
Can Greater Uncertainty Hasten Investment?∗

Robin Mason

Department of Economics, University of Southampton and CEPR

Helen Weeds

Lexecon Ltd., London, U.K. and

Department of Applied Economics, University of Cambridge

16th January 2003

Abstract

This paper examines irreversible investment in a project with uncertain returns, when
there is an advantage to being the first to invest, and externalities to investing when
others also do so. Pre-emption decreases and may even eliminate the option values
created by irreversibility and uncertainty. Externalities introduce inefficiencies in in-
vestment decisions. Pre-emption and externalities combined can actually hasten, rather
than delay investment, contrary to the usual outcome. These facts demonstrate the
importance of extending ‘real options’ analysis to include strategic interactions.

JEL Classification: C73, D81, L13, O31.

Keywords: Real Options, Network Effects, Pre-emption.

Address for Correspondence: Robin Mason, Department of Economics, University
of Southampton, Highfield, Southampton SO17 1BJ, U.K.. Tel.: +44 (0)23 8059 3268; fax.:
+44 (0)23 8059 3858; e-mail: robin.mason@soton.ac.uk.

Filename: NOP12.tex.

∗We are grateful to In Ho Lee, David Newbery, Patrick Rey and Jean Tirole, and particularly Juuso
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1. Introduction

The literature on irreversible investment under uncertainty teaches three major lessons.

First, the net present value (NPV) rule for investment is generally incorrect, since it considers

only a now-or-never decision and fails to appreciate that investment can be delayed. Secondly,

an option value is created by the fact that the return is bounded below by the payoff from

not investing; the effect of this option value is to delay investment, relative to the NPV rule.

Finally, the greater the degree of uncertainty, the larger this delay: an increase in uncertainty

increases the upside potential from investment, and so increases the value of the investment

option.

Typically, literature on the ‘real options’ approach analyses investment decisions for a sin-

gle agent in isolation. (Some exceptions to this are discussed below.) In many cases, however,

investment takes place in a more competitive environment in which there are strategic inter-

actions between investing agents. The purpose of this paper is to demonstrate that strategic

interactions can have important consequences for irreversible, uncertain investments.

We analyse irreversible investment in a project with uncertain returns in a dynamic two-

player model. Two types of strategic interactions are considered. The first is pre-emption.

When there is some advantage to being the first to undertake an investment, there will be

competition to be the first. In this situation, any benefit from delaying investment due to

real option effects has to be balanced against the loss from being pre-empted. The second

interaction arises when the value of an investment depends on the number of agents who

have also invested. The interaction may affect value negatively: e.g., if it arises through a

competitive effect; or it may have a positve effect, if there are complementarities between

the agents’ actions. In both cases, the timing of an agent’s investment is influenced by the

investment decisions of others.

It might be expected that the two effects—the real option in the investment opportunity

and the threat of pre-emption—combine in a straightforward way. On their own, the former

delays investment; the latter hastens it; with both, the outcome should be somewhere in

between. In fact, we show that the story is more complicated than this. With pre-emption,

greater uncertainty can hasten, rather than delay investment. To describe why, first note that

two equilibrium patterns of investment are possible. Either the agents invest sequentially
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(i.e., the ‘leader’ invests early while the ‘follower’ invests late), or they invest simultaneously.

We show that an increase in uncertainty can cause the leader in a sequential investment

equilibrium to invest earlier. We also show that an increase in uncertainty can cause equi-

librium to switch from sequential to simultaneous investment, or vice versa, in such a way

that the first investment occurs sooner. We argue that these effects are present at plausible

parameter values, and so can be empirically important. Overall, therefore, strategic inter-

actions give rise to significant qualitative and quantitative effects that are omitted from the

standard real options analysis of investment.

The strategic interactions in our model give rise to investment inefficiencies, an issue

which does not arise in typical single-agent real options models. We identify three inefficien-

cies. A ‘leader inefficiency’ arises because each agent ignores the effect of its investment on

the other. As a result, in equilibrium, sequential investment occurs inefficiently, compared

to the co-operative solution. A ‘follower inefficiency’ arises because, when investment occurs

sequentially, the follower does not consider the effect of its investment on the leader. As

a result, the follower’s equilibrium investment point is inefficient. Finally, a ‘pre-emption

inefficiency’ arises because, when investment occurs sequentially, the leader does not con-

sider the effect of its investment on the follower. As a result, the leader invests too early

in equilibrium. In short: the leader leads inefficiently and invests too early in equilibrium;

and the follower invests inefficiently when it has been pre-empted. We also show how the

sizes of these inefficiencies are affected by the parameters of the model, such as the degree

of uncertainty, the first-mover advantage, and externalities from investment.

There are many cases of technology investment in which uncertainty, externalities and

pre-emption are important. Two examples are discussed here; clearly there are many others.

While the focus of this paper is investment, a simple example concerns entry by firms into

differentiated product markets; see Prescott and Visscher (1977), Lane (1980) and Neven

(1987). Two entrepreneurs are considering opening shops on a street; they must decide when

and where to open a shop. There are sunk costs (such as fitting) in opening a shop. If both

entrepreneurs open a shop, they compete in prices against each other for custom—a negative

externality. There may also be, however, positive externalities to being located on the same

street; for example, because a common cost can be shared (such as a fixed cost of delivery

of goods), or because aggregate demand is increased by lowering consumer search costs.
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Finally, total demand (the mass of consumers) is growing over time but is uncertain. The

outcome of this model is analysed in an appendix (available from the authors on request) to

provide a micro-foundation for the reduced-form model of the next section.

A second example concerns two firms deciding whether to set up sites on the World

Wide Web. There is some benefit to having a Web site; but the exact size of the bene-

fit is uncertain.1 Sunk costs are incurred in setting up a site: skilled labour is required

to design and write the pages, a domain name must be purchased, marketing expendi-

tures incurred etc..2 An important reason to pre-empt is the ability of first-movers to buy

their preferred domain names cheaply.3 Generic Web addresses (such as business.com and

internet.com), generally perceived to be the most valuable, are a limited resource. Ac-

cording to www.names123.com, an online domain name auction site, the top three domain

names by price are business.com at US$7.5 million, Aseenontv.com, at US$5.1 million,

and altavista.com, at US$3.3 million. At the time of writing, 21stcenturybusiness.com

is on offer at £90,000, and hsbc.gb.net at £250,000.4 In the words of one industry news-

paper, the “Internet equivalent of an uptown address just got a little bit pricier” (see CNET

News.Com (1997)). A first-mover advantage may also arise because the firm that acts first to

set up its Web site may face lower staff costs—site designers being relatively abundant—than

later firms who have to hire when designers are more scarce. Finally, negative externalities

arise through competition; positive externalities can also occur since a firm setting up a Web

site benefits from the efforts of other firms, both directly (e.g., by being able to learn from

the design of other sites) and indirectly (e.g., consumers already being accustomed to buying

1One study found that one-third of the small businesses that use the Internet increased their revenues by
at least 10 per cent over the previous year. However, in the first nine months of 1999, consumer e-commerce
in the U.S. initially fell and then plateaued; participation in online auctions has followed the same pattern.
See InternetNews.Com (1999). Recent bankruptcies have emphasized the high degree of uncertainty facing
internet-based businesses.

2Estimates of the cost of setting up the most basic web site range between US$225–1050, with an annual
maintenance cost of between US$200–350; the most complex sites may cost several hundreds of thousands
of dollars. See PC World Magazine (1999). Since its inception, marketing expenditure has been 25% of
amazon.com’s revenues.

3Before 1994, Internic, the primary international authority for registration of domain names, did not
charge; after this date, registration fees were instituted (in September 1999, US$70 per address for first 2
years, with a renewal fee thereafter). See Radin and Wagner (1996) for details.

4It might be argued that the most famous web addresses, such as amazon.com and yahoo.com, are
non-generic. The point is, however, that generic web addresses are advantageous in attracting uninformed
consumers who are unaware of specific brands.
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online).

Two general strands of literature are related to this paper. Real options models have

been used to explain delay and hysteresis arising in a wide range of contexts. McDonald and

Siegel (1986) and Pindyck (1988) consider irreversible investment opportunities available

to a single agent. Dixit (1989) and Dixit (1991) analyse product market entry and exit

in monopolistic and perfectly competitive settings respectively. Jensen (1982) and Jensen

(1983) examine adoption of a new technology by firm that is unable to estimate its value

with certainty. The second strand of literature concerns timing games of entry or exit in a

deterministic setting. There are several types of paper within this strand. Papers analysing

pre-emption games include Fudenberg, Gilbert, Stiglitz, and Tirole (1983), Fudenberg and

Tirole (1985), Katz and Shapiro (1987) and Lippman and Mamer (1993). Wars of attrition

have been modelled by e.g., Fudenberg and Tirole (1986). Technology investment in the

presence of network effects has been analysed by many papers, including Farrell and Saloner

(1986) and Katz and Shapiro (1986).

Existing real option models typically assume a monopolistic or perfectly competitive

framework, and do not allow for strategic interaction. Pre-emption models allow for incom-

plete information about the types of players, but not for common uncertainty about payoffs

or externalities. Network papers have not (with the exception reviewed below) analysed ex-

plicitly the effect of ‘option values’—created when there is exogenous uncertainty, investment

is irreversible, and agents are able to choose the time of investment.

There are a number of papers more specifically related to this one. Choi (1994) examines

a model in which there are positive network effects, uncertainty and the possibility of delay.

Choi identifies two externalities (he calls them forward and backward externalities). In Choi’s

model, users are exogenously asymmetric: user 1 is able to choose which of two technologies

(with random returns) to invest in either of two periods, while user 2 is able to invest only

in the second period. This paper departs from Choi’s in several respects. Most importantly,

it does not impose exogenously an asymmetry between players, but instead allows the first

mover to be determined endogenously. In our model, the leader invests at the point at which

it is indifferent between leading and following; see section 3.5 The fact that investment

5This is the rent equalization principle identified in Fudenberg and Tirole (1985).
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by the leader is determined by indifference, rather than optimally (for the leader), makes

an important difference to investment behaviour. We also allow for a more general payoff

structure, including allowing for negative as well as positive externalities.

In Farrell and Saloner (1986), a model of technology investment with uncertainty about

the timing of (rather than return from) investment, positive network effects, and irreversibil-

ity is analysed (see section II). Unlike Farrell and Saloner, we allow agents to invest at any

time, not just at random opportunities. If this assumption were used in the Farrell and

Saloner model, then many of the features would disappear (although the basic co-ordination

problem due to network effects would remain). Here, delay is endogenously determined

through the optimization decisions of the agents, rather than imposed exogenously.

Smets (1991) examines irreversible market entry in a duopoly facing stochastic demand.

Simultaneous investment may arise only when the leadership role is exogenously pre-assigned.

Consequently, he does not consider fully the pre-emption externality. Weeds (2002) presents

a model in which two firms may invest in competing research projects with uncertain returns.

She does not impose an asymmetry between the firms, but allows the leader to emerge en-

dogenously. She does not include, however, more general externalities. Finally, Hoppe (2000)

analyses a timing game of new technology investment in an uncertain environment. She con-

siders second, rather than first, mover advantages and models uncertainty in a different way

from this paper.

The rest of the paper is structured as follows. Section 2 describes the model. Section

3 analyses the non-co-operative equilibria of the model. Section 4 contains the analysis of

the key question: does uncertainty delay or hasten investment? Section 5 determines the

co-operative solution. Various inefficiencies in the model are analysed in section 6. Section

7 concludes. The appendix contains comparative static analysis and lengthier proofs.

2. The Model

This section develops a general model to capture the three effects that are the focus of

this paper: (i) uncertainty, irreversibility and the possibility of delay in investment; (ii)

investment externalities, where the return to investment depends on the number of investors;
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and (iii) pre-emption, where early investors have an advantage. The section deals with a

reduced-form model; a specific model (of entry into a differentiated product market) that

conforms to the reduced-form structure is given in the appendix.

Two risk neutral agents, labelled i ∈ {1, 2} each can invest in a project. There is a cost

K > 0 to doing so, which is the same for both agents. Investment is irreversible (the cost

K is entirely sunk), and can be delayed indefinitely. Time is continuous and labelled by

t ∈ [0,∞). The timing of investment is the main concern of the analysis. Investment by

the two agents may occur sequentially—that is, the two agents invest at distinctly different

times—or simultaneously.

Consider first the outcome when the agents invest sequentially. Call the first investor the

‘leader’ and the second investor the ‘follower’. The leader’s instantaneous payoff at time t

from investment, before the follower has invested, is

πIL = θt, (1)

where θt is the stand-alone benefit from investment—the instantaneous payoff received by

an agent that is the sole investor. After the follower has invested, the leader’s instantaneous

payoff becomes

πIIL = γL(1 + α)θt. (2)

The follower’s instantaneous payoff at time t from investment is

πII2 = γF (1 + α)θt. (3)

Now suppose that the agents invest simultaneously. The instantaneous payoff at time t from

investment is the same for both agents:

πIII = γS(1 + α)θt. (4)

The parameters γL, γF , γS lie between 0 and 1; α is strictly greater than −1.

The instantaneous payoffs in equations (2)–(4) are parameterized to capture two separate
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effects. The parameters γL, γF and γS measure the payoffs to specific investors. Their relative

sizes represent the extent of first-, second- or simultaneous-mover advantages (see below).

The parameter α measures generally the extent of externalities between investors. Since the

γ parameters are positive, a higher α corresponds to higher payoffs to both agents i.e., greater

positive (or less negative) externalities. In the limit, as α tends to −1, payoffs when both

agents have invested are zero (as would be the case if the the agents were Bertrand-competing

firms, for example). When α < 0, externalities are negative; when α > 0, they are positive.

The particular way in which this parameter appears in the instantaneous payoff functions—

as a multiplicative factor—is chosen for analytical convenience only. The important feature

is that the α and γ parameters are complements (i.e, the marginal effect of an increase in α

is positively related to the level of γ).

For most of the calculations, it is convenient to re-define variables as follows:

γL(1 + α) ≡ 1 + δL, γF (1 + α) ≡ 1 + δF , γS(1 + α) ≡ 1 + δS.

We will not investigate all possible configurations of the model parameters. Instead, we

restrict attention to cases described in the following assumption:

Assumption 1:

−1 ≤ δF ≤ 0, (5)

δF ≤ δS, (6)

δF ≤ δL ≤ −δF . (7)

This assumption ensures several things.6 First, there may be a first-mover advantage, since

δL ≥ δF . Secondly, the first-mover advantage cannot be too large: δL ≤ −δF . Thirdly,

there may be a second-mover disadvantage, in the sense that δS ≥ δF . Fourthly, positive

externalities cannot be too large, since δF ≤ 0 and δL ≤ −δF . The role of particular aspects

6Assumption 1 can be expressed in terms of the parameters γL, γF , γS and α: 0 ≤ γF ≤ 1
(1+α) , γF ≤ γS ,

and γF ≤ γL ≤ 2
1+α

− γF .
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of assumption 1 will be pointed out as the analysis progresses.

Even with assumption 1, our model encompasses many related papers. For example, in

Fudenberg and Tirole (1985), when n firms have adopted the new technology, the payoff of

a firm that has not adopted is π0(n), and of a firm that has adopted is π1(n). They assume

that if n′ ≥ n, then π1(n
′) < π1(n). A specific version of their payoffs can be represented in

our model by supposing that π0(n) = 0 ∀n, π1(1) = θ and γL = γF = γS = 1 and α < 0.

Similarly, some of the payoff structures used in Katz and Shapiro (1987) can be replicated

within our model. What they term the ‘stand-alone incentive’ is measured by δL in this

model; their ‘pre-emption incentive’ is measured by δL − δF ; the degree of imitation that is

possible can be captured by δF . Lippman and Mamer (1993) analyse a model in which the

first firm to innovate spoils the market for its rival; in this case, γF = −1. Notice also that by

setting δS = (δL + δF )/2, we can allow for the possibility that, in the event of simultaneous

adoption, the roles of leader and follower are assigned randomly between the two agents.

θt is assumed to be exogenous and stochastic, evolving according to a geometric Brownian

motion (GBM) with drift:

dθt = µθtdt + σθtdWt (8)

where µ ∈ [0, r) is the drift parameter, measuring the expected growth rate of θ, r is the

continuous-time discount rate,7 σ > 0 is the instantaneous standard deviation or volatility

parameter, and dW is the increment of a standard Wiener process, dWt ∼ N(0, dt). The

parameters µ, σ and r are common knowledge and constant over time. The choice of contin-

uous time and this representation of uncertainty is motivated by the analytical tractability

of the value functions that result.

The strategies of the agents in the investment game are now defined. If agent i has not

invested at any time τ < t, its action set is Ai
t = {invest, don’t invest}. If, on the other

hand, agent i has invested at some τ < t, then Ai
t is the null action ‘don’t move’. The

agent therefore faces a control problem in which its only choice is when to choose the action

‘invest’. After taking this action, the agent can make no further moves.

7The restriction that µ < r ensures that there is a positive opportunity cost to holding the ‘option’ to
invest, and so that the option is not held indefinitely.
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A strategy for agent i is a mapping from the history of the game Ht (the sample path

of the stochastic variable θ and the actions of both agents up to time t) to the action set

Ai
t. Agents are assumed to use stationary Markovian strategies: actions depend on only the

current state and the strategy formulation itself does not vary with time. Since θ follows

a Markov process, Markovian strategies incorporate all payoff-relevant factors in this game.

Furthermore, if one player uses a Markovian strategy, then its rival has a best response that

is Markovian as well. Hence, a Markovian equilibrium remains an equilibrium when history-

dependent strategies are also permitted, although other non-Markovian equilibria may then

also exist. (For further explanation see Maskin and Tirole (1988) and Fudenberg and Tirole

(1991).)

The formulation of the agents’ strategies is complicated by the use of a continuous-time

model. Fudenberg and Tirole (1985) point out that there is a loss of information inherent

in representing continuous-time equilibria as the limits of discrete time mixed strategy equi-

libria. To correct for this, they extend the strategy space to specify not only the cumulative

probability that player i has invested, but also the ‘intensity’ with which each player invests

at times ‘just after’ the probability has jumped to one.8 Although this formulation uses

mixed strategies, the equilibrium outcomes are equivalent to those in which agents employ

pure strategies. (See section 3 of Fudenberg and Tirole (1985).) Consequently, the analysis

will proceed as if each agent uses a pure Markovian strategy i.e., a stopping rule specifying a

critical value or ‘trigger point’ for the exogenous variable θ at which the agent invests. Note,

however, that this is for convenience only: underlying the analysis is an extended space with

mixed strategies.

The possible states of each agent are denoted ni ∈ {0, 1} when the agent has not invested

and has invested, respectively. The following assumptions are made:

Assumption 2: If ni(τ) = 1, then ni(t) = 1 for all t ≥ τ , i ∈ {1, 2}.

8In Fudenberg and Tirole (1985), an agent’s strategy is a collection of simple strategies satisfying an
intertemporal consistency condition. A simple strategy for agent i in a game starting at a positive level θ of
the state variable is a pair of real-valued functions (Gi(θ), εi(θ)) : (0,∞) × (0,∞) → [0, 1] × [0, 1] satisfying
certain conditions (see definition 1 in their paper) ensuring that Gi is a cumulative distribution function,
and that when εi > 0, Gi = 1 (so that if the intensity of atoms in the interval [θ, θ + dθ] is positive, the
agent is sure to invest by θ). A collection of simple strategies for agent i, (Gθ

i (.), ε
θ
i (.)), is the set of simple

strategies that satisfy intertemporal consistency conditions.
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Assumption 3:
�

0

[∫

∞

0
exp (−rt)θtdt

]

− K < 0.

Assumption 2 formalizes the irreversibility of investment: if agent i has invested by date

τ , it then remains active at all dates subsequent to τ . Assumption 3 states that the initial

value of the project is sufficiently low that the expected return from investment is nega-

tive, thus ensuring that immediate investment is not worthwhile. (The operator
�

0 denotes

expectations conditional on information available at time t = 0.)

3. Equilibrium

3.1. Sequential Investment

Start by assuming that the agents invest at different points. The possibility of simultaneous

investment is considered below. As usual in dynamic games, the stopping time game is

solved backwards; see e.g., Dixit (1989). Thus the first step is to consider the optimization

problem of the follower who invests strictly later than the leader. Given that the leader has

invested irreversibly, the follower’s payoff on investing has two components: the flow payoff

from the project, (1 + δF )θt; and the cost of investment, −K. The follower’s value function

F (θt) at time t given a level θt of the state variable is therefore

F (θt) = max
TF

�
t

[
∫

∞

TF

exp (−r(τ − t))(1 + δF )θτdτ − K exp (−r(TF − t))

]

(9)

where TF is the random investment time for the follower, and the operator
�
t denotes

expectations conditional on information available at time t. The value function F has two

components, holding over different ranges of θ: one relating to the value of investment before

the follower has invested, the other to after investment. Let these value functions be denoted

F0 and F1, respectively.

Prior to investment, the follower holds an option to invest but receives no flow payoff.

In this ‘continuation’ region, in any short time interval dt starting at time t the follower

experiences a capital gain or loss dF0. The Bellman equation for the value of the investment
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opportunity is therefore

F0 = exp (−rdt)
�
t [F0 + dF0] . (10)

Itô’s lemma and the GBM equation (8) gives the ordinary differential equation (ODE)

1

2
σ2θ2F ′′

0 (θ) + µθF ′

0(θ) − rF0(θ) = 0. (11)

From equation (8), it can be seen that if θ ever goes to zero, then it stays there forever.

Therefore the option to invest has no value when θ = 0, and must satisfy the boundary

condition F0 = 0. Solution of the differential equation subject to this boundary condition

gives F0 = bF θβ, where bF is a positive constant and β > 1 is the positive root of the

quadratic equation Q(z) = 1
2
σ2z(z − 1) + µz − r; i.e., β = 1

2

(

1 − 2µ
σ2 +

√

(

1 − 2µ
σ2

)2
+ 8r

σ2

)

.

Now consider the value of the agent in the ‘stopping’ region, in which the value of θ is

such that it is optimal to invest at once. Since investment is irreversible, the value of the

agent in the stopping region is given by the expected value alone with no option value terms.

When the level at time t of the state variable is θt, this is

F1(θt) =
�
t

[
∫

∞

t

exp (−r(τ − t))(1 + δF )θτdτ − K

]

.

θ is expected to grow at rate µ, so that

F1(θ) =
(1 + δF )θ

r − µ
− K. (12)

The boundary between the continuation region and the stopping region is given by a

trigger point θF of the stochastic process such that continued delay is optimal for θ < θF

and immediate investment is optimal for θ ≥ θF . The optimal stopping time TF is then

defined as the first time that the stochastic process θ hits the interval [θF ,∞) from below.

Putting together the two regions gives the follower’s value function:

F (θ) =

{

bF θβ θ < θF ,
(1+δF )θ
r−µ

− K θ ≥ θF ,
(13)
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given that the leader invests at θP < θF .

By arbitrage, the critical value θF must satisfy a value-matching condition; optimality

requires a second condition, known as ‘smooth-pasting’, to be satisfied. (See Dixit and

Pindyck (1994) for an explanation.) This condition requires the two components of the

follower’s value function to meet smoothly at θF with equal first derivatives, which together

with the value matching condition implies that

θF =

(

β

β − 1

)(

K

1 + δF

)

(r − µ), (14)

bF =
(1 + δF )θ

−(β−1)
F

β(r − µ)
. (15)

Equation (14) for the follower’s trigger point can be interpreted as the effective flow cost

of investment with an adjustment for uncertainty. The sunk investment cost is K, but this

yields a flow payoff of (1 + δF )θ; hence the effective sunk cost is K
1+δF

. With an effective

interest rate of r−µ (i.e., the actual interest rate r minus the expected proportional growth

in the flow payoff µ), this gives an instantaneous cost of
(

K
1+δF

)

(r − µ). If a Marshallian

rule were used for the investment decision, the trigger point would be simply this cost. But

with uncertainty, irreversibility and the option to delay investment, the Marshallian trigger

point must be adjusted upwards by the factor β

β−1
> 1.

There are three components to the leader’s value function holding over different ranges

of θ. The first L0 describes the value of investment before the leader (and so the follower)

has invested; the second L1 after the leader has invested, but before the follower has done

so; and the third L2, after the follower has invested. The first and third components are

equivalent to those of the follower, determined previously. The second component is new,

and so is derived first.

After the leader has invested, it has no further decision to take and its payoff is given by

the expected value of its investment. This payoff is affected, however, by the action of the

follower investing later at θF . Taking account of subsequent investment by the follower, the

leader’s post-investment payoff is given by

L1(θt) =
�
t

[
∫ TF

t

exp (−r(τ − t))θτdτ +

∫

∞

TF

exp (−r(τ − t))(1 + δL)θτdτ − K

]

. (16)
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The Bellman equation for the leader is

L1 = θdt + exp (−rdt)
�
t [L1 + dL1] . (17)

Using Itô’s lemma and equation (8) gives

1

2
σ2θ2L′′

1(θ) + µθL′

1(θ) − rL1(θ) + θ = 0. (18)

As before, investment has no value when θ = 0, and so L1 = θ
r−µ

+ bL1θ
β , where bL1 is

a constant. The first part of the value function L1 gives the expected value of investment

before the follower invests, while the second is an option-like term reflecting the value (due

to externalities) to the leader of future investment by the follower.

The other components of the leader’s value function follow immediately from the calcu-

lations of the previous section:

L(θ) =















bL0θ
β θ < θP ,

θ
r−µ

+ bL1θ
β − K θ ∈ [θP , θF ),

(1+δL)θ
r−µ

− K θ ≥ θF ,

(19)

given the leader’s trigger point θP and investment by the follower at the higher θF .

The value of the unknown constant bL1 is found by considering the impact of the follower’s

investment on the payoff to the leader. When θF is first reached, the follower invests and

the leader’s expected flow payoff is altered. Since value functions are forward-looking, L1

anticipates the effect of the follower’s action and must therefore meet L2 at θF . Hence, a

value-matching condition holds at this point (for further explanation see Harrison (1985));

however, there is no optimality on the part of the leader, and so no corresponding smooth-

pasting condition. This implies that

bL1 =
δLθ

−(β−1)
F

r − µ
. (20)

The leader cannot choose its investment point optimally, as the follower can. Instead,

the first agent to invest does so at the point at which it prefers to lead rather than follow,
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not the point at which the benefits from leading are largest. Clearly, it cannot be that the

first agent invests when the value from following is greater than the value from leading—if

this were the case, the agent would do better by waiting. Likewise, it cannot be that the first

agent invests when the value from leading is strictly greater than the value from following ,

since in this case without pre-assigned roles, the other agent could pre-empt it and still gain.

Hence the investment point is defined by indifference between leading and following. The

trigger point θP in the pre-emption model is given by indifference: L(θP ) = F (θP ). This is

in contrast to the trigger point of the follower, which is determined by value matching and

smooth pasting i.e., is chosen optimally.

The indifference relation L(θP ) = F (θP ) gives a non-linear equation for θP :

θP
r − µ

− K =
K

β − 1

(

1 + δF − βδL
1 + δF

)(

θP
θF

)β

. (21)

The next proposition establishes that there is a unique solution to this equation, and hence

determines equilibrium in this case. (The remaining coefficient, bL0 is determined by value

matching at θP i.e.,

bL0 = θ−βP

(

θP
r − µ

− K

)

+ bL1.) (22)

Proposition 1: When equilibrium investment is sequential, the leader invests at θP and

the follower at θF > θP . θP is the smallest value such that L(θP ) = F (θP ) and L(θ) < F (θ)

for θ < θP , L(θ) > F (θ) for θ > θP .

Proof: See the appendix.

One possibility for a solution to equation (21) is illustrated in figure 1 (in which it is assumed

that 1+ δF −βδL > 0). The left-hand side of equation (21) is the increasing, linear function;

the right-hand side is the increasing, convex function. There are two intersection points of

the two functions; the lower point is the relevant solution for the leader’s trigger point θP .

Section A.1 in the appendix analyses the comparative statics of the trigger point θP .

14
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θPθM θ

Figure 1: The solution for θP

3.2. Simultaneous Investment

Now consider the alternative case, in which investment is simultaneous at the trigger point

θS. The previous analysis indicates that the value function of each agent is then

S(θ) =

{

bSθ
β θ < θS,

(1+δS )θ
r−µ

− K θ ≥ θS.
(23)

(This value function can be derived from the appropriate Bellman equation, following the

steps shown above.) There is a continuum of simultaneous solutions; it is straightforward

to show that they can be Pareto ranked, with higher trigger points yielding higher value

functions. In this case, it seems reasonable that the agents invest at the Pareto optimal

point, given by both value matching and smooth pasting. So

Proposition 2: The Pareto optimal trigger point for the simultaneous equilibrium is

θS =

(

β

β − 1

)(

K

1 + δS

)

(r − µ).
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The coefficient in the value function is

bS =
(1 + δS)θ

−(β−1)
S

β(r − µ)
. (24)

The next proposition describes when simultaneous investment is an equilibrium.

Proposition 3: Simultaneous investment occurs in equilibrium iff

λE ≡ (1 + δS)
β −

(

1 + βδL(1 + δF )β−1
)

≥ 0. (25)

A sufficient condition is δS ≥ 0 ≥ δL.

Proof: For equilibrium simultaneous investment, it must be that S(θ) ≥ L(θ) for θ ∈

[θP , θS]. Due to the convexity of the value functions, this requires that S(θ) ≥ L(θ) for

θ ∈ [0, θP ], and so that bS ≥ bL0. Substituting the expressions for these two coefficients

gives the necessary and sufficient condition of equation (25). The sufficient condition follows

directly from equation (25).
�

Whether simultaneous investment occurs in equilibrium is determined by whether the

leader wishes to invest before the follower, or at the same time (i.e., by the comparison of

L(θ) and S(θ)). The proposition shows the reasonable condition that, in order for simul-

taneous investment to occur in equilibrium, it must be the case that δS is sufficiently large

and/or δL and δF sufficiently small. (This is clearest in the sufficient condition.) Note that

the simultaneous investment equilibrium, when it exists, Pareto dominates the sequential

outcome; this is an immediate consequence of the condition for existence of the simultane-

ous investment equilibrium: S(θ) ≥ L(θ) for θ ∈ [0, θS]. In section A.2 in the appendix,

we consider how the payoff parameters affect whether the equilibrium without pre-emption

involves sequential or simultaneous investment.
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4. Does Uncertainty Delay or Hasten Investment?

In this section, we show that greater uncertainty can hasten, not delay investment. This

runs counter to the usual real options effect, and shows that the combination of uncertainty

and pre-emption does more than simply give an outcome that is an average of the effect of

the two factors.

First note that the triggers θF and θS are increasing in σ, for the familiar real options

reason. The intuition is that delay allows for the possibility that the random process (8)

will go up; if it goes down, then the agent need not invest. The greater the variance of the

process, the more valuable is the option created by this asymmetric situation, and so the

more delay occurs for both agents. Notice that this result relies on the fact that all of these

triggers are chosen optimally by the relevant agent(s).

There are two ways in which greater uncertainty can hasten investment. First, when

equilibrium investment is sequential, the trigger point θP of the leader may decrease as σ

increases. This possibility is examined in proposition 4. Secondly, a rise in σ can cause the

pattern of equilibrium investment to switch, with investment in the new equilibrium pattern

occurring earlier. This possibility is considered in proposition 5.

Proposition 4: If βδL > 1 + δF , then ∂θP

∂σ
< 0.

Proof: See the appendix.

The result therefore raises the striking possibility that greater uncertainty lowers the

leader’s trigger point. The possibility arises from the lack of optimality in the choice of

the pre-emption trigger point. An optimal trigger point is such that the marginal benefit

from delaying investment for a period equals the marginal cost. The marginal benefit is the

interest saved on the investment cost plus the expected gain from the possibility that the

flow payoff increases. The marginal cost is the flow payoff foregone by not investing. In this

marginal calculation, the agent does not consider the effect of its delay on the investment

decision of the other agent, since in the models considered in this paper, each agent’s trigger

point (with the exception of θP ) does not depend on the other’s. Increased uncertainty
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raises the expected gain from delay, causing the (optimally chosen) trigger point to increase.

This reasoning does not apply in the case of θP , however: it is not chosen according to a

marginal equality, but an absolute equality between the value from leading and the value

from following. The proposition shows that this difference in the determination of the trigger

point can lead to θP decreasing as uncertainty increases.

In order for this unusual comparative static to hold, it must be that the leader’s value

function increases by more than the follower’s when uncertainty rises, holding constant the

leader’s trigger point θP . (This statement follows directly from using the implicit function

theorem on the non-linear equation (21) defining θP .) There are, therefore, two necessary

and sufficient conditions for θP to be decreasing in σ:

1. The leader’s value function is increasing in σ.

2. The increase in the leader’s value function is larger than the increase in the follower’s.

The leader’s value function depends on uncertainty due to the option-like term that

anticipates investment by the follower: bL1θ
β, where bL1 ≡ δLθ

−(β−1)
F /(r−µ) and θ ∈ (θP , θF ).

Hence this option-like term is positive only if δL > 0; when this is the case, the option-like

term increases in value with the degree of uncertainty (for the usual reasons), and so condition

1 holds. The follower’s value function also depends on uncertainty, due to the option value

of its investment: bF θβ , where bF = (1 + δF )θ
−(β−1)
F /β(r − µ) and θ < θF . This option value

increases with the degree of uncertainty.

If βδL − (1 + δF ) > 0, then the value of the leader’s option-like term is greater than

the option value of the follower. Both values are convex functions of θ; the leader’s value is

more convex than the follower’s, since it lies above it. Therefore the same condition ensures

that the value of the leader’s option-like term, bL1θ
β, increases by more than the option

value of the follower, bF θβ, for any increase in σ and any value of θ ∈ (θP , θF ). Hence

if the sufficient condition in the proposition is satisfied, then the introduction of a small

amount of uncertainty (corresponding to very high values of β) into the model increases all

trigger points except the leader’s, which decreases. More precisely, the condition ensures

that ∂θP

∂σ

∣

∣

σ=0
< 0. Notice that the sufficient condition requires that δL > 0. This in turn

requires two things: first, that γL, the first-mover advantage, be positive; secondly, given a
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γL > 0, that the externality parameter α is sufficiently large (greater than 1/γL − 1). The

larger is γL—the stromger the first-mover advantage—the lower can be the extent of positive

externalities.

Now consider the second possibility for greater uncertainty to hasten investment: as a

result of a switch in the equilibrium pattern of investment as uncertainty increases. There

are two cases to consider. First, equilibrium investment switches from simultaneous to

sequential, and θS > θP . In this case, the investment point of the first investor decreases; but

the follower adopts at a higher value of θ, since θF > θS . Secondly, equilibrium investment

switches from sequential to simultaneous, and θS < θP . In this second case, the investment

points of both agents clearly decrease. There are two steps to get to proposition 5. The

first analyses whether the necessary and sufficient condition in proposition 3 for equilibrium

to be simultaneous is easier or more difficult to satisfy as σ increases (i.e., whether λE is

increasing or decreasing in σ). The second analyses whether θS is greater or less than θP .

Lemma 1: 1. Joint sufficient conditions for λE to be a decreasing function of σ are:

δS ≥ 0 and either (i) δL ≥ 0 and δF ≤ e−1 − 1 or (ii) δL ≤ 0 and δF ≥ e−1 − 1.

2. Joint sufficient conditions for λE to be an increasing function of σ are: δS < 0 and

either (i) δL ≥ 0 and δF ≥ e−1 − 1 or (ii) δL ≤ 0 and δF ≤ e−1 − 1.

Proof: See the appendix.

The dependence of λE on the degree of uncertainty is more complicated than other

comparative statics of λE . Recall that two terms in θ appear in the two parts of the leader’s

value function before the follower’s investment: L0 contains a direct option value associated

with the leader’s own investment, while L1 has an option-like term relating to the follower’s

investment.9 Consider the effect of an increase in σ when δL < 0. The leader’s value

increases due to the first, direct option term—this is the standard comparative static of an

option value. But the leader’s value decreases due to the second term: the magnitude of

9Refer to equation (19). Notice that both terms are important for θ ≤ θF . This is explicit over the range
θ ∈ [θP , θF ), and implicit for θ < θP : for the latter, the two factors show up in the expression for bL0—see
equation (22).
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the option-like value increases, but it is a negative value, since δL < 0. Hence there are two

conflicting effects when σ increases, and consequently the comparative static with respect to

σ may be (and in fact is) non-monotonic.

In the cases identified in the lemma, however, the comparative statics are unambiguous.

Consider part 1(i) of the lemma, in which δS ≥ 0 and δL ≥ 0. The value from simultaneous

investment increases with σ, in line with the standard option value comparative static. The

marginal effect on the simultaneous investment value function of an increase in σ is therefore

positive; but it is decreasing in δS. This is because as δS increases, for any given level

of σ, simultaneous investment occurs sooner (θS decreases). Hence an increase in δS acts

in the opposite direction to an increase in σ, which increases θS. The direct option term

in the leader’s value function increases with σ; and the marginal effect of an increase in

uncertainty is independent of δL and δF . The second term increases with uncertainty, since

δL ≥ 0. In this case, the marginal effect of an increase in uncertainty is decreasing in δF : as

δF increases, for any given level of σ, the follower invests sooner (θF decreases). Hence an

increase in δF acts in the opposite direction to an increase in σ, which increases θF . This

argument establishes that the value of the leader increases with uncertainty by more than

the value of a simultaneous investor if (i) δS is sufficiently large; (ii) δL is sufficiently large;

and (iii) δF is sufficiently small. Similar considerations underlie the sufficient conditions in

the other parts of the lemma.

The second step is to compare θS and θP .

Lemma 2: θS is greater (less) than θP iff

δS
1 + δS

< (>)
δL

1 + δF
.

Proof: The lemma follows from substitution of θS into equation (21).
�

The lemma gives the intuitive condition that θS is greater than θP if and only if δS is

sufficiently small (since δS/(1 + δS) is increasing in δS) and/or δL sufficiently large and δF

sufficiently small.
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Lemmas 1 and 2 can be combined to give sufficient conditions for the trigger point of

the first investor to decrease as σ rises, as a result of a change in the equilibrium pattern of

investment.

Proposition 5: 1. Suppose that the conditions in part 1 of lemma 1 hold, and that

δS/(1 + δS) < δL/(1 + δF ). Then there exists a σ′′ > σ′ > 0 such that λE(σ′) > 0 >

λE(σ′′); and θS > θP .

2. Suppose that the conditions in part 2 of lemma 1 hold, and that δS/(1 + δS) > δL/(1 +

δF ). Then there exists a σ′′ > σ′ > 0 such that λE(σ′) < 0 < λE(σ′′); and θS < θP .

Both cases give sufficient conditions for an increase in uncertainty from σ ′ to σ′′ to cause

the trigger point of the first investor to decrease.

(Proposition 5 follows directly from the two preceding lemmas, and so is stated without

proof.) The proposition gives, then, a second reason why a model of investment under

uncertainty with strategic interaction can be very different from the single-agent case. The

reason now is that there are two types of equilibrium in the multi-agent case. An increase

in uncertainty can cause a switch from one type to another in such a way as to decrease the

trigger point of the first investor. Of course, this factor cannot arise in the single-agent case.

The final issue to consider is: how empirically relevant is this analysis? To focus the

discussion, we concentrate on proposition 4. Recall that the proposition requires that the

first-mover advantage δL must be large (certainly positive) and σ small. The first part of

this condition may seem unusual—it requires that investment by a second agent increase the

flow payoff to the first investor. If investment takes the form of entry into a product market,

then this would require, for example, that the demand expansion effect of an additional firm

outweighs increased competition. Note, however, that δL does not need to be very large at

all. The sufficient condition is δL > (1 + δF )/β. When σ is very low, β is very large; for

example, setting µ = 0 and r = 0.05, a standard deviation of the process (8) of 2% implies

that β equals 16, approximately. The greatest lower bound on δL (when δF = 0) in this case

is 1/16 i.e., investment by the second agent increases the flow payoff of the first investor by

around 6%. The ultimate test of the relevance of the proposition is how it matches data: the

pattern of investment and the level of profits observed in a particular market. Nevertheless,
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these parametric conditions do not seem implausible.

Furthermore, the result and its empirical relevance is not specific to our model. The

ratio of the leader’s and follower’s values anticipating the follower’s investment is key for the

result. In our model, the ratio is βδL/(1 + δF ); when δL > 0, this ratio is positive and tends

to infinity as σ tends to zero (so that β tends to infinity). More generally, the result requires

that, when the first-mover advantage and/or positive externalities are sufficiently large, the

ratio increases above 1 as uncertainty decreases. The follower’s option value at any level of

the state variable below its trigger point decreases to zero as uncertainty is reduced. This fact

is not specific to the particular form of process (see equation (8)) that we use, or the payoffs

assumed. Hence the result requires that the follower’s option value decrease more quickly

than the value of the leader’s option-like term. The leader does not hold an option i.e., its

payoff is not determined by an optimal action by the leader. Instead, the leader’s payoff is

determined by value matching; as a consequence, the value of the leader’s option-like term is

less sensitive than the follower’s option value to the level of uncertainty. Again, this fact is

not specific to the modelling assumptions that we make. Therefore, provided that the value

of the leader’s option-like term is positive, a sufficient reduction in uncertainty ensures that

the leader’s value is greater than the follower’s. Hence θP decreases with σ for small enough

σ. This result is robust and extends beyond the assumptions used here.

5. Co-operative Solution

This section analyses the co-operative solution, in which the agents’ investment trigger points

are chosen to maximize the sum of their two value functions. The objective is to provide a

benchmark to identify inefficiencies in the next section.

Consider first the co-operative solution when investment is sequential. Two trigger points,

θ1 < θ2, are chosen to maximize the sum of the leader’s and follower’s value functions. Call

the co-operative value function in this case CL+F ; using the same steps as before,

CL+F (θ) =















b0θ
β + b1θ

β θ < θ1,
θ

r−µ
+ b2θ

β − K + b3θ
β θ ∈ [θ1, θ2),

(2+δL+δF )θ
r−µ

− 2K θ ≥ θ2,

(26)
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where bi, i = 0, 1, 2, 3 are constants. The co-operative trigger points are determined by value

matching and smooth pasting conditions at both points. Therefore

Proposition 6: In the co-operative solution with sequential investment, the trigger points

θ1 and θ2 of the first and second investments are, respectively,

θ1 =

(

β

β − 1

)

K(r − µ),

θ2 =

(

β

β − 1

)(

K

1 + δL + δF

)

(r − µ).

Assumption 1 ensures that θ2 > θ1, since δL ≤ −δF .

The comparative statics of θ1 and θ2 are standard and so are not discussed at length.

The only difference in the comparative statics from previous ones is that θ2 is decreasing in

γL, while θF does not depend on γL. This fact is examined further in section 6.

Now consider the co-operative solution with simultaneous investment at the trigger point

θ3. The co-operative value function in this case is

CS(θ) =

{

b4θ
β θ < θ3,

2(1+δS )θ
r−µ

− 2K θ ≥ θ3.
(27)

Again, value matching and smooth pasting determine θ3:

Proposition 7: The co-operative simultaneous investment trigger is

θ3 =

(

β

β − 1

)(

K

1 + δS

)

(r − µ) = θS.

A similar analysis to that undertaken with the non-co-operative equilibria shows when

co-operation involves simultaneous investment.
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Proposition 8: Simultaneous investment is the co-operative solution iff

λC ≡ 2(1 + δS)
β −

(

1 + (1 + δL + δF )β
)

≥ 0. (28)

A sufficient condition is δS ≥ 0.

Proof: The necessary and sufficient condition is that the value function for simultaneous

investment CS(θ) ≥ CL+F (θ), for all θ ∈ [θ1, θ3]. The strict convexity of the value functions

means, however, that this requires that CS(θ) ≥ CL+F (θ) for all θ ∈ [0, θ1] i.e., b4 ≥ b0 + b1.

From above,

b0 + b1 =

(

1 + (1 + δL + δF )β

β − 1

)((

β − 1

β

)

1

K(r − µ)

)β

K,

b4 =

(

2

β − 1

)((

β − 1

β

)

1 + δS
K(r − µ)

)β

K.

It is immediate that b4 ≥ b0 + b1 iff condition (28) holds. The sufficient condition follows

directly from equation (28), noting that assumption 1 implies that δL + δF ≤ 1.
�

Equation (28) is very similar to equation (25) and the intuition for propositions 3 and 8 is

the same. The comparative statics of the co-operative solution are analysed in section A.3

in the appendix.

6. Inefficiencies

This section analyses the inefficiencies that arise in the non-co-operative equilibria. For the

‘leader’ inefficiency, identified in the next proposition, let λ ≡ λC − λE.

Proposition 9: There are three investment inefficiencies:

Follower: θF > (<) θ2 when δL > (<) 0. In words, conditional on both equilibrium and the

co-operative solution involving sequential investment, the non-co-operative follower invests

too late (early) when δL is greater (less) than zero.

Pre-emption: θP < θ1: conditional on both equilibrium and the co-operative solution in-

volving sequential investment, the non-co-operative leader invests too early.
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Leader (insufficient/excessive simultaneous investment in equilibrium): (i) λ = 0 for all

values of σ iff δL = δF = 0; (ii) if either δL > 0 or β > 2, then λ > 0; (iii) for any given δF

and β < 2, there exists a critical value δL < 0 (which is a function of δF and β) such that

λ > (<)0 iff δL < (>)δL.

Proof: See the appendix.

The follower inefficiency arises when investment is sequential. The follower does not

consider the effect on the leader of its investment, and consequently invests either too soon

(when δL < 0) or too late (when δL > 0). The pre-emption inefficiency arises when in-

vestment is sequential: the leader invests too early, relative to the co-operative solution.

The leader inefficiency arises through inefficient simultaneous investment. In equilibrium,

whether investment is sequential or simultaneous is determined by the leader’s incentive to

invest. The proposition gives the conditions under which the leader wishes to invest before

the follower too often or too little, compared to the co-operative solution. For example, if

the first-mover advantage and/or externalities are very strong, so that δL > 0, or the de-

gree of uncertainty σ is sufficiently low, equilibrium may involve sequential investment when

co-operation would involve simultaneous investment. In short: the leader leads inefficiently

and invests too early in equilibrium; and the follower invests inefficiently when it has been

pre-empted.

The magnitude of the follower and pre-emption inefficiencies are measured by ι ≡ θ2−θF

and κ ≡ θ1− θP . Proposition 6 shows that ι > (<)0 when δL < (>)0, and that κ > 0. In the

rest of this section, we examine how the three inefficiencies depend on the model parameters.

The first set of results, concerning ι and κ, follow directly from earlier results, and so are

stated without proof.

Lemma 3: ι is (i) decreasing in γL; (ii) increasing (decreasing) in γF iff δL > (<)0; (iii)

not a function of γS; (iv) decreasing in α; and (v) increasing (decreasing) in σ iff δL < (>)0.

These comparative statics are, on the whole, straightforward. To simplify the discussion,

suppose that δL < 0: the follower imposes a negative externality on the leader, and θ2 > θF .
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Then an increase in γL diminishes the negative externality and hence decreases θ2; θF is

unchanged, and hence ι decreases. An increase in γF decreases both θ2 and θF ; but since the

trigger points are convex in γF , the former decreases by more than the latter (when δL < 0),

because of the negative externality. Hence ι increases. A similar reasoning holds for the

comparative statics with respect to α and σ.

Lemma 4: κ is (i) increasing in γL; (ii) decreasing in γF ; (iii) not a function of δS; (iv)

increasing in α; and (v) if ∂θP /∂σ < 0, increasing in σ.

The unusual comparative static shown in proposition 4 gives rise to the strong result in part

(v) of the lemma: if the relevant conditions hold, an increase in σ raises θ1 but lowers θP .

In this case, greater uncertainty exacerbates the pre-emptor inefficiency. The other parts of

lemma 4 are straightforward; for example, it is intuitive that the pre-emptor inefficiency is

increased by the degree of externalities (i.e., an increase in α).

Lemma 5: (i) λ is (a) increasing (decreasing) in γL iff δL < (>)0; (b) if δL ≤ 0, increasing

in γF ; (c) increasing in γS.

(ii) If λ ≥ 0 for α = α′, then λ ≥ 0 ∀ α′′ ≥ α′.

In both equilibrium and the co-operative solution, simultaneous investment is favoured by an

increase in the flow payoff from simultaneous investment (i.e., higher γS) and a decrease in the

flow payoff to the leader (i.e., lower γL). A change in γS has a larger effect on the co-operative

solution, and so λ increases in this parameter. The least obvious effect comes from an increase

in γF . If the flow payoff to being the follower increases, then simultaneous investment is less

favoured in the co-operative solution. The same is true in equilibrium only if δL is negative.

In equilibrium, the payoff to being the leader relative to a simultaneous investor determines

whether investment is simultaneous. If the follower’s payoff increases, then it invests earlier

(θF decreases). If δL is negative, earlier investment by the follower decreases the payoff to

being the leader, and so encourages simultaneous investment. Therefore, when δL is weakly

less than zero, an increase in γF favours simultaneous investment in equilibrium but not in

the co-operative solution, and hence increases λ. (When δL is sufficiently positive, the effect
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of γF on λ is ambiguous.) Finally, positive externalities exacerbate the leader inefficiency:

although a greater positive externality causes less sequential investment in equilibrium, it

causes even less in the co-operative solution.

Lemma 6: Joint sufficient conditions for λ to be a decreasing function of σ are: δS ≥ 0 and

either (i) δL ≥ 0 and δF ≤ e−1 − 1 or (ii) δL ≤ 0 and δF ≥ e−1 − 1.

(The lemma is a direct consequence of lemmas 1 and A.3; the latter can be found in the

appendix.) As with λE and λC , a general comparative static for λ with respect to σ is not

available analytically. The lemma gives sufficient conditions for the leader inefficiency to be

exacerbated by an increase in the degree of uncertainty.

7. Conclusions

This paper has analysed irreversible investment in a project with uncertain returns, when

there may be an advantage to being the first investor, and externalities to investing when

others also invest. It therefore extends standard ‘real options’ analysis to a setting where

there are general strategic interactions between investing agents. This framework captures

a variety of strategic situations and encompasses a number of earlier contributions.

We believe that this is an important area of research. The real options literature has

taught us that an option value is created by irreversibility and uncertainty; this option value

typically leads to delayed investment, where the degree of delay increases with uncertainty.

Strategic interactions, omitted from the standard real options analysis, can change and may

even eliminate this option value. This has significant qualitative and quantitative effects

on investment. In particular, we have shown that due to the interaction of pre-emption

with externalities, greater uncertainty can actually hasten, rather than delay, investment,

contrary to the usual presumption.
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APPENDIX

A.1. The Comparative Statics of θP

An immediate corollary of proposition 1 shows how pre-emption affects investment. Let θL be

the investment time of an agent who invests first and does so optimally i.e., not according to rent

equalization. It is straightforward to show that

θL =

(

β

β − 1

)

K(r − µ)

δL
. (A1)

Secondly, let θM ≡ K(r − µ); this can be viewed as the non-strategic Marshallian trigger i.e., the

investment point of an agent who ignores uncertainty and any subsequent investment by other

agents.

Corollary A.1: θP < θL. θP is greater (less) than θM iff 1 + δF − βδL is greater (less) than

zero.

So, pre-emption causes the leader to invest earlier than it does when the leader can invest optimally.

And pre-emption can drive the trigger point θP below the non-strategic Marshallian trigger θM =

K(r − µ). The condition in the proposition can be viewed in a number of ways. First, a necessary

condition is that δL ≥ 0 (since 1 + δF ≥ 0, from assumption 1). This requires that the first-mover

advantage, measured by γL, and/or the level of externalities α be sufficiently large. Secondly, if

δL ≥ 0, then the condition will hold if β is sufficiently large (β > (1 + δF )/δL) i.e., σ sufficiently

small. This finding extends the result of Fudenberg and Tirole (1985), who show in a deterministic

setting that pre-emption drives the first adoption time below the (equivalent of the) Marshallian

level. Corollary A.1 shows how much uncertainty there can be, as a function of other model

parameters, for this result still to hold. Thirdly, if δL ≥ 0, then θP < θM if δF is sufficiently small:

δF < βδL− 1. This last condition requires that the second-mover disadvantage be sufficiently large

i.e., γF sufficiently negative.

The comparative statics of θP with respect to the payoff parameters are examined in the next

proposition.

Proposition A.1: θP is (i) decreasing in γL; (ii) increasing in γF ; (iii) not a function of δS ; and

(iv) decreasing (increasing) in α iff δL > (<)δF /β.
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Proof: The comparative statics of θP follow from differentiation of equation (21). Only the

comparative static with respect to α is not straightforward. Re-write equation (21) as

−ψθβP +
θP
r − µ

−K = 0, (A2)

ψ ≡
K

β − 1

(

1 − βδL + δF
1 + δF

)

θ−βF . (A3)

Total differentiation gives

∂θP
∂α

=

(

θβP
1

r−µ
− βψθβ−1

P

)

∂ψ

∂α
.

In equilibrium, it must be that the leader’s value function crosses the follower’s value function from

below (as functions of the state variable θ). This implies that the denominator is positive for the

equilibrium value of θP . Hence Sign∂θP

∂α
= Sign∂ψ

∂α
. Differentiation gives

∂ψ

∂α
= −

(

β

β − 1

)(

K

1 + α

)(

βδL − δF
1 + δF

)

θ−βF .

The proposition follows. �

θP is decreasing in γL and increasing in γF because this trigger point is determined by indiffer-

ence. If the gain to being the leader increases or to being the follower decreases, then indifference

requires that the leader invests earlier. The last part of the result is not immediately obvious:

at its trigger point, the leader is indifferent between leading and following; but both the leader’s

and follower’s returns increase as α increases; and θP is decreasing (increasing) in α iff the in-

crease in the leader’s return is the stronger (weaker) effect. To gain an intuition for the result,

consider the case in which θP is decreasing in α. Re-write the leader’s indifference condition as

L(θP ;α) − F (θP ;α) = 0. Then

∂θP
∂α

= −

(

∂L

∂α
−
∂F

∂α

)

/

(

∂L

∂θP
−
∂F

∂θP

)

.

Since L < (>)F for θ < (>)θP , it must be that ∂L
∂θP

> ∂F
∂θP

. Hence the sign of ∂θP

∂α
is determined by

whether ∂L
∂α

is greater or less than ∂F
∂α

. (The partial derivatives here hold θP constant, but allow

θF to vary.)

There are two effects as α increases. First, the agents’ flow returns once both agents have

invested increase. Secondly, the follower invests earlier (θF decreases); when δL > 0, this benefits
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both agents, while when δL < 0, it benefits the follower but not the leader. For the leader, both

effects are important. For the follower, only the first effect is of first-order significance: since

the follower chooses θF optimally, any variation in the trigger point due to a small change in α

induces only a second-order variation in returns. When δL > 0, this suggests qualitatively that the

leader’s return increases more when α rises. The comparison is more complicated when δL < 0;

note, however, that the second effect for the leader is limited by the parametric condition in the

proposition, which requires that δL ≥ δF /β. In this case, the lemma shows that the first effect

dominates for the leader, and to such an extent that the leader’s value function increases with α

by more than does the follower’s.

A.2. The Comparative Statics of Simultaneous Investment

In this section, we consider how the payoff parameters affect whether the equilibrium without

pre-emption involves sequential or simultaneous investment.

Lemma A.1: (i) λE is (a) decreasing in γL; (b) increasing (decreasing) in γF if δL < (>)0; (c)

increasing in γS.

(ii) If λE ≥ 0 for α = α′, then λE ≥ 0 ∀ α′′ ≥ α′.

Proof: All parts of the lemma are proved by differentiation of the expression for λE. For example,

part (ii) is shown by differentiating λE with respect to α:

∂λE
∂α

=
βλE
1 + α

+
β(1 − (1 + δF )β−1)

1 + α
≥

βλE
1 + α

.

Hence if λE ≥ 0, then ∂λE/∂α ≥ 0. This proves part (ii) of the lemma. Part (i) follows as easily,

and so the proof is omitted. �

Simultaneous investment is favoured by an increase in the flow payoff from simultaneous invest-

ment (i.e., higher γS) and a decrease in the flow payoff to the leader (i.e., lower γL). Less obvious

are the effects of increases in γF and α. In equilibrium, the payoff to being the leader relative to

a simultaneous investor determines whether investment is simultaneous. If the follower’s payoff in-

creases (i.e., γF increases), then the follower invests earlier (θF decreases). If δL is negative, earlier

investment by the follower decreases the payoff to being the leader, and so encourages simultaneous

investment. Therefore, when δL is weakly less than zero, an increase in γF favours simultaneous
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investment in equilibrium. The converse argument holds for δL > 0. A unit increase in α causes

the flow payoff of the leader (when the other agent has invested) to rise by γL, and to being a

simultaneous investor to rise by γS. In part (ii) of the lemma, however, that only cases in which

λE ≥ 0 are considered—that is, the payoff to being a simultaneous investor relative to being the

leader is large enough that equilibrium investment is simultaneous. In these cases, γS is greater

than γL, and so an increase in α favours simultaneous investment.

A.3. The Comparative Statics of the Co-operative Solution

The next two lemmas examine the comparative statics of λC ; the proofs are similar to those of

lemmas (A.1) and (1) and so are omitted.

Lemma A.2: 1. λC is (i) decreasing in γL; (ii) decreasing in γF ; and (iii) increasing in γS.

2. If λC ≥ 0 for α = α′, then λC ≥ 0 ∀ α′′ ≥ α′.

Lemma A.3: If δS ≥ 0, then λC is a decreasing function of σ.

A.4. Proof of Proposition 1

Define

∆(θ) ≡
θ

r − µ
−K −

(

θ

θF

)β (1 − βδL + δF
1 + δF

)

K

β − 1

i.e., L(θ)−F (θ), where L(θ) is conditional on the leader having invested, and F (θ) is conditional on

the leader having invested but not the follower. The pre-emption trigger θP is determined by the

equation ∆(θP ), if a solution exists. There are three possibilities: that there are (i) no, (ii) one or

(iii) two solutions to the the equation. We use the following facts: (i) ∆(θ) is a continuously differen-

tiable function of θ; (ii) ∆(0) = −K < 0; (iii) ∆(θL) = K
(β−1)(1+δF )

(

(

θL

θF

)β

βδL + (1 −
(

θL

θF

)β

)(1 + δF )

)

;

(iv) since, from assumption 1, δL ≥ δF , ∆(θL) ≥ K
(β−1)(1+δF )

(

(

θL

θF

)β

βδF + (1 −
(

θL

θF

)β

)(1 + δF )

)

;

(v) for all δF ∈ [−1, 0] (see assumption 1) and β ≥ 1,
(

θL

θF

)β

βδF + (1 −
(

θL

θF

)β

)(1 + δF ) ≥ 0.

Hence, by the intermediate value theorem, there exists a value θP < θL such that ∆(θP ) = 0, and
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∆(θ) is less (greater) than 0 for θ immediately less (greater) than θP . (If there are multiple values,

the lowest is the relevant solution, since it is the first point at which the value of being the leader

crosses from below the value of being the follower.)

A.5. Proof of Proposition 4

The difference between the values of the leader’s option-like term and the follower’s option associ-

ated with the follower’s investment is

∆(θ, β) ≡ (bL1 − bF )θβ =

(

βδL − (1 + δF )

1 + δF

)

F (θ)

where F (θ) ≡ bF θ
β > 0 for θ ∈ (θP , θF ). Hence

∂∆(θ, β)

∂β
=
δLF (θ) + (βδL − (1 + δF ))∂F (θ)

∂β

1 + δF
.

But

∂F (θ)

∂β
= F (θ)

(

−
1

β − 1
+ ln

(

θ

θF

))

.

Hence

∂∆(θ, β)

∂β
=

F (θ)

1 + δF

(

−(1 + δL + δF )

β − 1
+ (βδL − (1 + δF )) ln

(

θ

θF

))

.

Suppose that βδL − (1 + δF ) > 0. Then clearly ∆(θ, β) > 0. Also, since δL > 0 in this case,

1 + δL + δF > 0; with θ < θF , this means that both terms in the expression for ∂∆(θ, β)/∂β are

negative. β is a decreasing function of σ; hence ∂∆(θ, β)/∂σ > 0. Therefore if βδL − (1 + δF ) > 0,

the leader’s value increases by more than the follower’s for any increase in σ for θ ∈ (θP , θF ). The

proposition follows.

A.6. Proof of Lemma 1

Differentiate λE with respect to β:

∂λE
∂β

= (1 + δS)β ln(1 + δS) − δL(1 + δF )β−1(1 + ln(1 + δF )). (A4)
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It is sufficient for λE to be an increasing function of β that all terms in equation (A4) be positive.

Hence joint sufficient conditions are: (i) δS ≥ 0, so that ln(1+δS) ≥ 0; (ii) −δL(1+ln(1+δF )) ≥ 0,

which in turn requires that either (a) δL ≥ 0 and 1 + ln(1 + δF ) ≤ 0 i.e., δF ≤ e−1 − 1, or (b) the

converse. To complete the proof of the first part, note that β is decreasing in σ. The proof of the

second part is very similar, and so is omitted.

A.7. Proof of Proposition 9

The first two parts of the proposition (relating to the follower and pre-emptor inefficiencies) follow

from equations (14), (A1), and propositions 1 and 6. The proof of the third part of the proposition

(relating to the leader inefficiency) requires a comparison of the necessary and sufficient conditions

(25) and (28). Rewrite the conditions as

2(1 + δS)β − 1 ≥ 1 + 2βδL(1 + δF )β−1,

2(1 + δS)β − 1 ≥ (1 + δL + δF )β .

The proposition gives the conditions under which 1 + 2βδL(1 + δF )β−1 is greater (less) than (1 +

δL+ δF )β . Let ∆ ≡ (1+ δL+ δF )β − 2βδL(1+ δF )β−1; the issue is whether ∆ greater or less than 1.

(i) Consider the equation ∆ = 1, involving three variables: δL, δF and β. Since ∆ is continuously

differentiable for δF ∈ (−1, 0], δF ≤ δL ≤ −δF and β > 1, ∆ = 1 defines implicitly δL (say)

as a function of δF and β. Sufficiency: if δF = δL = 0, then ∆ = 1∀β. Necessity: in order

for ∆ = 1 for any given values of δL and δF , both terms in the expression for ∆ must be

independent of β. This requires that 1 + δL + δF = 1 and δL(1 + δF ) = 0 i.e., δL = 0 and

δF = 0.

(ii) Since δL+δF ≤ 0 and −1 ≤ δF , by assumption (1), a sufficient condition for ∆ < 1 is δL > 0.

If δL < 0, then ∆ is a decreasing function of δL:

∂∆

∂δL
= β

(

(1 + δL + δF )(β−1) − (1 + δF )(β−1)
)

− β(1 + δF )(β−1),

1 + δL + δF < 1 + δF when δL < 0, and 1 + δF ≥ 0, from assumption 1. Therefore ∆

is maximized when δL = δF , its minimum value by assumption 1. At this value of δL,

∆ = ∆ ≡ (1 +2δF )β − 2βδF (1 + δF )(β−1). Note that ∆ is defined only for δF ≥ −1/2. When

δF = −1/2, ∆ = β(1/2)(β−1); this is greater (less) than 1 iff β is less (greater) than 2.
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(iii) From part (ii), ∆ is a decreasing function of δL; and ∆ = (1 + δF )β ≤ 1 when δF = 0. The

statement in the proposition follows immediately.
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