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Abstract 

Many firms are considering investment in gas fired power plants. We consider a firm holding a license, 

i.e. an option, to build a gas fired power plant. The operating cash flows from the plant depend on the 

spark spread, defined as the difference between the unit price of electricity and cost of gas. The plant 

produces electricity when the spark spread exceeds emission costs, otherwise the plant is ramped down 

and held idle. The owner has also an option to abandon the plant and realize the salvage value of the 

equipment. We compute optimal entry and exit threshold values for the spark spread. Also the effects 

of emission costs on the value of installing CO2 capture technology are analyzed. 
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1 Introduction 

The emergence of spot and derivative markets for electricity has facilitated the use of market based 

valuation methods for electricity production units. We analyze the problem of valuing a gas fired 

power plant. The plant’s operating cash flows depend on the spark spread, defined as the difference 

between the price of electricity and the cost of fuel used for the generation of electricity. Spark spread 

based valuation of power plants has been studied in Deng, Johnson, and Sogomonian (2001). Deng 

(2003) extends the study to take into account jumps and spikes in price processes. 

Investment valuation using the traditional discounted cash flow method ignores the asset holder’s 

ability to react to changing market conditions. Real options theory captures these options inherent in 

investment opportunities. A thorough review of real options is given in Dixit and Pindyck (1994). Real 

options are usually analyzed under the risk-neutral probability measure, which can be inferred from 

forward prices (see e.g. Schwartz, 1997). We use electricity and gas forward prices. 

An investment in a gas fired power plant contains both timing, operating flexibility and abandonment 

options. We consider an investor having a license to build a gas fired power plant. The license can be 

seen as an American call option on the plant value. Options to postpone an investment decision have 

been studied for example in McDonald and Siegel (1986). 

Future cash flows from the plant depend on the spark spread between electricity and gas. If the spark 

spread is positive the plant produces electricity and the profits are given by the spark spread less 

nonfuel variable costs, emission costs and fixed costs. Once the spark spread becomes negative the 

plant is ramped down and only fixed costs remain. It is also possible to abandon the plant permanently 

and realize the salvage value of the plant. Options to alter operating scale have been studied for 

example in Brennan and Schwartz (1985). We compute optimal threshold values to build and abandon 

a gas fired power plant. 
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The paper is organized as follows. We present the mathematical model in Section 2, and in Section 3 

the solution method is introduced. In Section 4 we apply our model to value a combined cycle gas fired 

power plant. In Section 5 we discuss the results of the application. Finally, Section 6 concludes the 

study. 

2 Mathematical model  

We assume that there exist spot and derivative markets for both electricity and gas. In these markets 

electricity, gas and their derivative instruments are traded continuously. In describing the probabilistic 

structure of the markets, we will refer to a probability space ),,( PFΩ , where Ω  is a set, F is a σ -

algebra of subsets of Ω , and P is a probability measure on F. The following assumption characterizes 

our derivative markets. 

ASSUMPTION 1. There exist forward contracts on both electricity and gas. The derivative markets are 

complete and there are no arbitrages. 

Given the no arbitrage condition all the portfolios with the same future payoffs have the same current 

value. This is often called the law of one price. If all derivative instruments traded in the market can be 

replicated with some replicating portfolio the market is complete. 

We denote by ( )TtSe ,  the T-maturity forward price on electricity at time t. Respectively, the T-

maturity forward price on gas at time t is ( )TtS g , . By allowing T to vary from t to τ  we get forward 

curves [ ] +→⋅ Rτ,:),( ttSe  and [ ] +→⋅ Rτ,:),( ttS g  for electricity and gas. Seasonality of electricity and 

gas causes cycles and peaks in the forward curves. 

The value of a gas fired power plant is determined by the spark spread. Spark spread is defined as the 

difference between the price of electricity and the cost of gas used for the generation of electricity. 

Thus, the T-maturity forward price on spark spread is 

  ),(),(),( TtSKTtSTtS gHe −= , (1) 
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where parameter HK  is the heat rate. Heat rate is the amount of gas required to generate 1 MWh of 

electricity. Heat rate measures the efficiency of the gas plant: the lower the heat rate, the more efficient 

the facility. The efficiency of a gas fired power plant does not vary much over time. Thus, the use of a 

constant heat rate is plausible. Note that the value of the spark spread can be negative as well as 

positive. 

The absence of arbitrage assumption guarantees existence of an equivalent martingale measure Q. 

Under the martingale measure Q all expected rates of return equal the risk-free interest rate (see e.g. 

Schwartz, 1997). The value of a forward contract when initiated is defined to be zero. Thus the T-

maturity forward price on spark spread at time t is 

  [ ]t
Q FTSETtS |)(),( = , (2) 

where )(TS  is the spark spread at time T. Thus, the dynamics of the spark spread process under the 

pricing measure Q can be can be inferred from forward prices. When long-term commodity projects are 

valued, models with constant convenience yield give practically the same results as models using 

stochastic convenience yield (see e.g. Schwartz, 1998). Motivated by this, we ignore the seasonality in 

the spark spread and use the long term average as a price process. The following assumption gives the 

dynamics of the spark spread process. 

ASSUMPTION 2. The spark spread has following dynamics 

  )()( tdBdttdS σα +=  (3) 

where α  andσ  are non-negative constants and )(⋅B  is a standard Brownian motion on the probability 

space ),,( QFΩ , along with standard filtration [ ]{ }TtFt ,0: ∈ . 

Assumption 2 states that changes in spark spread are normally distributed with mean dtα  and 

variance dt2σ . As the spark spread values are normally distributed the values are not bounded. Thus 

spark spread can be negative as well as positive. Commodity forward prices tend to have time 
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structured volatility reflecting the mean reverting nature of spot prices (see e.g. Schwartz, 1997). For 

simplicity we ignore the time structure in the volatility and use the long term average volatility. The 

estimation of drift and volatility from forward prices will be considered in Section 4. 

The following assumptions give the operational characteristics of the gas plant. 

ASSUMPTION 3. Ramp ups and ramp downs of the plant can be done immediately. The costs associated 

with starting up and shutting down can be amortized into fixed costs. The lifetime of the power plant is 

assumed to be infinite. 

In a gas fired power plant the operation and maintenance costs do not vary much over time and the 

response times are in the order of several hours. Usually, the life time of a gas fired power plant is 

assumed to be around 25 years. Upgrading and reconstructions can increase the lifetime considerably. 

Thus, we assume that the plant is more flexible than it really is, but for efficient plants such as this one 

the error will be small, judging by the results in Deng and Oren (2003). 

We consider an investor having a license to build a gas plant. In order to keep the license alive the firm 

faces constant payments W due to salaries etc. The investor can build the plant at any time, thus the 

license can bee seen as a perpetual American call option. Perpetual options have a constant threshold 

value HS  under which exercising is not optimal. Once the spark spread exceeds the threshold value 

HS , building becomes optimal. The option to invest 0F  must satisfy the following Bellman equation 

  [ ] H
Q SSwhenWdtdFEdtrF ≤−= 00 , (4) 

where QE  is the expectation operator under the pricing measure Q. For simplicity risk-free interest r is 

assumed to be constant. Itô’s lemma gives following differential equation for the option value 

  HSSwhenWrF
S
F

S
F

≤=−−
∂
∂

+
∂
∂

0
2
1

0
0

2
0

2
2 ασ . (5) 
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Once the option to build has been exercised the investor has a power plant, which will be ramped down 

whenever emission costs E exceed spark spread (i.e. E > S(t)). Moreover, the investor can always 

abandon the plant and realize the salvage value of the plant. As the lifetime of the plant was assumed to 

be infinite, there is a constant threshold value LS  for the abandonment. The value of the plant 1F  

consists of three terms: the present value of operating cash flows, the value of the option to ramp down, 

and the value of the option to abandon. The value 1F  must satisfy the following Bellman equation 

  [ ] L
Q StSwhendtGEtSCdFEdtrF ≥






 −−+= + )())((

_

11 , (6) 

where +− ))(( EtS  denotes )0,)(max( EtS − . 
_

C  is the capacity of the plant. For simplicity, we assume 

that the emission and fixed costs G are constant. Uncertainty in emission costs E will be considered in 

Section 4. By using Itô’s lemma we get that the value of the plant 1F  must satisfy following differential 

equations 

  ESwhenGESCrF
S
F

S
F
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  LSSEwhenGrF
S
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2 ασ . (8) 

In addition to differential equation (5) the option to build 0F  must satisfy following boundary 

conditions 

  0)(lim 0 =
−∞>−

SF
S

 (9) 

  ISFSF HH −= )()( 10  (10) 

  
S
SF

S
SF HH

∂
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=
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∂ )()( 10 . (11) 
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Equation (9) arises from the observation that as the value of the spark spread decreases the option to 

build should become valueless. The value-matching equation (10) follows from the fact that when the 

option is exercised the values lost should be equal to value gained. The investment costs are denoted by 

I. The smooth-pasting condition (11) states that also the derivatives of the values must match when the 

option is exercised. For an intuitive proof of smooth-pasting condition see Dixit and Pindyck (1994) 

and for a rigorous derivation see Samuelson (1965). 

In addition to differential equations (7) and (8) the value of the plant 1F  has following boundary 

conditions 

  ( ) dtGEtSCeSF rt

SS ∫
∞

+−

∞>−∞>−






 −−+=

0

_

1 lim)(lim α  (12) 

  DSFSF LL += )()( 01  (13) 

  )(lim)(lim 11 EFEF
ESES ↑↓

=  (14) 

  
S
SF

S
SF LL

∂
∂

=
∂

∂ )()( 01  (15) 

  
S
EF

S
EF

ESES ∂
∂

=
∂

∂
↑↓

)(
lim)(lim 01 . (16) 

Equation (12) states that as the value of the spark spread increases the value of the plant should 

approach the net present value of the plant. When spark spread is large it is very unlikely that the spark 

spread will decrease to a level where it is optimal to ramp down or abandon the plant. The value-

matching condition must hold when it is optimal to exit the market, as well as when it is optimal to 

ramp up or down. In equation (13) the salvage value of the plant is D. Equations (15) and (16) are the 

smooth-pasting conditions. 

To summarize: we have derived three partial differential equations (equations (5), (7), and (8)) and 

eight boundary conditions (equations from (9) to (16)) for the values 0F  and 1F . 
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3 Solution method 

Generally a solution to a partial differential equation is a linear combination of two independent 

solutions plus any particular solution. Let us start with the option to build 0F . The solution of the 

partial differential equation (5) is of the form 

  
r

WSASASF −+= )exp()exp()( 22110 ββ , (17) 

where 1A  and 2A  are unknown parameters. 1β  and 2β  are the roots of the fundamental quadratic 

equation 

  0
2
1 22 =−+ rαββσ , (18) 

which are 

  02
2

22

1 >
++−

=
σ

σααβ r  (19) 

  02
2

22

2 <
+−−

=
σ

σααβ r . (20) 

In order to satisfy boundary condition (9) the parameter 2A  must be zero. Thus, the value of the option 

to build is 

  
r

WSASF −= )exp()( 110 β . (21) 

Similarly, we get for the value of the plant 

 ESwhen
r

C
r

GECS
r
CSBSBSF ≥+

+
−++= 2

___

22111 )exp()exp()( αββ  (22) 

 LSSEwhen
r
GSKSKSF ≥≥−+= )exp()exp()( 22111 ββ .  (23) 
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The particular solution in equation (22) is equal to the net present value of an operating gas plant, i.e.  

 ESwhen
r

C
r

GECS
r
CdtGEtSCe rt ≥+

+
−=





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_

)( αα .  (24) 

Thus, due to the boundary condition (12) the general solution in equation (22) must approach zero as S 

increases (i.e. 01 =B ). We get for the value of the plant 

 









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r
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___

22
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. (25) 

We assume that the investment and variable costs satisfy following natural conditions 

  ID <  (26) 

  GW < . (27) 

When the investment and variable costs are realistic (satisfy conditions (26) and (27)) it is never 

optimal to build a plant if it is not optimal to use it. Thus the threshold to build the plant must exceed 

emission costs, i.e. 

  HSE ≤ . (28) 

Moreover, the threshold value to build the plant must be bigger than the threshold value to abandon, 

i.e. 

  HL SS ≤ . (29) 

The inequalities (28) and (29) state that either 

  HL SES ≤≤  (30) 

or 

  HL SSE ≤≤ . (31) 
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In the case of inequality (30) the emission costs are greater than the threshold value to abandon. Thus, 

if the investor has built the plant and the spark spread is between emission costs and threshold value to 

abandon it is optimal to hold the plant idle. In the case of inequality (31) the threshold value to 

abandon is greater than emission costs. Thus, the option to ramp down the plant is valueless. In other 

words, it is optimal to abandon before it is optimal to ramp down the plant. The value-matching and 

smooth-pasting conditions (10), (11) and (13)-(16) give following six equations for six unknown 

parameters ( HS , LS , 2B , 1A , 1K , 2K ) when inequality (30) holds 

  I
r

C
r

GECS
r
CSB

r
WSA HHH −+

+
−+=− 2

___

2211 )exp()exp( αββ  (32) 

  
r
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By eliminating 2B , 1A  and 2K  from equations (32)-(37) we get following two equations for the 

threshold values 
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where  
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The value-matching and smooth-pasting conditions (10), (11) and (13) - (16) give following four 

equations for four unknown parameters ( HS , LS , 2B , 1A ) when the option to ramp down is not 

needed, i.e. inequality (31) holds 
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By eliminating 1A  and 2B  from the equations (43) - (46) we get following two equations for the 

threshold values. 
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where 

  
r
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r
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_

1
α .   (49)  

To summarize; the threshold values are found either by equations (38), (39) and inequality (30) or by 

equations (47), (48) and inequality (31). In the case that the solution is found by equations (38) and 

(39) it is optimal to ramp down the plant before it is abandoned. If the solution is given by equations 

(47) and (48), the option to ramp down is not needed. Neither of the cases can be solved analytically, 

but a numerical solution can easily be attained. 

4 Application 

Norwegian energy and environmental authorities have given three licenses to build a gas fired power 

plant. All potential plants are situated along the western coast of southern Norway. In this section we 

illustrate our framework by taking the view of an investor having one of these licenses. 

The example consists of four parts. First, we introduce the data used for the valuation including 

methods to estimate the parameters from the data. Second, we calculate threshold values to build and 

abandon the plant. The threshold values are compared to the threshold values calculated with 

discounted cash flows. The sensitivity of the threshold values to some key parameters are illustrated in 

part three. In the final part we study the effects of carbon emission costs to the installation of CO2 

capture technology. We assume that a plant with CO2 capture technology does not face emission costs. 
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The costs of building and running a combined cycle gas plant in Norway are estimated by Undrum, 

Bolland, Aarebrot (2000). We use an exchange rate of 7 NOK/$. Table 1 contains a summary of the 

parameters needed for our model. 

Table 1: The gas plant parameters 

Parameter W  
_
C  G  I  D  

Unit MNOK/year MMwh/year MNOK/year MNOK MNOK 

Value 2.5 3.27 50 1620 570 

 

Let us make few comments on the parameters. Undrum, Bolland, Aarebrot (2000) estimate that 

building a natural gas fired combined cycle power plant in Norway costs approximately 1620 MNOK, 

and that the maintenance costs G are approximately 50 MNOK/year. We estimate that the costs of 

holding the license W are 5% of the fixed costs of a running a plant. In Undrum, Bolland, Aarebrot 

(2000) approximately 35% of the investment costs are used for capital equipment. We assume that if 

the plant is abandoned, all the capital equipment can be realized on second hand market, thus we 

assume that D is 570 MNOK. The estimated parameters are for a gas plant whose maximum capacity is 

415 MW. We assume that the capacity factor of the plant is 90%. Thus the production capacity is 3.27 

MMWh/year. 

The drift parameter α  in the spark spread process is estimated with linear regression from electricity 

and gas forward prices. For electricity, long term prices from Nord Pool and 10-year contracts traded 

bilaterally are used. For natural gas we use data from International Petroleum Exchange (IPE). Gas 

prices are adjusted by the heat rate so that a unit of gas corresponds to 1 MWh of electricity generated. 

The efficiency of a combined cycle gas fired turbine is estimated to be 58.1% (see Undrum, Bolland, 

Aarebrot, 2000). 
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For the estimation of the volatility parameter σ  the correlation between the spot price of electricity 

and gas in the period 1998-2001 was estimated at 0.53. The estimation of electricity and gas forward 

volatilities is based on data from Nord Pool and IPE from 1997 to 2001. The one year average forward 

volatilities were 0.1 for electricity and 0.2 for gas. 

Table 2 contains estimates for the spark spread process parameters and the risk-free interest rate. The 

interest rate is quite high, but the long term average interest rate in Norway is approximately 6%. 

Commodity forward prices under stochastic interest rate have been studied for example in Schwartz 

(1997). 

Table 2: Spark spread process parameters 

Parameter α  σ r  

Value 0.16 28 6% 

 

The long term average spark spread was estimated to be approximately 19 NOK/MWh. The expected 

spark spread values with 68% confidence level are illustrated in Figure 1. 

[Figure 1 about here] 

Table 3 contains threshold values HS  and LS  computed when emission costs are assumed to be zero 

(i.e. E = 0). The solution is found with equations (38), (39) and with inequality (30). Thus, with the 

given parameters it is optimal to ramp down the plant before abandoning. Threshold values DCF
HS  and 

DCF
LS  are calculated with discounted cash flows. The upper threshold value DCF

HS  is calculated by 

setting the difference of expected cash flows before and after investment equal to investment costs. The 

lower threshold value DCF
LS  is calculated by setting the difference of expected cash flows before and 

after abandonment equal to salvage value. 
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Table 3: Threshold values 

Variable LS  HS  DCF
LS  DCF

HS  

Value -39 NOK/MWh 95 NOK/MWh 22 NOK/MWh 42 NOK/MWh 

 

The optimal threshold values calculated using real options approach differ considerably from values 

calculated using traditional discounted cash flow method. Uncertainty makes waiting more favorable 

(see e.g. Dixit and Pindyck, 1994). Thus, uncertainty increases threshold value to build the plant and 

decreases threshold value to abandon the plant. Deng, Johnson, and Sogomonian (2001) find that the 

value of a gas power plant calculated with a simple spark spread valuation method is over six times the 

value calculated with a discounted cash flow method. Note that the discounted cash flow approach 

suggests that it is optimal to abandon the plant with current spark spread. With real options method the 

current value of spark spread is almost equally distant from the threshold values. 

The upper picture in Figure 2 illustrates the values 0F  and 1F  as a function of spark spread. Also the 

threshold values are shown. Note that )(1 LSF  exceeds )(0 LSF  by the resale value of the equipment (D 

= 570 MNOK) and )(0 HSF  is 1620 MNOK below )(1 HSF , corresponding to the investment costs. 

Incremental values for building a plant (i.e. 1F  - 0F ) are presented in the lower picture of Figure 2. 

Incremental values illustrate how much more valuable an investor with a plant is compared to a firm 

with just the license to build. Note the tangency to the horizontal lines I and D caused by the smooth 

pasting conditions. 

[Figure 2 about here] 

Next we study how the threshold values change as a function of some key parameters. In Figure 3 the 

threshold values as a function of volatility σ  are illustrated. 
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[Figure 3 about here] 

The gray parts in the threshold lines are given with equations (38), (39) and the black parts with 

equations (47), (48). When the lines are gray the option to ramp down the plant has no value, while for 

the black parts the ramp down option has value and may thus be exercised. If volatility is less than 11 

the option to ramp down the plant is valueless. In Figure 3 additional uncertainty increases the 

threshold value to build a plant, but at the same time the threshold value to abandon the plant 

decreases, i.e. uncertainty makes waiting more favorable (see e.g. Dixit and Pindyck, 1994). Note that 

when the uncertainty in spark spread process approaches zero the threshold values converge to the 

DCF values in Table 3. 

Figure 4 illustrates threshold values as a function of emission costs. In Figure 4 the unit of emission 

costs is NOK/MWh. Usually the unit for emission costs is $/ton. The CO2 production of a gas fired 

power plant is 363 kg/MWh, thus with an exchange rate of 7 NOK/$ an emission cost of 10 NOK/MWh 

corresponds 3.94 $/ton. 

[Figure 4 about here] 

In Figure 4 threshold values increase linearly as a function of emission costs. Moreover, the slope is 

one. If the emission costs are increased by one NOK/MWh both threshold values are also increased by 

one NOK/MWh. This is a consequence of a normally distributed spread process. Change in emission 

costs can be seen as a change in initial value of the spread process. 

Even though we have used constant emission costs, there is great amount of uncertainty in emission 

costs. The uncertainty in emission costs can be seen as an additional uncertainty in the spread process. 

Thus, uncertainty in emission costs increases the threshold value to build the plant and decreases the 

threshold value to abandon. 
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Undrum, Bolland, Aarebrot (2000) evaluate different alternatives to capture CO2 from gas turbine 

power cycles. They estimate that costs to install equipment to capture CO2 from exhaust gas using 

absorption by amine solutions are 2140 MNOK. Thus, the costs of a gas power plant with CO2 capture 

technology are 3760 MNOK. Figure 5 illustrates threshold values as a function of investment costs 

when the salvage value is 35% of the investment costs (i.e. D = 0.35I). Thus, the resale value of a plant 

with CO2 capture technology is 1316 MNOK. We have ignored the reduced efficiency of the plant 

when the greenhouse gas capture equipment is in place. 

[Figure 5 about here] 

In Figure 5 the threshold value to build a gas turbine with CO2 capture equipment is 146 NOK/MWh. 

Figure 4 indicates that once the emission costs are 51 NOK/MWh the upper threshold value for a plant 

without CO2 capture equipment is 146 NOK/MWh. By assuming that all emission costs are caused by 

CO2 we get that it is optimal to install the CO2 capture equipment when emission costs are larger than 

20.1 $/ton (i.e. 51 NOK/MWh). 

The current estimate is that emission costs will be somewhere between 5$/ton and 20$/ton, where the 

lower range is most likely. When emission costs are 8 $/ton threshold value to build a plant without 

CO2 capture equipment is 115 NOK/MWh. As is calculated earlier the upper threshold value for the 

plant with CO2 capture equipment is 146 NOK/MWh. The upper threshold value for a plant with CO2 

capture equipment is 115 NOK/MWh if the investment costs are lowered to 2550 MNOK. Thus, if 

companies building a gas plant with CO2 capture equipment are subsidized with 1210 MNOK it is 

optimal to build gas plants with such equipment. 

5 Discussion 

Our results indicate that even with zero emission costs it is not optimal to exercise the option to build a 

gas fired power plant. Regardless, the reality may be different. Some of the three firms holding a 
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license to build gas fired power plant have stated publicly that they are willing to invest if the 

government relieves them of emission costs. There are several possible explanations why our results 

differ from the apparent policies of the actual investors. 

First, we have ignored the effects of competition between the firms holding the license. The preemptive 

effect of early investment gives the license holders an incentive to build the plant (see e.g. Smets, 

1991). 

Secondly, we have used the UK market as a reference for gas. There is lot of natural gas available in 

the Norwegian continental shelf. Due to the physical distance from the Norwegian coastline to the UK, 

the gas price at a Norwegian terminal will be equal to the UK price less the transportation costs. By 

using price quotas from IPE we overestimate the gas price for delivery at a Norwegian terminal. 

There is also a tax issue that has not been considered. Oil and gas companies operating on the 

Norwegian shelf have a 78% tax rate, while onshore activities are taxed at 28%. If an oil company 

invested in a gas power plant, it could sell the gas at a loss with offshore taxation, and buy the same gas 

as a power plant owner with onshore taxation. 

We have also calculated the value of a CO2 capture plant attached to the gas fired power plant. We 

found that if the emission costs are over 20.1 $/ton it is optimal to install such an equipment. When 

emission costs were assumed to be 8$/ton building of a gas fired power plants with CO2 capture 

equipment is optimal if companies building such a plant are subsidized with 1210 MNOK. 

6 Conclusions 

We use real options theory to analyze the investment in a gas fired power plant. Our valuation is based 

on electricity and gas forward prices. We have derived a method to compute threshold values for 

building and abandoning a gas fired power plant when the plant can be ramped down if it turns to be 
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unprofitable. Normally it is optimal to ramp down the plant before abandoning, while sometimes it is 

optimal to abandon a running plant directly. 

In our example we take a view of an investor having a license to build a gas fired power plant in 

Norway. The example is based on forward prices from Nord Pool and International Petroleum 

Exchange (IPE). Our results indicate that the investors should wait and hope the electricity prices go up 

or gas prices go down before they commence the power plant project. Our numerical results also 

indicate that with current estimates of emission costs it is not optimal to attach a CO2 capture plant to a 

gas plant. 
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Figures 

Figure 1: Spread process  

Figure 2: Option values 

Figure 3: Threshold values as a function of volatility 

Figure 4: Threshold values as a function of emission costs 

Figure 5: Threshold values as a function of investment costs 
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