∂2V

+ (r − δ)V ∂FN (V )
∂V

− (λ+ r)FN (V ) = −λFN−1(V ) (6)

Equation (6) must be solved considering the following boundary conditions12:

lim
V→0

FN (V ) = 0 (7)

10The company should only invest when (or if) V reaches V ∗n , n=1,...,N.
11It may be more adequate to use the expression jumps-to-maturity.
12The reason why we need three conditions is because we have three unknowns, two of

them arising from the solution of the second-order differential equation, and the third one
is the optimal value for acting.
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lim
V→V ∗

N

FN (V ) = V ∗N −K (8)

lim
V→V ∗

N

∂FN (V )
∂V

= 1 (9)

The boundary (7) ensures that the option to invest is worthless when V =0; (8)
is called the value-matching condition, and (9) is the smooth-pasting condition.

Fortunately, this type of problem can be solved analytically, although recur-
sively, starting at n=1 [with the value of F1(V )], and then passing on to n=2,
3,...,N [calculating the values for F2(V ), F3(V ),..., and finally FN (V )].

When n=1, the option matures at the next jump, which can occur either if
the market is monopolistic or if N -1 companies are already in, and just one more
is admitted. The option value must then satisfy (6) whose version, when n=1,
becomes:

σ2

2
V 2∂

2F1(V )
∂2V

+(r− δ)V ∂F1(V )
∂V

− (λ+ r)F1(V ) = −λF0(V ) for V < V ∗1 (10)

As we already said, when n=0 the option to invest is worthless, because the
last admitted company has entered the market, meaning F0(V ) = 013. So equation
(10) becomes:

σ2

2
V 2∂

2F1(V )
∂2V

+ (r − δ)V ∂F1(V )
∂V

− (λ+ r)F1(V ) = 0 for V < V ∗1 (11)

which is a Cauchy-Euler homogeneous differential equation, bounded by the fol-
lowing conditions (where V ∗1 is the trigger value for the option that matures at the
next jump):

lim
V→0

F1(V ) = 0 (12)

lim
V→V ∗

1

F1(V ) = V ∗1 −K (13)

lim
V→V ∗

1

∂F1(V )
∂V

= 1 (14)

The solution for (11) is:

F1(V ) = A1,1V
β1 +A1,2V

β2 (15)

where A1,1 and A1,2 are constants to be determined, and

β1 =
1
2
− r − δ

σ2
+

√(
−1

2
+
r − δ
σ2

)2

+
2 (r + λ)

σ2
> 1 (16)

13After that last jump the company loses the chance to enter, because the option has
disappeared.
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β2 =
1
2
− r − δ

σ2
−

√(
−1

2
+
r − δ
σ2

)2

+
2 (r + λ)

σ2
< 0 (17)

In order to respect the boundary condition (12), and noting that A1,2V
β2 →

+∞ as V → 0, A1,2 must be zero. The other two conditions are used to determine
A1,1 (or simply A1 hereafter) and V ∗1 .

Then, the value of the investment opportunity that matures just after the next
company enters the market is given by the following expression:

F1(V ) =

{
A1V

β1 for V < V ∗1
V −K for V ≥ V ∗1

(18)

where β1 is the same as in (16), and

A1 =
1

β1V ∗1
β1−1

(19)

V ∗1 =
β1

β1 − 1
K (20)

As one can easily see from (18-20), the value of an option that matures at the
next entrance, is similar to a perpetual American option with the underlying asset
(for instance X ) following a mixed Brownian motion/jump process of the form
dX = αXdt+ σdZ −Xdq [see McDonald and Siegel (1986)].

When n=2, the value of the option, that matures at the 2nd jump, F2(V ),
must satisfy the following differential equation:

σ2

2
V 2∂

2F2(V )
∂2V

+(r− δ)V ∂F2(V )
∂V

− (λ+ r)F2(V ) = −λF1(V ) for V < V ∗2 (21)

bounded by the following conditions:

lim
V→0

F2(V ) = 0 (22)

lim
V→V ∗

2

F2(V ) = V ∗2 −K (23)

lim
V→V ∗

2

∂F2(V )
∂V

= 1 (24)

Equation (21) is a non-homogeneous Cauchy-Euler differential equation. The
general solution corresponds to the sum of the solution to the homogeneous part
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of the equation with its particular solution. So the value of F2(V ) is as follows,
taking into account (22):

F2(V ) =



A2V
β1 − [

∫
λωA1V β1

V (β1−β2)
dV ]V β1 + [

∫
λωA1V β1−β2−1

β1−β2
dV ]V β2 for V < V ∗1

B2V
β1 − [

∫ V ∗
1

0
λωA1V β1

V (β1−β2)
dV ]V β1 + [

∫ V ∗
1

0
λωA1V β1−β2−1

β1−β2
dV ]V β2−

[
∫ V

V ∗
1

λω(V−K)V −β1−1

β1−β2
dV ]V β1 + [

∫ V

V ∗
1

λω(K−V )V −β2−1

−β1+β2
dV ]V β2 for V ∈ [V ∗1 , V

∗
2 [

V −K for V ≥ V ∗2
(25)

where A2 and B2 are constants to be determined, and ω ≡ 2
σ2 .

Solving the integrals, then the solution takes the form:

F2(V ) =



A2V
β1 + a1(V )V β1 + a2(V )V β2 for V < V ∗1

B2V
β1 + a1(V ∗1 )V β1 + a2(V ∗1 )V β2 + ā1(V )V β1+

ā2(V )V β2 − [ā1(V ∗1 )V β1 + ā2(V ∗1 )V β2 ] for V ∈ [V ∗1 , V
∗
2 [

V −K for V ≥ V ∗2

(26)

where

a1(x) = − λωA1

β1 − β2
log(x)

a2(x) =
λωA1

(β1 − β2)2
xβ1−β2

ā1(x) = −
λω

(
x

1−β1
+ K

β1

)
β1 − β2

x−β1

ā2(x) =
λω

(
x

1−β2
+ K

β2

)
β1 − β2

x−β2

and x is either V or V ∗1
In order to simplify (26), an taking into account that ā1(V )V β1 + ā2(V )V β2 =

λω(− V
(β1−1)(β2−1) + K

β1β2
), then we have:

F2(V ) =



A2V
β1 + a1(V )V β1 + a2(V )V β2 for V < V ∗1

B2V
β1 + a1(V ∗1 )V β1 + a2(V ∗1 )V β2+

λω(− V
(β1−1)(β2−1) + K

β1β2
)− ā1(V ∗1 )V β1 − ā2(V ∗1 )V β2 for V ∈ [V ∗1 , V

∗
2 [

V −K for V ≥ V ∗2
(27)
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where

A2 =
1− λωA1

β2−β1
V ∗
2

β1−1− β1λωA1
(β1−β2)2

V ∗
2

β1−1−β1λωA1
β2−β1

log(V ∗
2 )V ∗

2
β1−1

β1V ∗
2

β1−1

B2 =
1−β1[a1(V ∗

1 )−ā1(V ∗
1 )]V ∗

2
β1−1−β2[a2(V ∗

1 )−ā2(V ∗
1 )]V ∗

2
β2−1+ λω

(β1−1)(β2−1)

β1V ∗
2

β1−1

and V ∗2 is the solution to the equation:

V ∗2 + λω
(
− V ∗

2
β2−1 + K

β2

)
+ λωA1

β1−β2
V ∗1

β1−β2V ∗2
β2+

−λω
(

V ∗1
1− β2

+
K

β2

)
V ∗1

−β2V ∗2
β2 − β1(V ∗2 −K) = 0 (28)

When n=3 the investment opportunity matures at the 3rd entrance in the
market, and its value, F3(V ), is governed by an appropriate version of (6), bounded
as previously. Although a bit more complicated, a solution exists, taking the form:

F3(V ) =



A3V
β1 + b1(V )V β1 + b2(V )V β2 for V < V ∗1

B3V
β1 + b1(V ∗1 )V β1 + b2(V ∗1 )V β2+

b̄1(V )V β1 + b̄2(V )V β2 − b̄1(V ∗1 )V β1 − b̄2(V ∗1 )V β2 for V ∈ [V ∗1 , V
∗
2 [

C3V
β1 + b1(V ∗1 )V β1 + b2(V ∗1 )V β2+

b̄1(V ∗2 )V β1 + b̄2(V ∗2 )V β2 − b̄1(V ∗1 )V β1 − b̄2(V ∗1 )V β2+

λω(− V
(β1−1)(β2−1) + K

β1β2
)− ā1(V ∗2 )V β1 − ā2(V ∗2 )V β2 for V ∈ [V ∗2 , V

∗
3 [

V −K for V ≥ V ∗3
(29)

where:

b1(x) = −
(

λ2ω2A1

(β1 − β2)3
+

λωA2

β1 − β2

)
log(x) +

λ2ω2A1

2(β1 − β2)2
log2(x)

b2(x) =
(

2λ2ω2A1

(β1 − β2)4
+

λωA2

(β1 − β2)2

)
xβ1−β2 − λ2ω2A1

(β1 − β2)3
log(x)xβ1−β2

b̄1(x) =

λω

[
log(x)

[
−ā1(V ∗

1 ) + a1(V ∗
1 ) + B2

]
+

x−β1+β2 (ā2(V ∗1 )−a2(V ∗1 ))

β1−β2

]
−β1 + β2

+

λ2ω2

(
x

(β1−1)2(β2−1)
− K

β2
1β2

)
−β1 + β2

x−β1
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b̄2(x) =

λω

[
log(x)

[
−ā2(V ∗

1 ) + a2(V ∗
1 )

]
+

xβ1−β2 (−ā1(V ∗1 )+a1(V ∗1 )+B2)

β1−β2

]
β1 − β2

+

λ2ω2

(
x

(β1−1)(β2−1)2
− K

β1β2
2

)
β1 − β2

x−β2

and, now, x is either V , V ∗1 , or V ∗2

A3 =
1−

(
2λ2ω2A1
(β1−β2)3

+
λωA2
β2−β1

)
V ∗
3

β1−1−β1

(
2λ2ω2A1
(β1−β2)3

+
λωA2
β2−β1

)
log(V ∗

3 )V ∗
3

β1−1

β1V ∗
3

β1−1 +

+
−β1

(
2λ2ω2A1
(β1−β2)4

+
λωA2

(β2−β1)2

)
V ∗
3

β1−1− β1λ2ω2A1
2(β1−β2)2

log2(V ∗
3 )V ∗

3
β1−1− λ2ω2A1

(β1−β2)2
log(V ∗

3 )V ∗
3

β1−1

β1V ∗
3

β1−1

B3 =
1−β1[b1(V ∗

1 )−b̄1(V ∗
1 )]V ∗

3
β1−1−β2[b2(V ∗

1 )−b̄2(V ∗
1 )]V ∗

3
β2−1

β1V ∗
3

β1−1 +

+
λω

[
λω(−β1+β2)

(β1−1)2(β2−1)2
+V ∗

3
β1−1a1(V ∗

1 )

(
log(V ∗

3 )β1+
β2

β2−β1

)
+

V ∗3
β1−1ā1(V ∗1 )(β2+log(V ∗3 )β1(−β1+β2))

β1−β2

]
β2−β1

+

+
λω[−B2V ∗3

β1(β2+log(V ∗3 )β1(−β1+β2))+V ∗3
β2(ā2(V ∗1 )−a2(V ∗1 ))(−log(V ∗3 )β2

2+β1(1+log(V ∗3 )β2))]
V (β1−β2)

β2−β1

C3 =
1−β1[b1(V ∗

1 )+b̄1(V ∗
2 )−b̄1(V ∗1)−a1(V ∗

2 )]V ∗
3

β1−1

β1V ∗
3

β1−1 +

+
−β1[b2(V ∗

1 )+b̄2(V ∗
2 )−b̄2(V ∗

1 )−a2(V ∗
2 )]V ∗

3
β1−1+ λω

(β1−1)(β2−1)

β1V ∗
3

β1−1

The trigger value V ∗3 is the solution to the equation:

V ∗3 + (β1 − β2)
[
b2(V ∗1 ) + b̄2(V ∗2 )− b̄2(V ∗1 )− a2(V ∗2 )

]
V ∗3

β2+

+λω
(
− V ∗3
β2 − 1

+
K

β2

)
− β1(V ∗3 −K) = 0 (30)

The general solution for n=N, takes the form
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FN (V ) =



ANV
β1 + [

∫
f1,1(V )dV ]V β1 + [

∫
f1,2(V )dV ]V β2 for V < V ∗1

BNV
β1 + [

∫ V ∗
1

0
f1,1(V )dV ]V β1 + [

∫ V ∗
1

0
f1,2(V )dV ]V β2+

[
∫ V

V ∗
1
f2,1(V )dV ]V β1 + [

∫ V

V ∗
1
f2,2(V )dV ]V β2 for V ∈ [V ∗1 , V

∗
2 [

CNV
β1 + [

∫ V ∗
1

0
f1,1(V )dV ]V β1 + [

∫ V ∗
1

0
f1,2(V )dV ]V β2+

[
∫ V ∗

2
V ∗

1
f2,1(V )dV ]V β1 + [

∫ V ∗
2

V ∗
1
f2,2(V )dV ]V β2+

[
∫ V

V ∗
2
f3,1(V )dV ]V β1 + [

∫ V

V ∗
2
f3,2(V )dV ]V β2 for V ∈ [V ∗2 , V

∗
3 [

DNV
β1 + [

∫ V ∗
1

0
f1,1(V )dV ]V β1 + [

∫ V ∗
1

0
f1,2(V )dV ]V β2+

[
∫ V ∗

2
V ∗

1
f2,1(V )dV ]V β1 + [

∫ V ∗
2

V ∗
1
f2,2(V )dV ]V β2+

[
∫ V ∗

3
V ∗

2
f3,1(V )dV ]V β1 + [

∫ V ∗
3

V ∗
2
f3,2(V )dV ]V β2+

[
∫ V

V ∗
3
f4,1(V )dV ]V β1 + [

∫ V

V ∗
3
f4,2(V )dV ]V β2 for V ∈ [V ∗3 , V

∗
4 [

(...)

ψNV
β1 + [

∫ V ∗
1

0
f1,1(V )dV ]V β1 + [

∫ V ∗
1

0
f1,2(V )dV ]V β2+

[
∫ V ∗

2
V ∗

1
f2,1(V )dV ]V β1 + [

∫ V ∗
2

V ∗
1
f2,2(V )dV ]V β2+

[
∫ V ∗

3
V ∗

2
f3,1(V )dV ]V β1 + [

∫ V ∗
3

V ∗
2
f3,2(V )dV ]V β2+

[
∫ V ∗

4
V ∗

3
f4,1(V )dV ]V β1 + [

∫ V ∗
4

V ∗
3
f4,2(V )dV ]V β2+

...+

[
∫ V

V ∗
N−1

fN,1(V )dV ]V β1 + [
∫ V

V ∗
N−1

fN,2(V )dV ]V β2 for V ∈ [V ∗N−1, V
∗
N [

V −K for V ≥ V ∗N
(31)

where AN , BN , DN ,..., ψN are constants to be determined, as well as V ∗N , using
the boundaries (as previously), and fx(V ) are properly chosen functions of V .

3 Numerical Example

In this section we present a hypothetical example, in order to implement the
methodology. Let V =100; K=80; λ=0,40; 0,25; 0,15; 0,05; 0,01; 0,001; σ=0,25;
r=0,03 and δ=0,06. Simulating the available ”‘places”’ in the market from 1 to 3,
the values for the investment opportunity and for the optimal timing are as follows:
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N=1 N=2 N=3 PAO*
λ=0,40 20,017 23,289 24,468 27,072
λ=0,25 20,442 23,994 25,235 27,072
λ=0,15 21,353 24,893 25,999 27,072
λ=0,05 23,805 26,399 26,888 27,072
λ=0,01 26,157 27,021 27,068 27,072
λ=0,001 26,971 27,071 27,072 27,072
PAO* 27,072 27,072 27,072

Table 1: The Real Options Value for several probabilities of entrance and
available ”places” in the market (* PAO stands for Perpetual American Op-
tions).

The Probability of Entrance, The Number of Available "Places" and The Option Value

18

21

24

27

1 2 3
The Number of Available "Places"

F
n
(V

)

40%

25%

15%

5%

1%

0,1%

PAO

Figure 1: The probability of entrance, the number of available ”places”, and
the IO’s value.
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N=1 N=2 N=3 PAO*
λ=0,40 100,960 122,094 128,329 138,574
λ=0,25 105,562 126,477 131,934 138,574
λ=0,15 111,100 130,632 134,919 138,574
λ=0,05 123,097 136,303 137,979 138,574
λ=0,01 134,171 138,406 138,562 138,574
λ=0,001 138,085 138,572 138,574 138,574
PAO* 138,574 138,574 138,574

Table 2: The Optimal Timing to invest for several probabilities of entrance
and available ”places” in the market (* PAO stands for Perpetual American
Options)

The Probability of Entrance, The Number of Available "Places" and The Critical Value

90

105

120

135

150

1 2 3
The Number of Available "Places"

V
n
*

40%

25%

15%

5%

1%

0,1%

PAO

Figure 2: The probability of entrance, the number of available ”places”, and
the critical value.

Table 1 and Figure 1, presented above, show the value of an investment oppor-
tunity, simulating the number of available ”places” in the market, and the com-
petitor’s probability of entrance. The results show, as expected, that the value of
the investment opportunity decreases as the probability of a competitor’s entrance
increases or (and) the number of available places in the market decreases. That’s
not surprising because competitors’ entrances reduce the chances for investing, so
the IO should be less valuable. On contrary, the value of the IO tends to the

14



value of a Perpetual American Options (PAO) as N→ +∞, or (and) λ→ 0. The
convergence to the value of the PAO is slower for higher values of λ.

Similar conclusions can be taken about the optimal timing (see Table 2 and
Figure 2). The critical value decreases as the number of available ”places” in the
market decreases (that’s what we would expect, because the random maturity is
less distant), or (and) decreases as the probability of entrance increases (both due
to the lower opportunity cost from deferring). As above, the trigger value tends
to the trigger value of a American exchange options (PAO) as N→ +∞, or (and)
λ→ 0.

4 Conclusions and Future Research

This paper investigates the value and timing of investment opportunities (IO) that
are shared by several companies, in a competitive environment. By assuming that
the market can accommodate a finite number of firms (N ), which are assumed to
enter the market stochastically, we define that the IO matures with the entrance
of the last ”admitted” company, meaning that, at that moment, the option to
invest disappears. Since companies can invest anytime up to, but not including,
the random maturity date, it’s easy to see the importance of the determination of
the optimal timing to invest in this context.

An example showed that the value of the IO, and its trigger value for invest-
ing, decreases as the available ”places” in the market decreases, or (and) as the
probability of a competitor entrance increases; also shows that the IO’s value and
the optimal timing tend to the value and to the optimal timing of a perpetual
American option as N tends to infinity or (and) the probability of a competitor
entrance tends to zero.

At the moment, we are working on three extensions to the basic model, so that
it will be even closer to reality, as follows:

(i) Incorporate the uncertainties of the investment cost (K ), allowing it to evolve
stochastically.

(ii) Relax the assumption that the market is totally ”homogeneous” -see as-
sumption (v)- since the first entrants may have some advantages against the
others (by choosing the best places/locations, for example);

(ii) Finally, the last extension will incorporate the possibility of both entrances
and exits from the market (N following a birth and death process). In fact,
an installed firm may decide (or be ”forced”) to leave the market, creating
a new available ”place”.
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