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Abstract 

This paper revisits the simplest stochastic investment decision: when to incur a sunk cost 

in exchange for a random payoff. It shows that the standard real options approach 

typically yields incorrect decision rules except for reflecting or unattracting barriers. 

Optimal investment rules are derived for different barriers and illustrated for common 

stochastic processes. An explicit solution for the perpetual call option with a lower 

absorbing barrier is also obtained; it shows that the standard perpetual call option 

overestimates the corresponding investment threshold when uncertainty is high enough. 

These results have implications for all stochastic investment problems in continuous time. 
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1. INTRODUCTION 

Barriers are often assumed away in the stochastic investment literature, yet intuitively they 

should matter. This paper fills this gap for simple investment problems by making three 

contributions. First, we show how to derive optimal investments rules, based on elementary 

considerations, when the underlying payoff follows an autonomous diffusion process constrained 

by a barrier. Second, we derive an analytical solution for the perpetual call option with a limiting 

lower absorbing barrier. A comparative statics analysis shows that the resulting investment 

threshold may not increase monotonically with uncertainty and converges to twice the value of 

the initial investment as uncertainty increases. Finally, we prove that the standard real options 

approach usually yield incorrect solutions, except in the presence of reflecting or unattracting 

barriers. These results can easily be extended to more complex investment problems, and they 

have implications for stochastic problems in continuous time. 

When to pay a constant (sunk) amount I for a payoff X that follows an autonomous 

diffusion process is probably the most basic investment problem. As such, it has already received 

a lot of attention (e.g., see McDonald and Siegel 1986, Dixit and Pindyck 1994, or Dixit, 

Pindyck, and Sødal 1999, and the references herein). The conventional wisdom in this context is 

that increasing uncertainty delays investment and relatively little attention is paid to the presence 

of a lower barrier. Yet, we intuitively expect to invest more conservatively in the presence of a 

lower absorbing barrier, which, if reached, makes investing permanently unattractive, than if a 

lower reflecting barrier allows the investment payoff to rebound and grow larger with volatility.1  

An absorbing barrier could result, for example, from demand shifts following innovations 

by competitors (in electronics, pharmaceuticals…), from gradual changes in tastes, from 
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bankruptcy if the investment opportunity consists in exercising a call option to purchase another 

firm, or from the disappearance of a natural resource (overfishing may permanently depress a 

fish stock, for example). 

Conversely, a reflecting barrier may arise from government imposed price floors (as for 

some agricultural commodities), or when a resource has residual value from alternate uses. For 

example, the owner of a vacant urban plot of land can either erect a commercial building if the 

economy is booming, or build a temporary parking lot if the real estate market is depressed. 

A third possibility is a barrier unreachable in finite time (an unattainable barrier). This is 

the case for barriers at infinity, but finite barriers can also be unattainable; an example is 0 with 

the geometric Brownian motion (GBM) for the perpetual call option. Unattainable barriers are 

popular because they tend to simplify the solution of stochastic investment problems. Yet, as we 

will see, this apparent simplicity is deceptive. 

The standard real options approach for tackling this type of simple investment problems 

is to treat the investment opportunity as a perpetual call option. To find the investment threshold 

x*, the value of X at which the investment should be made, three steps are required. First, a 

Bellman equation for the option value, F(X), is derived, and when possible, a general solution for 

this second order ordinary differential equation is obtained. Second, a lower boundary condition 

(typically at 0 for the Geometric Brownian Motion) is applied, so F(X) is known within a 

constant. This constant is calculated simultaneously with x* by applying the value matching and 

smooth pasting conditions. This approach has been extended to different contexts and it is now 

widely applied in economics (see Dixit and Pindyck 1994 for details and illustrations). 

By contrast, we propose an intuitive framework, based on stochastic discount factors, that 
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relies only on elementary considerations. Indeed, the standard real options approach hinges on 

the smooth-pasting condition, for which the underlying theory is hardly accessible to most 

economists, as noted in Sødal (1998). In the presence of a lower absorbing barrier, our results 

imply that the option term does not verify the Bellman equation typically written for it because 

the Bellman equation does not explicitly account for changes in the probability that the option to 

invest vanishes if the lower barrier is reached before the investment threshold. Moreover, we 

argue that an unattainable barrier should be seen as the limit of an attainable barrier, so different 

solutions are possible depending on the nature of the latter (e.g., it could be reflecting or 

absorbing). This seems to have been overlooked in the literature and we show that it has 

important implications for real options, and more generally for the theory of investment under 

uncertainty in continuous time. 

This paper is organized as follows. Section 2 introduces our framework. Section 3 

presents results for two widely used stochastic processes. In Section 4, we prove that the 

standard real options approach does not deal correctly with absorbing or attracting but 

unattainable barriers. Section 5 concludes. 

 

2. INVESTING WITH BARRIERS 

Consider again the simple framework introduced above and suppose that the net present value of 

the investment (the payoff), X, follows the autonomous diffusion process  

( ) ( ) .dX X dt X dzµ σ= +                 (1) 

Equation (1) is valid on the open interval (L,R) where -∞ ≤ L < R ≤ +∞.2 For convenience, µ(.), 
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the infinitesimal trend of X, and σ(.), the infinitesimal standard deviation, are assumed 

continuously differentiable on (L,R). Moreover, σ(x) is strictly positive on (L,R), and dz is an 

increment of a standard Wiener process (Dixit and Pindyck 1994). The investor’s objective is to 

maximize the expected present value of net benefits. For simplicity, these benefits are discounted 

using a constant discount rate ρ. 

We first recall some important concepts characterizing barriers that have not received the 

attention they deserve in economics. We then examine three common possibilities for a lower 

barrier [ , )L R∈l : first, l could be reflecting, so that X simply rebounds upon reaching l; second, l 

could be absorbing, which means that X remains stuck at l as soon as it hits l; finally, l cannot be 

reached in finite time but it may “attract” X. Although our focus is on lower barriers, it is 

straightforward to generalize our results to upper barriers. 

 

2.1 Key Concepts 

We present here some essential definitions and properties of barriers without proofs; a formal 

treatment can be found in Karlin and Taylor (1981, Chapter 15). 

 

Definition 1. A lower barrier [ , )L R∈l  is said to be attracting if there is a non-zero probability 

that X reaches l before any interior point x. We denote by ; |x yp l  the probability that X reaches l 

before x starting from y. Conversely, if l is non-attracting, then X is certain to reach any interior 

point x before l, and thus ; | 1x yp =l . 
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It is important to note that the attracting property of a barrier holds for all interior points 

as a result of the requirement that the function σ(.) be strictly positive on (L,R) and the definition 

of ; |x ypl . Indeed, Karlin and Taylor (1981) show that 

; |
( , ) ,
( , )x y

S yp
S x

=l
l
l

                  (2) 

where, for L<x1< x2<R, 

2

1 1

1 2 2
2 ( )( , ) exp .

( )

x

x c

S x x d d
ξ µ ζ ζ ξ
σ ζ

 − =
  

∫ ∫              (3) 

In (3), 1 ( , )c L R∈  is an arbitrary constant with no influence on the value of ; |x ypl : indeed, 

changing c1 is akin to multiplying the numerator and the denominator of (2) by the same number. 

From (2) and (3), we see that l is attracting if and only if lim ( , )S z
ξ

ξ
→ +l

 is finite for ( , )z R∈ l . 

 

Definition 2. For ( , )l∈x R  and ( , )y x∈ l , let ( ), |l x yE T  denote the expected time it takes X to 

reach either l or x starting from y. A lower barrier l is said to be attainable if and only if 

( ), |x yE T < ∞l . If l is not attainable, it is unattainable. 

 

From Appendix A, 

( ), |
( , ) ( , )2 ( , ) ( ) ( , ) ( ) ,
( , ) ( , )

yx

x y
y

S y S y xE T S x m d S m d
S x S x

ξ ξ ξ ξ ξ ξ
  = + 
  

∫ ∫l
l

l
l

l l
     (4) 

where S(.,.) is defined by (3) and 
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1

2 2
1 2 ( )( ) exp .
( ) ( )c

m d
ξ µ ζξ ζ

σ ξ σ ζ

 
 =
  
∫  

The constant c1 also appears in the definition of S(.,.), so it does not affect the value of ( ), |l x yE T . 

From (4), we see that the choice of ( , )l∈x R  does not determine whether l is attracting or not. 

It can be shown that unattainable barriers may or may not be attracting. However, all 

attainable barriers are attracting. There are therefore three types of barriers: 1) attainable and 

attracting, which include reflecting and absorbing (also called exit) barriers; 2) unattainable but 

attracting, such as +∞ for a Brownian motion with a positive trend; and 3) unattainable and 

unattracting. Let us now examine specific types of barriers in the context of a simple investment 

problem. 

 

2.2 Reflecting Barrier 

Let us first suppose that ( , )l ∈ L R  is reflecting. To capture the impact of the lower barrier on the 

decision to invest, we rely on stochastic discount factors. While this approach is not new (see for 

example MacDonald and Siegel 1986 or Dixit, Pyndick, and Sødal 1999), our contribution here 

is to use stochastic discount factors to formulate simple investment problems in the presence of 

different types of barriers.3 Let us thus write the investment problem as: 

| ( ),x y
x

Max D x I−                   (5) 

where y=X(0) is the value of X at time 0; ( )|
|

x yT
x yD E e ρ−≡  is the expected value of the discount 

factor; and |x yT  is the random duration between time 0 and the moment where X first hits x. For 
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future reference, it is important to note that (5) implicitly assumes that x* is attainable. 

It is well known (e.g., see Karlin and Taylor 1981) that |( ) x yW y D≡  verifies the linear, 

second-order, ordinary differential equation 

2 2

2
( ) ( ) ( )( ) ( ) 0.
2

y d W y dW yy W y
dydy

σ µ ρ+ − =            (6) 

We thus need two conditions to fully define |x yD . By construction, 

| 1.x xD =                     (7) 

The other condition is linked to the presence of a reflecting barrier at l. To derive it, let us 

suppose that, at time 0, X=l. In the neighborhood of l, X behaves as a Brownian motion with 

infinitesimal mean µ(l) and variance σ2(l). Now consider a discrete approximation of the 

Brownian motion, as in Dixit (1993). By construction, X cannot take a value lower than l, so after 

a small time increment ∆t, X moves up from l by a small increment ∆l>0 (i.e., X(∆t)=l +∆l), 

where t t∆ ≈ ∆ ∆�l . Then, for x≥l, 

| |

| 0 0

0 0

{exp( )} {exp( )exp( )}
x xT Tt

x

t

D E d E d dρ τ ρ τ ρ τ
∆

∆

= − = − −∫ ∫ ∫
l l

l  

|

0 |

0

               [1- t+o( t)] {exp( )} [1- t+o( t)]
xT

xE d Dρ ρ τ ρ
+∆

+∆= ∆ ∆ − = ∆ ∆∫
l l

l l  

|
|               [1- t+o( t)][ ( )].x

x
dD

D o
dx

ρ= ∆ ∆ + ∆ + ∆l
l l l  

The transition from the first to the second line above relies on the law of total probability and the 
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Markov property (Karlin and Taylor 1981). Simplifying, dividing by ∆l, and taking ∆l to 0, gives 

| | 0.x
x

dD
dx = =l

l                    (8) 

Equation (8) generalizes a result derived by Dixit (page 26, 1993) for a GBM. 

Let W0(y) and W1(y) be two independent solutions of (6). Combining the two boundary 

conditions (7) and (8) leads to 

' '
1 0 0 1

| ' '
1 0 0 1

( ) ( ) ( ) ( ) .
( ) ( ) ( ) ( )x y

W W y W WD
W W x W W x

−
=

−

l l y

l l
             (9) 

The first order necessary condition for our problem is obtained by writing the first 

derivative of the objective function at x=y=x* to avoid any time inconsistency, so that  

*
| *| ( ) 1 0,x y

x y x
D

x I
x = =

∂
− + =

∂
               (10) 

since * *| 1x xD = . We see that, at the optimum, the sum of two marginal changes in the value of 

the investment equal zero: one comes from the change in the discount factor, and the other 

results from the change in the net payoff (it equals unity here).  

 

2.3 Absorbing Barrier 

Let us now assume instead that X remain constant at l<I as soon as it hits l, which makes 

investing permanently uninteresting. The decision maker’s objective function should thus reflect 

the possibility that, starting from y (where L<l<y<x<R), X may either first reach l, where the 

investment possibility disappears, or first reach x* where the investment should take place. With 

this in mind, to find the investment threshold we need to solve 
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, | ; | [ ],x y x y
x

Max D p x I−l l                 (11) 

where y=X(0) is the value of X at time 0; ( ), |
, |

x yT
x yD E e ρ−≡ l

l  is the expected value of the 

discount factor; , |x yTl  denotes the elapsed time between now (X=y) and the moment where X hits 

either l or x for the first time; and ; |x ypl  is the probability that X first hits x before l starting from 

y. Along with the presence of ; |x ypl  in Equation (11), the expression of , |x yDl  reflects a 

fundamental difference between a stochastic problem with an absorbing barrier and its 

deterministic counterpart: whereas in the latter we know with certainty whether a variable will 

reach a threshold, in the former a variable may reach a threshold in some cases and never in 

others. 

It is easy to show that, for ( , )y x∈ l , , |( ) x yW y D= l  also verifies (6). By construction, 

, | 1xD =l l  and , | 1x xD =l , so the two conditions needed to fully define W(y) are simply 

( ) 1 and ( ) 1.W W x= =l                 (12) 

Then, if W0(y) and W1(y) are two independent solutions of (6) defined over (l,x), 

[ ] [ ]1 1 0 0 0 1
, |

1 0 0 1

( ) ( ) ( ) ( ) ( ) ( )
.

( ) ( ) ( ) ( )x y
W x W W y W x W W y

D
W x W W x W

− − −
=

−l
l l

l l
        (13) 

As for the reflecting case, we write the first order condition at x=y=x* in order to ensure 

time consistency.  We get 

* *
; | , |* *| ( ) | ( ) 1 0,x y x y

x y x x y x
p D

x I x I
x x= = = =

∂ ∂
− + − + =

∂ ∂
l l         (14) 

In addition to the marginal changes in the discount factor and in the value of the net payoff, 
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Equation (14) shows that we also need to account for the marginal change in the probability that 

the investment opportunity vanishes (if X hits a before x*); the importance of this point for 

optimum investment decisions will be illustrated shortly. 

 

2.4 Unattainable Barriers 

In economics, unattainable barriers often result from simplifying assumptions; a typical example 

is a barrier at zero for the geometric Brownian motion. It is safer, however, to see an unattainable 

barrier l as the limit of an attainable barrier.  

Indeed, let us first suppose that l is unattracting (and thus unattainable) and that interior 

points of (l,R) are attainable. We start from an interior barrier (reflecting or attracting, it does not 

matter here), solve for the discount factor, and take the lower limit towards l. Typically, one of 

the two independent solutions of (6) goes to infinity at l while the other has a finite limit. Let us 

suppose here that 1( )W = ∞l . Then, the first order condition (10) holds with |x yD  given by 

1
|

1

( ) .
( )x y

WD
W x

=
y                    (15) 

Conversely, if l is unattainable but attracting and x* is attainable, the correct first order condition 

is (14), with |x yD  above replacing , |x yDl . 
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3. ILLUSTRATIONS 

3.1 Brownian Motion 

To start with, let us assume that X follows the Brownian motion with infinitesimal trend µ>0 and 

variance σ2: 

.dX dt dzµ σ= +                   (16) 

Without loss of generality (by simply shifting X) we set a barrier at l=0. The derivation of 

0, |( )x yE T  shows that l=0 is attainable and therefore also attracting (see Appendix B). To simplify 

our notation, it is useful to introduce the dimensionless parameters 

2 ,  .µ ρλ δ
µσ

≡ =  

First, let us suppose that l=0 is reflecting. Two independent solutions of (6) are 

0 ( ) xW x e ω+
=  and 1( ) xW x e ω−

= , where 

2 2 .ω λ λ λδ± = − ± +                 (17) 

Clearly, 0ω+ >  and 0ω− < . Given 0<y<x, the expected discount factor here is (see (9)) 

| .
y y

x y x x

e eD
e e

ω ω

ω ω

ω ω

ω ω

+ −

+ −

− +

− +

−
=

−
 

As expected, |x yD  increases with y (we are closer to the target x) and decreases with x (the target 

is farther away). Unfortunately, *
rx  (the investment threshold with a reflecting barrier at l=0) 

cannot be found explicitly, but it can be approximated for small or large values of σ. 

When σ is close to 0, 
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* *
0 02 2* 1 1 ( ) ,x x

rx I e o eλ λ

ω
− −

+
 = + + +  

            (18) 

where *
0

1 1 1( )
2 2

I x o
λ λω+

+ = + +  and *
0

1x I
δ

= +  is the investment threshold under certainty. *
rx  

is thus larger than *
0x  and it increases locally with the square of the volatility parameter since 

21 0
2 2

σ
λ µ
= > : a little bit of uncertainty helps reach *

rx  faster so it is worth waiting for a slightly 

higher value of the investment threshold. 

When σ is large, *
rx  becomes independent of I and it increases linearly with σ : 

* ,
2 2r
z zx σ
λδ ρ

≈ =
� �

                 (19) 

where 1.20z ≈�  is the unique root of 
2

2
1 0
1

z

z
e z
e

+
− =

−
. 

Now suppose instead that l=0 is absorbing. From (2), the probability that X reaches x 

before 0, starting from (0, )y x∈ , is 

2

0; | 2
1 ,
1

y

x y x
ep
e

λ

λ

−

−
−

=
−

 

and from (13), the expected discount factor equals 

, |
( 1) ( 1) .

x y x y

x y x x

e e e eD
e e

ω ω ω ω

ω ω

− + + −

− +

− − −
=

−
0  

There is again no explicit expression for *
ax , the investment threshold with an absorbing 

lower barrier. When σ is small, *
ax  can be approximated by 
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* *
0 0( 2 ) 2* 1 21 ( ) .x x

ax I e o eδ λ λλ λ
δ δω

− + −
+
 = + − +  

          (20) 

Comparing (18) and (20), * *
a rx x≤ , but the difference between *

rx  and *
ax  vanishes with the risk 

that the investment opportunity disappears. When σ is large, however, the impact of the lower 

absorbing barrier on the decision to invest is clearly apparent since 

11
2 33* .a

I Ix σ
λδ ρ

  ≈ =        
                (21) 

Thus, *
rx  increases with σ much faster than *

ax  (Equation (19)) because a high volatility with a 

lower absorbing barrier increases the risk that the investment opportunity disappears. 

For intermediate values of σ, *
rx  and *

ax  have to be compared numerically (see Figure 1). 

As expected, it is optimal to invest sooner with an absorbing than with a reflecting lower barrier 

because of the risk of loosing the opportunity to invest. Moreover, a higher uncertainty magnifies 

the difference in expected net profits, π. Assume, for example, that I=$1 and that the initial value 

of X equals y=0.5. For 2ρδ
µ

= = , when uncertainty varies from 
21 0.1σ

γ µ
= =  to 1 100γ − = , π 

changes from $0.08 to $2.40 with a reflecting barrier and from $0.08 to only $0.43 for an 

absorbing barrier.  This spread increases when the discount rate decreases, as the present value of 

future net revenues goes up. Thus, for 0.5δ = , when 1γ −  varies between 0.1 and 100, π 

increases from $0.59 to $4.86 for a reflecting barrier, but it decreases from $0.59 to $0.51 for an 

absorbing barrier. 
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3.2 Geometric Brownian Motion 

Let us now consider the case where X follows the geometric Brownian motion 

,dX Xdt Xdzµ σ= +                  (22) 

where µ>0 and σ2 are respectively the infinitesimal trend and variance parameters. 

For convenience, we define the dimensionless parameters 

2
21 ,  .µ ρκ δ

µσ
≡ − =  

As σ increases from 0+ to +∞ (holding µ constant), κ varies from -∞ to 1. We require that δ>1 

(µ<ρ) to guarantee the existence of a finite investment threshold. 

We focus here is on a barrier at l =0, a common assumption in the economics literature. 

The derivation of , |( )x yE Tl  (see Appendix B) shows that while l >0 is attainable, l =0 is not. To 

find out if l =0 is attracting, we take the limit of ; |x ypl  when l→0 (see (B.8)) and obtain 

0; |

1, if 0 (i.e., if 2 ),

, if (0,1) (i.e., if 2 ).
x yp y

x

κ

κ σ µ

κ σ µ

 ≤ ≤


=   ∈ > 
 

         (23) 

Thus, l =0 is only attracting when σ is large enough (i.e., when 2σ µ> ). This result should not 

be surprising: indeed, we know from Ito’s lemma that Ln(X) follows a Brownian motion with 

infinitesimal trend 
2

2
σµ − , so a high enough value of σ2 makes the lower barrier -∞ attracting 

(but unattainable of course). This property has implications for the timing of investing in our 

simple framework.  
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Let us first suppose that the barrier at 0 is the limit of a reflecting barrier. Taking the limit 

of , |x yDl  (see (B.9)) when l→0 leads to 

| ,x y
yD
x

θ +

 =  
 

                  (24) 

where 

2
(1 ) 0

2 4
κ κθ δ κ+ = + + − > . 

When we insert (24) into the first order condition (10) and solve for *
rx , we obtain 

* .
1

rx Iθ
θ

+

+
=

−
                   (25) 

This expression is familiar (c.f. Dixit and Pindyck 1994): whereas the neoclassical investment 

theory tells us that a firm should invest as soon as X≥I, Equation (25) shows that firms should 

invest only above a threshold proportional to the cost of investing. A simple comparative statics 

analysis shows that the ratio 
1

θ
θ

+

+ −
 increases monotonically to +∞ with σ. 

In fact, this result depends on the presence of a reflecting barrier at l =0+. Indeed, let us 

assume instead that l =0 is the limit of an absorbing barrier. A simple calculation shows that the 

expected discount factor is still given by (24). If we introduce the expressions of ; |x yp0  

(Equation (23)) and |x yD  (Equation (24)) into the first order condition (Equation (14)), we get 

(25) for κ<0, but for κ∈(0,1) (i.e., for 2σ µ> ), we find instead  
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* .
1

ax Iθ κ
θ κ

+

+
+

=
+ −

                  (26) 

A comparative statics analysis shows that, unlike 
1

θ
θ

+

+ −
, the multiplier ( )( )

( ) 1
M θ κ κκ

θ κ κ

+

+
+

≡
+ −

 

for δ fixed, does not increase to infinity with σ. In fact, it may not even change monotonically 

with σ. We need to distinguish three cases. 

For δ∈(1,2), as σ increases, M decreases from 1
1

δ
δ

>
−

 to 2. For δ∈(2,9), M first 

decreases from 1
1

δ
δ

>
−

 to (2 1.5 2 ( 1)M δ δ δ− −  and then increases towards 2. Finally, for 

δ≥9, M increases monotonically with σ towards 2.  

The variations of M stem from the opposite behavior of 0; |x y
yp
x

κ
 =  
 

 and |x y
yD
x

θ +

 =  
 

 

as functions of σ. Indeed, for 0 y x< <  fixed, when σ increases 0; |x yp  decreases because the 

risk that X hits l=0 goes up, whereas |x y
yD
x

θ +

 =  
 

 increases ( 0
2

d d
d d
θ θ δ κ
σ θ κ σ

+ +

+

−
= <

−
) because x 

can be reached faster. For low values of δ (for a relatively low discount rate), |x yD  does not go 

up as much as 0; |x yp  goes down, so *
ax  decreases with σ ; the risk of loosing the investment 

opportunity dominates. Conversely, for high values of δ (for a relatively high discount rate), 

|x yD  goes up faster than 0; |x yp  goes down when σ increases, so *
ax  is now an increasing 

function of σ ; the discount factor effect dominates. Finally, for intermediate values of δ (i.e. for 
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δ∈(2,9)), we get a bit of both effects. Calculated values of *
rx  and *

ax  for different values of κ 

and δ are shown on Figure 2.  

As for the Brownian motion, the nature of the lower barrier and the level of uncertainty 

determine expected net profits. Consider again a unit investment (I=$1) with an initial value for 

X of y=0.5. For 10ρδ
µ

= = , when 2
21 µκ
σ

= −  increases from 0.0 to 0.98, π varies from $0.016 

to $0.286 with a reflecting barrier, and from $0.016 to $0.052 with an absorbing barrier.  For 

1.5δ = , when κ varies from 0.0 to 0.98, π increases from $0.239 to $0.470 for a reflecting 

barrier, but it decreases from $0.239 to $0.063 for an absorbing barrier. 

The drastic change of behavior of the investment threshold for the GBM in the presence 

of an attracting absorbing barrier has implications for testing empirically the theory of 

investment under uncertainty. It also shows that an absorbing barrier impacts the investment 

threshold differently than a jump process that brings the expected payoff (i.e., X here) to zero. 

Indeed, we recall from McDonald and Siegel (1986) that for a Poisson jump process, we simply 

need to augment the discount rate by the rate of arrival of jumps.  

Finally, these results illustrate that unattainable but attracting barriers can play a pivotal 

role in the solution of stochastic investment problems. Some results for mean-reverting 

processes can be found in Saphores (2002). 
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4. LINKS WITH THE STANDARD REAL OPTIONS APPROACH 

Let us now examine how the stochastic discount factor approach described above relates to the 

standard real options approach. As above, W0(y) and W1(y) denote two independent solutions of 

Equation (6) defined over (l, R). 

 

Proposition 1. With an absorbing barrier at l, the standard real options approach usually does not 

give the correct stopping value *
ax  because it does not properly account for the possibility that 

*
ax  may never be reached. 

 

Proof. From Dixit and Pindyck (1994), the value of the option to invest I to get x, denoted by 

F(x), verifies the Bellman equation (6). It can thus be written 

0 0 1 1( ) ( ) ( ),F x A W x AW x= +  

where A0 and A1 are two unknown constants to be determined simultaneously with the 

investment threshold; we denote it here by ax�  to distinguish it from *
ax , which verifies the first 

order condition (14). Since l is an absorbing barrier, the option to invest at l is 0 so that 

0 0 1 1( ) ( ) 0.A W AW+ =l l                 (27) 

Moreover, the continuity and smooth pasting conditions at ax�  are respectively 

0 0 1 1( ) ( ) ,a a aA W x AW x x I+ = −� � �               (28) 

' '
0 0 1 1( ) ( ) 1.a aA W x AW x+ =� �                 (29) 

From (27) and (28), we can solve for A0 and A1. If we assume that both W0(.) and W1(.) intervene 



 

19 

 

 

in the expression of F(x), 0 1 1 0( ) ( ) ( ) ( ) 0a aW W x W W x− ≠� �l l . Inserting the expressions of A0 and A1 

in the smooth-pasting condition (Equation (29)), we get 

' '
0 1 1 0

0 1 1 0

( ) ( ) ( ) ( ) ( ) 1 0.
( ) ( ) ( ) ( )

a a
a

a a

W W x W W x x I
W W x W W x

−
− − + =

−
� � �
� �

l l
l l

          (30) 

By contrast, expanding the first order condition for a lower absorbing barrier (Equation (14)) 

leads to 

0
*

0

' * ' *
*0 1 1 0

* *
0 1 1 0

' * * ' * *
; | *0 1 1 0

* *
0 1 1 0

( ) ( ) ( ) ( )
( ) 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
     | ( ).

( ) ( ) ( ) ( ) a

a a
a

a a

x xa a a a
ax x x

a a

W W x W W x
x I

W W x W W x

pW x W x W x W x
x I

xW W x W W x = =

−
− − + =

−

∂ −
− − 

∂−  

l

l l

l l

l l

     (31) 

Equations (30) and (31) have identical left sides, but their right sides differ. Their solutions are 

thus different in general. � 

 

To investigate the difference between the two approaches, let us reconsider the Brownian 

motion illustration above. From the standard real options approach (Equation (30)), the 

investment threshold, ax� , when l =0 is attracting, verifies 

( ) 1 0.
a a

a a

x x

ax x

e e x I
e e

ω ω

ω ω

ω ω
− +

− +

− +−
− − + =

−

� �

� �
�              (32) 

This equation admits no explicit solution in general but a numerical investigation shows that 

*
a ax x≥� . When uncertainty is small, ax�  and *

ax  have the same approximation (Equation (20)); 

when uncertainty is large, however, ax�  exceeds *
ax  by the factor 1/ 31.5 1.14≈  since 
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11
2 333 3 .

2 2a
I Ix σ
λδ ρ

  ≈ =        
�                (33) 

 

The difference between the two approaches is even clearer when l is attracting but 

unattainable. As discussed above, let us assume that 1lim ( )
x

W x
→

= ∞
l

 while 0 ( )W l  is well defined 

and finite (as for the geometric Brownian motion). Then, the stopping rule with the standard real 

options approach (Equation (30)) becomes 

'
0

0

( ) ( ) 1 0,
( )

a
a

a

W x x I
W x

− − + =
� �
�

                (34) 

whereas the first order condition with an absorbing lower barrier (Equation (31)) simplifies to 

0
*

0

' *
; | *0

*
0

( )
| ( ) 1 0.

( )a

x x a
ax x x

a

p W x
x I

x W x= =

∂ 
− − + = 

∂  

l            (35) 

We see that Equations (34) and (35) have the same solution only if l is not attracting. This 

situation is illustrated by the GBM case, for which l =0 is an unattainable barrier. When 

2σ µ≤  (or equivalently, when 0κ ≤ ), the standard real options approach leads to the correct 

threshold (Equation (25)). However, when uncertainty is large (i.e., for 0 1κ< <  or equivalently, 

for 2σ µ> ), l =0 is attracting and the difference between the real options investment threshold 

(Equation (25)) and the correct solution (Equation (26)) grows unbounded as σ increases. Hence, 

we have: 
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Corollary. When the barrier l is unattainable, the standard real options approach yields the 

correct investment threshold when l is unattracting, but not when l is attracting. 

 

The difference between ax�  and *
ax  thus depends on the stochastic process followed by X 

and on the level of uncertainty. 

Intuitively, the standard real options approach yields an incorrect solution because, unlike 

the formulation proposed in this paper, the Bellman equation upon which it relies does not 

explicitly account for the risk that the investment opportunity disappears if the lower barrier is 

reached before the investment threshold x*; this possibility is dealt with only through the 

boundary conditions verified by the option term.  In fact, a small change in X also changes non-

trivially the probability of reaching an attracting barrier. The option term thus does not verify the 

Bellman Equation (6) here. This result can be readily extended to the case where a payoff is 

received upon reaching the lower barrier. Examples include entry/exit problems or the loss of 

existence value resulting from extinction in resource economics.4 More generally, the standard 

real options approach is unlikely to be correct when any payoff is received at the “other end” of 

the investment threshold. 

For a reflecting barrier, however, both approaches give the same result. 

 

Proposition 2. With a reflecting barrier at l, the standard real options approach gives the same 

investment threshold *
rx  as the stochastic discount factor approach. 
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Proof. With the standard real options approach, the value of the option to invest, F(x), verifies 

the Bellman Equation (6). Since l is reflecting, we can use the logic we followed to derive the 

second boundary condition for a reflecting barrier (Equation (8)) to show that ' ( ) 0F =l . Hence, 

' '
0 0 1 1( ) ( ) 0.A W AW+ =l l                 (36) 

The continuity and smooth-pasting conditions (Equations (28) and (29)) are unchanged. 

Combining (28) and (36), we get 

' *' *
01

0 1' * ' * ' * ' *
0 1 1 0 0 1 1 0

( )( )( )( ) ,  .
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

rr

r r r r

W x IW x IA A
W W x W W x W W x W W x

−− −
= =

− −
ll

l l l l
 

Inserting these expressions into the smooth-pasting condition (29) leads to 

' ' * ' ' *
*0 1 1 0

' * ' *
0 1 1 0

( ) ( ) ( ) ( )
( ) 1 0.

( ) ( ) ( ) ( )
r r

r
r r

W W x W W x
x I

W W x W W x
−

− − + =
−

l l

l l
          (37) 

Alternatively, inserting the expression of the discount term (Equation (9)) into the first order 

condition (Equation (10)) and rearranging terms also leads to (37). � 

 

Proposition 2 obtains from the formal analogy between the option term F(y) and 

*
*

| ( )
r

rx yD x I− . More generally, these results show that, in our simplified framework, the value of 

the option to invest is simply the net present value of the investment at ( , *)y l x∈ . When l is 

reflecting or unattracting, the option term is *
*

| ( )
r

rx yD x I− ; when l is absorbing, the option term is 

* *
*

, | ; | ( )
r r

rx y x yD p x I−l l ; and finally, when l is attracting but unattainable, the option term is 
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* *
*

| ; | ( )
r r

rx y x yD p x I−l . As expected intuitively, in this context the investor seeks x* that maximize 

the value of the option to invest. 

 

5. CONCLUSIONS 

While barriers are often assumed away in stochastic investment problems, this paper shows that 

barriers matter. We provide an intuitive methodology based on stochastic discount factors to 

derive simple investments rules for autonomous diffusion process in the presence of common 

types of barriers. Using tools provided in Karlin and Taylor (1981, Chapter 15), this approach 

can easily be extended to many other investment problems, including for example barriers with 

more complex payoffs or investments that modify a monetary flow. 

By contrast, we prove that, while the standard real options approach works for reflecting 

or unattracting barriers, it does not yield correct investment thresholds for absorbing or for 

attracting but unattainable barriers, and it is unlikely to work for more complex barriers. These 

results are important given the increasing popularity of real options to tackle decision-making 

problems under uncertainty. 

An illustration of our approach shows that investment rules based on the perpetual call 

option may overestimate the investment threshold when uncertainty is “high enough” because 

the perpetual call option is the limiting case of (at least) two different investment problems; in 

fact, with a lower absorbing barrier, the investment threshold may not be a monotonic function 

of uncertainty and it tends to twice the investment cost as uncertainty goes to infinity. 

Future work should consider the impact of barriers for investment opportunities with time 



 

24 

 

 

limits, and revisit the pricing formulas of financial options.  
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APPENDIX A 

 

For y∈(l,x), consider calculating the functional  

, |

0
0

( ) ( ( )) ,
x yT

W y E f g X dτ τ
  
  =
  

  
∫

l

             (A.1) 

where f(.) is C2, g(.) is continuous and bounded, and E0 denotes the expectation with respect to X 

given the information available at time t=0.5 Knowing W(.) enables the calculation of , |x yDl  or 

|x yD , but also of ( )0 , |x yE Tl  and ( )0 , |x yVar Tl , which can be useful for management purposes. 

Using a Taylor expansion, the law of total probability, the Markov property of X, and 

Equation (1), Karlin and Taylor (1981, pages 202-203) show that W(.) verifies 

, |2 2

2
0

( ) ( ) ( )( ) ( ) ' ( ( )) 0,
2

x yT
v y d W y dW ym y g y E f g X d

dydy
τ τ

  
  + + =
  

  
∫

l

     (A.2) 

with boundary conditions 

( ) ( ) (0).W W x f= =l                  (A.3) 

If f(y)=y and g(y)=1, then ( )0 , |( ) x yW y E T= l . Integrating the solution twice with 

W(l)=W(x)=0 gives (4). Alternatively, choosing f(y)=y2 and g(y)=1, helps calculate ( )0 , |x yVar Tl . 

Instead, if f(y)=e-ρy and g(y)=1, Equation (A.2) becomes Equation (6). We get 

( )|
|

x yT
x yD E e ρ−=  with boundary conditions (7) and (8) if l is reflecting, or ( ), |

, |
x yT

x yD E e ρ−= l
l  

with boundary conditions (12) if l is absorbing. 
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APPENDIX B 

Brownian Motion 

Let us first analyze the nature of the barrier at l=0. Let 0 y x< ≤ . From (4), the expected time for 

X to reach either 0 or x for the first time, starting from y, is 

2 2

0, | 2( ) .
(1 )

x y

x y x
x y ye xeE T

e

λ λ

λ µ

− −

−
− + −

=
−

             (B.1) 

For 0 y x≤ ≤ , let 0, |( ) ( )x yf y E T= . We have: (0) ( ) 0f f x= = , 
2 2

''
2

4( ) 0
(1 )

y

x
xef y

e

λ

λ
λ

µ

−

−
−

= <
−

, with 

' (0) 0f >  and ' ( ) 0f x < . As a result, ( )f y  is non-negative and finite, so l=0 is attainable and 

therefore also attracting. 

 

Properties of *
rx  

Here, the first order necessary condition for *
rx  (Equation (10)) is 

1

.
( )

x x

x x

e e x I
e e

ω ω

ω ω

ω ω

ω ω

+ −

+ −

− +

+ −

−
= −

−
               (B.2) 

When σ is small, ω±  (see Equation (17)) can be approximated by 

2 3 3
2

2

1 ( ) 1 ( ) ,
22

2 ( ) 2 ( ),

o o

o o

ρ ρ δω σ σ δ σ
µ λµ
µ ρω σ λ δ σ

µσ

+

−

    = − + = − +       
− = − + = − − +

        (B.3) 

and we expect *
rx  to be close to I µ

ρ
+ , the solution of the corresponding deterministic problem. 
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To find an approximate expression for *
rx , we insert (B.3) into (B.2), compare the magnitude of 

different terms, and simplify to find (18). 

When σ is large, ω±  (see again Equation (17)) is approximately equal to 

2

2 2
2 11 ( ) .

2 4
o

ρ µ µω
σ ρσ ρσ σ

±  
= ± + + 

  
∓            (B.4) 

We then assume that * ( )rx a oσ σ= + , where a is an unknown constant. We plug this 

approximation and (B.4) into (B.2), take σ to +∞, and find (19). 

 

Properties of *
ax  

The first order necessary condition for an interior solution for *
ax  (Equation (14)) is 

( ) ( )

( )

( ) ( )( ) ( ) 1 0.
1

x x x x

x x x

e e e ex I x I
e e e

ω ω ω ω ω ω

ω ω ω ω

ω ω ω ω ω ω
+ − + − − +

+ − + −

+ − + − + + − +

+

+ − − +
− + − + =

− −
  (B.5) 

When σ is small, we proceed as above: we insert (B.3) into (B.5), compare the magnitude 

of different terms, and simplify to find (20). 

When σ is large, we suppose that *
ax  does not grow at fast as σ, so when we introduce 

(B.4) into (B.5), compare the magnitude of all the terms and simplify, we obtain (21). 

Alternatively, we could also derive (21) by verifying that 
2
3σ  times a constant verifies (B.5). 
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Geometric Brownian Motion 

We first inquire about the nature of the barrier 0≥l . Let 0 y x< < ≤l . From the definition of 

( ), |x yE Tl  (Equation (4)), 

, | 2 2
2( ) 1 ln ln 1 ,x y

y x x x y yE T
y y l yx x

κ κκ κ κ κ

κ κ κ κκ κ
κ σ

         − −     = − − + + −       
−   −              

l
l l
l l

 (B.6) 

for κ ≠ 0, and for κ = 0, 

2 2
, | 2

1 ln( ) ln( ) ln( ) ln( )( ) ln ln .
ln( ) ln( ) ln( ) ln( )x y

y x x y yE T
x y xσ

  − −  = +    − −    
l

l
l l l

      (B.7) 

From (B.7), ( ), |x yE Tl  is clearly positive and finite. For 0κ ≠  (Equation (B.6)), we need to do a 

bit more work. For ( , )y x∈ l , let ( ) 1 lnx xg y
y y

κ

κ
   

= − −   
   

. We have that ( ) 0g x =  and 

'( ) 0g y <  so ( ) 0g y >  on (l, x). Moreover, for ( , )y x∈ l , let ( ) ln 1yh y
l y

κ

κ
  = + −  

   

l . Clearly, 

( ) 0h =l  and '( ) 0h y > , so ( ) 0h y >  on ( , )xl . As a result, ( ), |x yE Tl  for 0κ ≠  is positive and 

finite, and l >0 is attainable. When l→0, however, , |( )x yE T →+∞l  so l =0 is not attainable.  

From Equation (2), we calculate ; |x ypl  to see if l=0 is attracting. We find 

2
; |

2

2, if 1 0,

( ) ( ) 2if 1 0.
( ) ( )

x y

y
xp

Ln y Ln
Ln x Ln

κ κ

κ κ
µκ

σ
µκ

σ

 −
≡ − ≠ −= 

− ≡ − = −

l

l
l

l
l

           (B.8) 

Taking the limit of ; |x ypl  when l→0 gives (23), so l=0 is attracting if and only if κ∈(0,1). 
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Let us now derive the discount factors for a barrier at l >0. Two independent solutions of 

Equation (6) are 0( )W x xθ
+

=  and 1( )W x xθ
−

= , where 

2
(1 ).

2 4
κ κθ δ κ± = ± + −  

Clearly, θ + >0 and θ - <0. From Equation (9), the discount factor for a reflecting barrier is thus  

| .x y
y yD
x x

θ θ θ θ

θ θ θ θ

θ θ

θ θ

− + + −

− + + −

− +

− +

−
=

−

l l

l l
              (B.9) 

If instead l >0 is absorbing, we find (from (13)),  

, |
( ) ( ) .x y
x y x yD

x x

θ θ θ θ θ θ

θ θ θ θ

− − + + + −

+ − − +

− − −
=

−
l

l l

l l
           (B.10) 

When we take l to zero in either (B.9) or (B.10), we obtain the expected discount factor in (24). 
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FIGURE 1: *
ax  and *

rx  versus 
21 σ

γ µ
=  for the Brownian motion. 

Notes: Solid lines correspond to reflecting barriers and dotted lines to absorbing barriers. ρδ
µ

= , 

where ρ is the discount factor and µ is the infinitesimal trend of X. In the definition of γ, σ2 is the 

infinitesimal variance of X. 
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FIGURE 2: *
ax  and *

rx  versus 
21

1 2
σ

κ µ
=

−
 for the geometric Brownian motion. 

Notes: Solid lines correspond to reflecting barriers and dotted lines to absorbing barriers. ρδ
µ

= , 

where ρ is the discount factor and µ is the infinitesimal trend parameter of X. In the definition of 

κ, σ2 is the infinitesimal variance parameter of X. 
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1 Although these types of barriers are most common in economics, there are other also other 

types of barriers (e.g., see Dumas 1991 or Dixit 1993). 

2 A parenthesis means that an interval is open at that end, while a square bracket means that it is 

closed. Thus (a, b] includes b but not a. 

3 Indeed, Dixit, Pyndick, and Sødal (1999) do not discuss the potential nature of barriers on the 

decision to invest and they impose that | 0x yD →  as x-y→∞. We show in this paper that different 

conditions apply in general. 

4 With a payoff L at the lower boundary, the decision maker’s objective becomes 

( ), | ; | ; |[ ]x y x y x y
x

Max D p x I p L− +l l l . A first order necessary condition is easily derived. 

5 A C2 function is twice differentiable and its second derivative is continuous. 


