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Real Options Lesson: Learn Before You Act 
 

 
 

 
Abstract 

 
 

We study the interaction between learning (reduction of parameter uncertainty under 
conditions of incomplete information) and direct value-enhancing (control) actions 
before irreversible investment decisions are made. This framework allows the study of 
interactions between marketing research and advertisement (or product redesign or 
repositioning), basic research or exploration actions and product attribute or quality 
enhancing actions, etc. The framework also allows the analysis of optimal timing of such 
actions, optimal timing of introduction of pilot projects, early development of the 
complete project and abandonment options. We provide analytic formulas for compound-
growth (pilot project) options with embedded control and learning actions under the 
assumption that project value follows either diffusion or a jump diffusion process. For 
complex multistage problems with path dependent actions, we develop a numerical lattice 
based model. We apply the models to the case of new product development and we 
illustrate the importance of engaging in learning actions prior to value-enhancing 
actions and development.  
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I. Introduction 
 
Apart from the project value estimated through the traditional Net Present Value (NPV) 
method, many investment projects have additional value that arises from managerial 
flexibility to wait and react under uncertainty. This option value of waiting has been 
studied extensively in the real options literature (see for example McDonald and Siegel, 
1986). In the present paper we also incorporate another source of value arising from 
active management actions to enhance project value by learning or control actions. 
Learning options prior to investment include investments in marketing research, R&D or 
exploration activities and pilot projects. These actions reduce uncertainty about the true 
potential of a project enabling management to have valuable information before 
irreversible investment is undertaken. The firm may also engage in direct value-
enhancing (control) actions like advertising or efforts to improve the attributes or the 
quality of a product. These actions are targeting to an increase in project value albeit with 
a random outcome. 
 
We develop analytic formulas for compound-growth options with embedded learning and 
attribute improvement control actions. Our analytic model includes Geske (1979) as a 
special case. We similarly provide formulas for the case where the underlying asset 
follows jump diffusion with multiple sources of jumps. The analytic formulas are then 
employed to show how learning and control actions affect the value of an investment 
opportunity and what determines the final choice between alternative costly controls or 
learning actions with different characteristics. The numerical results are interpreted in the 
context of new product development showing the importance of marketing research, 
attribute or quality improvement actions, advertisement, building pilot projects, etc. 
 
Real life investment problems include multiple stages decisions with the potential for 
early development, optimal timing of actions, and interactions between learning and 
control actions. For these reasons we extend the analysis by developing a numerical 
model that can be used for the evaluation of such complex cases with path dependencies. 
The numerical model can accommodate both the pure diffusion and jump diffusion 
assumption regarding project value. Numerical results are provided that are interpreted in 
the context of new product development showing the importance and optimal sequence of 
marketing research, attribute or quality improvement actions, advertisement,  building 
pilot projects, etc. 
 
 
II. The value of learning and control: Analytic formulas 
 
In this section we provide analytic solutions for European options and compound-growth 
options with embedded learning or control actions. The results are given for both pure 
diffusion and jump diffusion processes with multiple classes of jumps.  Specifically 
under a pure diffusion process with i AN,...,2,1=  optional learning or control actions, 
project value follows a risk neutral process of the form: 
 

 3



ii dqkdzdtr
S

dS
++−= σδ )(                                                                                             (1) 

 
Under jump diffusion process we also allow for  independent jump classes (sources of 
jumps), so the stochastic process is described by: 
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Parameter r denotes the risk free rate, δ is the opportunity cost of waiting (foregone profit 
flows for not developing early), σ is the standard deviation of the rate of change of the 
state variable, dz is an increment to a standard Wiener process describing the exogenous 
uncertainty of the state variable,  is a random variable that represents the effect on 
project returns of  a control or learning action,  is a  control variable that takes the 
value one if the control is activated and zero if not. For the jump diffusion case we have 
additionally the impact  of j=1,2,…,N

ik

idq

jk j jumps and jdπ  denotes a Poisson process with 
frequency of arrival jλ  per year. We assume that controls and jumps have firm specific 
risks which are uncorrelated with the market portfolio and thus not priced.  
 
For practical reasons we assume that the effect of control actions and jumps are log-
normally distributed. Each control or learning action has impact 1+  that follows: ik
 

( )5.02 )1))(exp(exp(),exp(log~1 −+ iiii Nk σγγ                                                               (3) 
 
The assumption of log-normally distributed controls is adopted for convenience only, 
since it allows non-negative asset values, and also, conditional on control activation asset 
values retain the distributional properties. The characteristics of randomly arriving jumps 
are similarly defined. We will use ),( ii σγ to denote characteristics of control or learning 
actions and (   to denote the characteristics of randomly arriving jumps, with j = 
1,2,…,N

), 2
jj σγ

j jump classes. We use 0>iγ  to describe efforts to enhance value with random 
outcome and 0<iγ  for control actions to reduce costs. The special case of 0=iγ  with 

 is methodologically only similar to the control case. Conceptually it differs and it 
is used to capture learning (elimination or reduction of parameter uncertainty) about the 
true project value. 

02 >iσ

 
We then use risk neutral pricing as established in Constantinides (1978), Harrison and 
Pliska (1981), and Cox, Ingersoll, and Ross (1985). We also incorporate δ  as an 
opportunity cost of waiting that should be deducted from the equilibrium-required rate of 
return (see McDonald and Siegel, 1984). The variable δ may also be used to model 
exogenous competitive erosion to the project’s cash flows (e.g., Childs and Triantis, 
1999, and Trigeorgis, 1996, ch.9). Consistent with Merton (1976) for the jump diffusion 
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case we also subtract the expected impact of jumps from the drift so that we keep the 
equilibrium returns unchanged. The risk neutral distribution of S at time T conditional on 
the activation of a control for the pure diffusion is given by:  
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The distribution conditional on no activation of control is found by setting .  02 == ii σγ
 
The risk neutral distribution of S at T conditional on the activation of a control for the 
jump diffusion conditional on the realization },...,,{ 21 jNnnnn = of jumps is given by: 
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Using the risk neutral expectation approach we now price compound-growth options. We 
consider the general case of a compound-growth option with two sequential controls, 
(optionally) activated at t  and/or at the intermediate date t0= 1t= . The first control k  
has mean impact and variance of impact characteristics (γ

0

0, 0σ ) and can be activated at 
at a cost , and the second control ( k ) has distributional characteristics (γ0=t 0X 1 1, 1σ ) 

and can be activated at t  at a cost . When the compound call option is exercised, 
option holder gets the option to acquire S for X

1t= 1X
2, plus cash equal to a fraction of S equal 

to mS. The parameter m denotes the cash flows derived through the built up of a pilot 
project at t1. The value of the compound option conditional on the activation of control 

 at is given by: 0k 0=t
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The value of the option assuming  is not activated at  0k 0=t  is denoted by C and is 
given by setting 000 == σγ . The unconditional option value of the project with the two 
embedded optional controls equals ( )CXkC ,)|(. 00max − . The compound call option of 
Geske (1979) is a provided as a special case by setting 0110 ==0 == σγσγ ,  = 0, 
and . The results can be easily extended to the multiperiod sequential case, 
providing Carr (1988) as a special case.  

0X
0=m

 
As in Geske, the critical value  is found by solving numerically the equation: *S
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In the case where project value follows jump diffusion with jNj ,...2,1=  sources of 
jumps with impact jγ and volatility jσ , and like before there exist two controls at 0=t  
and , the compound-growth option conditional on activation of control action at 

 is given by: 
1tt =

0=t
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In the case of jump-diffusion we weight the value of the compound option with the 
probabilities of occurrence of all combinations of jumps that can be realized until ,  1t
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Like before the critical value  is found by solving numerically the equation: *S
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The analytic solutions for the European compound-growth call on put, put on call and put 
on put are similarly derived and provided in the appendix. Similarly with Carr (1988), we 
can allow the exercise price X to be stochastic and follow a geometric Brownian motion 
process, as long as all costs related to option exercise or activation of learning and control 
actions are constant fractions of the same stochastic asset X. This is feasible due to the 
multiplicative nature and the lognormal distribution of both, the randomly arriving jumps, 
and the learning and control actions. 
 
We now discuss the optimal choice of controls. We note that there are two issues 
regarding the choice of controls, first the intertemporal choice for the same control 
(optimal timing) and second the choice between controls with different characteristics. 
The decision for the optimal timing of learning and control actions should weight the 
value and the opportunity cost of waiting against the value of early development. The 
analytic formulas for the compound option do not capture the effect of early exercise, an 
effect we will consider in the next section using a numerical model that captures also the 
optimal timing of learning and control. Regarding the second issue we shall investigate it 
further by concentrating on the joint effect of mean impact and volatility of controls. The 
choice between a control or learning action with certain characteristics over another 
control or learning action is made by a comparison of the option´s conditional value after 
subtracting the extra cost. Figure 1 shows the marginal effect of control parameters γ and 
σ for different levels of S (i.e. the degree of moneyness of the option) for a simple call 
option. The figure shows that the impact of the variables is significant for the levels of S 
that are at the money. The effect of γ starts to be important at the region that the option is 
at the money and continues to grow in importance as S gets higher, while kσ  is most 
important for the at the money range.   
 

[Insert figures 1 and 2] 
 
Figure 2 elaborates on the comparison of option values with embedded actions at the 
second exercise point  of the compound option, by comparing the value of a simple call 1t
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option as a function of S for two possible controls. The first is a control action with 
positive impact and volatility and high cost and the second is a learning action. We 
observe that the process of choosing between control actions is highly sensitive to the 
cost and the distributional characteristics of actions, and optimal decisions may differ at 
different levels of S. Figure 3 completes the analysis of choice between control actions by 
showing the joint effect of the mean impact and volatility of control options for a 
compound option. 
 

[Insert figure 3] 
 
The results show that for a given volatility of control, the effect of mean impact on the 
value of compound option grows significantly. For a given mean impact, the effect of 
increasing the volatility of control on the value of the compound option is less significant. 
Panels a, b, and c show that as the option gets more in the money, the marginal benefits 
of increasing the mean impact or volatility of control are reduced.  
 
 
 
III. A sequential numerical model with interacting learning and control actions 
 
Now we consider an extended version of the investment problem discussed earlier to 
allow for multiple stages, multiple interacting learning and control actions with path 
depedency, growth options, abandonment options and early development in a unified 
framework. We discuss a numerical method that can be used to evaluate these complex 
cases.  
 
Assume that the option to invest expires at maturity T, the terminal date where the firm 
should decide whether to pay X and acquire the value S of the project or abandon. Like 
before assume that we have  control actions available and for the case of jump 
diffusion process that we also have  sources of randomly arriving jumps. Control 
actions can be either learning or actions to enhance value and can be activated 
sequentially at the discrete decision points. In the more general case that we will consider 
the control actions can be interacting, so that the sequence of actions will affect the 
distributional characteristics of learning and control actions. Note that randomly arriving 
jumps are completely exogenous and occur with yearly frequencies

cN

jN

jλ . We will also 
allow for early exercise of development option thus creating a semi-American option 
setting.  
 
Furthermore consider a discretization of the time to the option maturity T to  equally 

spaced decision points, with
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s

s

N
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T
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N
Tt
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denote the corresponding time of actions with 1+sN  to be the terminal decision point at 
time T. We denote m  the mode or decision of control or inaction (idleness). The set of 
actions is as follows: A control (or learning) action is denoted by  so that the set of 

t

iC

 9



controls is { . The initial starting point is defined as “wait” (W). This will 
be used for other periods before any control actions are activated to denote the state of 
idleness. The idle mode after a control is denoted by W  so in general we will also have 
{W

}...,, ,21 cNCCC

cN

i

1, W2,…,W } . The latter set of modes is used to keep information on the prior 
actions that have already been activated. Finally we have two terminal boundary 
conditions, an early exercise of development mode (EE) and the abandonment mode 
potentially for capital recovery (A) or zero. We emphasize that modes {EE, A} are 
absorbing states. At exercise mode (EE) the firm gets S – X while in the A mode the firm 
recovers a percentage α of past investment in controls. We also allow for the option to 
acquire a fraction m of the project value before final development (pilot project). 

),( ihγ
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We assume that controls and jumps are log-normally distributed with distributions 
specified in (3).We further consider that the distributional characteristics of these control 
actions depend on the sequence in which they are activated, conditional on all relevant 
information for the previous actions. For this reason we will use when needed the more 
general specification and ),( ihσ  for the description of the impact and volatility of 
control, conditional on the previous state h.  
 
With activation of action  at t, log-returns for the pure diffusion process will 
follow: 

it Cm =
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For the jump diffusion case the conditional on the realization of },...,,{ 21 jNnnnn = jumps 

thus log-returns follow: 
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In the cases where no control is activated, ,{t Wm = , we have  
regardless of the previous action h.  

0),(),( 2 == ihih σγ

 
The information regarding the expected impact and volatility of controls will be 
determined by the sequence (path) in which the controls are being activated. The use of 
this approach can be illustrated by a specific example. Interpreting C2 to be an expensive 
advertising campaign it is reasonable to assume a different (potentially higher) impact for 
this action if it is activated directly from W, denoting this impact γ(W,C2), rather than if 
another campaign C1 was already in place, making the new action alone, γ(C1,C2), a less 
effective one (although the complete sequence might be more effective than any 
individual action). Note also that we may allow the cost of each control action to be path 
dependent. We define the information regarding the path dependency of controls’ costs in 
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a matrix where we define the costs that need to be paid for switching from decision 
h to i.  

),( ihx

 
For example if we interpret C1 to be an accelerated control strategy of high impact then 
x(W,C1) denotes it’s cost. If additionally we assume that {C2,C3} are the first and second 
of two sequential investments in controls with outcome comparable to that of the first 
control, then total costs might differ from x(W,C1) due for example to learning by doing 
(we will consider such a case in the numerical results), etc. An additional use of 
switching costs is to disable some actions or a specific action sequence. For example, to 
disable control action C4 directly from the initial wait mode we can set x(W,C4) = inf. 
 
When studying problems of path-dependency with many alternative courses of action, it 
is important to check the logical-consistency (or economic-consistency) of the switching 
matrix for costs, impact, and volatility of actions. If for example C1 and the sequence 
{C2,C3} are mutually exclusive alternatives, we should compare X(W,C1) with X(W,C2) + 
X(C2,C3). If X(W,C1) > X(W,C2) + X(C2,C3) it implies cost efficiencies achieved due to 
learning by doing. The opposite, X(W,C1) < X(W,C2) + X(C2,C3), would imply scale 
efficiencies. We must similarly investigate the switching matrix for the impact, and for 
the volatility of controls. 
 
 
The numerical solution framework 
 
We allow decisions to be made sequentially at ∆t (assumed for simplicity equal) 
fintervals. We define V  the conditional payoff the firm gets under decision m(.)tm

X

t = i. 
This payoff is a function of the level of cash flows S at that decision point, the 
characteristics of available controls, the development cost X, the switching (path-
dependent) control costs , the recovery rate α for the case of abandonment 
options, pilot project with cash flows a constant fraction m of S, etc. There is a superset M 
that includes all information about admissible actions, action sequences, their 
distributional characteristics, and the values for all option parameters. At each time t, 
there is a (stochastic) subset M  that describes the history of actions up to time t, and a 
(similarly stochastic) subset  that defines the remaining admissible actions and 
relevant parameter values. 
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More specifically, we wish to maximize the value of the investment by making the 
optimal pre-investment learning/exploration and/or control actions: 
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Finally, at the last decision point 1+sN  at t = T, the optimal values are given by the 
terminal condition: 
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m MMMSaXSMMMTSV T           (11e) 

 
 
We can see that equations (11) incorporate path dependent costs (and of course path-
dependent impact and volatility of impact), early development options and abandonment 
options to recover a fraction α of the total investments in controls and pilot projects. 
Expectation when is taken with respect to the distribution of log-
returns that depend on the specification chosen for the exogenous process including the 
impact of controls; and for the case of no control with 

},...,,{ 21 cNt CCCm ∈

},...,,,{ 21 cNt WWWWm ∈ , 
expectation is taken excluding the the impact of controls. Note further that for 

 the expectation operator returns zero (these are terminal/absorbing states 
with no feasible continuation of decisions). 

{ AEEmt ,∈ }

 
In the case of jump diffusion, equations (11b), (11c), and (11e) stay the same, and we 
have the following adjustments to equations (11a) and (11d): 
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(11’d) 
 
We note that for the jump diffusion case the expectations should be taken over all 
possible realizations of jumps, weighted by the probability of occurrence as the term 

 demonstrates.  





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
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∑ ∑
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In order to find project value at t = 0, we should note that value functions in equation 
(11) should be evaluated for each decision mode, at each decision point in time and for 
each state of the underlying asset S. Due to the presence of path dependency, V  cannot 
be evaluated in the usual backward solution method of dynamic programming. Instead, 
we must take into account all alternative combinations of actions and paths of the state-
variable.  We thus implement a forward-backward looking algorithm of exhaustive search 
(alternatively, see Hull and White, 1993, or Thompson, 1995), and the optimal decision 
will determine today’s option value. For the jump diffusion case the number of 
calculations that need to be performed for multistage problems can be very large and thus 
available computational power puts a restriction on the stages that can be evaluated when 
jump frequencies are high. For many applications, it is reasonable to assume low 
frequency of jumps (truly “rare” events), reducing thus the number of computational 
requirements substantially to a manageable degree. 

*
im

 
In order to evaluate the expectation operator defined in equations (13) we need a 
discretized state-space and we thus use a numerical lattice scheme. From equation (10) 
and (11) the underlying asset S has a lognormal distribution between decision points. We 
approximate this distribution between steps with a binomial lattice with  number of 
steps, with total number of steps N equal to . The conditional volatilities 

 between decision points for the pure diffusion are:  

subN

subs NN

),(2
ttt mmv ∆+

 

 
s

ttt

sub

sub
ttt N

mm
N
T

mm
),(

),(
2

22 ∆+
∆+ +=

σ
σv ,           (15)  

for m  },...,,{ 21 cNt CCC∈
 
while for the jump diffusion conditional on the realization of  ),...,,( 21 jNnnnn = jumps 

we have:  
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The specification in (15) allocates the volatility of control actions and jumps to  

points for a total uncertainty of  and . When controls are not 

activated we just set in (15) the volatility of controls to zero. 
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Furthermore we use the following up and down moves for the lattice between stages: 
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),(

1,),(exp),(
ttt

tttttt mmu
dmmvmmu

∆+
∆+∆+ ==      

  
Finally the probabilities for an up and down move (pure diffusion case) 
for  are: },...,,{ 21 cNt CCCm ∈
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and for the jump-diffusion case: 
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while for  we set the γ and σ parameters of controls to zero. },...,,{ 1 cNt WWWm ∈
 
With this specification between decision points for the sub-lattice construction we are 
able to incorporate the asset price and embedded control actions and evaluate the 
expectation in equations (13). 
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In the next section we test the accuracy of the numerical model with the analytic 
solutions provided in the section II. Then, we discuss the importance of options to learn 
and enhance value by analyzing the new product development case.  
 
 
 
IV. Numerical results and applications 
 
Our first set of numerical results compares the analytic and numerical methods for the 
compound option. We then give numerical results for more complex multistage cases 
with path dependent learning and control actions. The cases demonstrate stages for new 
product development with options to conduct marketing research, improve quality 
attributes, perform pilot projects, early development, etc. Our emphasis is on the 
importance of learning actions prior to development that increase the effectiveness of the 
value-enhancing controls.  
 
Table 1 shows the comparison between the analytic and lattice based numerical model for 
the case of a compound-growth option with learning. 
 
 

[Insert Table 1] 
 
 
At the intermediate dateT , besides the value of the option to invest at the terminal date, 
the firm may also acquire a fraction m  of the project value (a pilot project). In our 
problem specification, the firm cannot take the investment option unless it pays X

1

1, which 
we interpret as the cost of getting the pilot project cash flows plus learning for the final 
project. The first panel provides results for the case where no growth option is available 
(only learning) and the second panel considers the case with an option to acquire a 
fraction  of the project value, plus learning. We can see that the numerical model 
provides a very good approximation to the analytic formulas in both cases. Focusing on 
the first panel we note that the case of zero volatility of control and zero impact reflects 
the case of the compound option of Geske (1979). The results show that when the mean 
impact of controls and the volatility are positive the value of learning options embedded 
in investment options can be extremely important. Taking for example the case where S = 
100 we see that compared to the case of a simple compound option with no learning, the 
value of the compound option with a learning potential (volatility) of 0.1 increases by 
more than 50%, while a learning potential (volatility) of 0.2 increases value by 242%. In 
the second panel we see that the availability of growth options besides learning can 
further enhance project values. It captures the realistic case where a pilot project provides 
learning. Overall, the results indicate that project value can be substantially 
underestimated if learning, control, and other project attributes like growth options are 
neglected. If we interpret the learning action as marketing research, the higher the 
uncertainty that marketing research will resolve keeping for a given cost the more likely 
that it will be performed. In the next section we investigate more complex investment 
decision scenarios in the context of new product development. 

2.0=m
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The new product development case 
 
In this section we employ the numerical model and we discuss the case of new product 
development by incorporating more complex and realistic features than in the previous 
cases. First, we take the scenario where  52 =T  and 3.0=kσ  as base case and we extend 
it in several dimensions while maintaining only two decision points (at t =0 and t 1T= ). 
Then we will extend the framework adding more decision points and more path-
dependencies between actions.  
 
The first two columns of Table 2 provide the project´s option value at t = 0 for a simple 
base case, where the firm can only choose to activate a learning action (L) atT , and it can 
only wait (W) at t = 0.  The first extension we consider is the optimal timing of learning 
when early development is also possible. Figure 4 panel (a) shows the possible 
combinations of decisions. 

1

 
[Insert figure 4] 

 
In column 3 and 4 of Table 2 we provide numerical results for this scenario of the 
optimal timing of learning and development. In comparison with the results of the base 
case we see that optimal values are enhanced and optimal decisions may differ; L and EE 
may now be optimal at t = 0. Another extension concerns the availability of other actions 
to learn or enhance value. For example the firm may have the option to activate two 
learning actions sequentially at t = 0 and t 1T= . Alternatively, the firm may have the 
option to learn initially and then enhance project value by a control action. We 
concentrate on the case where the firm can activate both a learning action and a control. 
The analytic formula (6) provides only a part of this more general problem. Panel b of 
figure 4 shows all possible combinations of marketing research (learning), improvement 
actions (controls) and early development that can be made; the analytic formula only 
provides a subset of these decisions, namely perform L  and then C. Note that the case 
described in panel b is substantially more complex. For example it allows the firm to 
perform L and then choose at T  between C, W, or EE. Columns 5 and 6 of Table 2 
provide results for this case where the characteristics of control are γ

1

c = 0.1 with σc =0.3.  
 
 

[Insert Table 3] 
 
The results show that option values change and more importantly that there is a large 
region where it pays to proceed with further improvement actions (C) immediately. The 
last two columns of the Table provide numerical results for a similar case as the previous 
one, the only difference being that the characteristics of control after learning action has 
been activated are different than if the firm proceeds directly to control (product 
improvement actions). This reflects the fact that better understanding of relevant 
attributes of the product is likely to occur after marketing research rather than if the firm 
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goes “blindly” to further developments. Specifically, if the firm performs control directly 
it gains γ(W,C) = 0.1, and if the firm performs control after marketing research it gains 
γ(L,C) = 0.2 while the volatility of control remains the same in both cases  to σ(W,C) = 
σ(L,C) = 0.3. The results indicate a large change in optimal values and optimal decisions. 
Under this scenario there is a large region where it is optimal to go for marketing research 
first so that the firm can later capture a higher effectiveness of control. 
 
Next, we consider a complex scenario with 5 decision points, 2 learning actions and 2 
controls with path dependencies. Figure 5 gives a general description of the problem and 
a base case specification of the parameters of the problem. There are two learning 

and two control actions . In the first phase we can activate either  or 
, then we can proceed with a pilot project that will give a fraction m of the project cash 

flows S and at the same time will create a learning effect ( . The first phase actions can 
be skipped altogether and move directly to the pilot project or even to early development. 
Furthermore, we allow the firm to also activate a second phase of actions if it has 
completed the pilot project or if it has completed the first phase of actions. In general we 
do not allow under this specification to move from control actions to learning but we 
allow the firm to move from a learning action to a control, specifically from  to C , 
and from  to . As shown in figure 5 the volatility of learning directly from the pilot 
project is set to be double the volatility of the first learning action to show the fact that 
the pilot project is highly effective in revealing the true demand level. If instead a first 
phase of learning action has already been activated then the first action resolves half of 
the total uncertainty and the other half is left for the pilot project to resolve. The 
volatilities of control actions are all set to 0.30. For the impact of controls we consider the 
enhanced effect of learning on control impacts thus we assume that the impact of controls 
doubles if prior action was learning.  

),( 1 GLL

1C
),( 21 CC 1L

)GL

1L 1

GL 2C

 
[Insert figure 5] 

 
We keep the cost structure of the options simple to 20,10

211
==== GCCL XXXX

),( 11 CL

, 
the maturity of the option is T = 5. Our numerical results provide sensitivities with 
respect to the growth option parameter m, and the importance of learning actions to 
enhance the impacts of controls that are reflected in parameters γ and ),( 2CLGγ . 
Table 3 provides sensitivity with respect to the effectiveness of learning action while 
keeping the growth option potential to m = 0.1.  
 
 

[Insert Table 3] 

 

The first two columns show the results when neither of the learning actions can improve 
the impact of the controls that are activated next, columns 3 and 4 provide option values 
and optimal decisions for the case where only  can effect a better impact for C  and the 
last two columns when both  and  can effect better impact, for C  and  

1L 1

11L GL 2C
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respectively. The results show that if learning does not provide any additional value-
enhancement for the control actions, then it is likely that it will be skipped and the firm 
will proceed to the controls immediately. If instead,  provides a better impact for the 
control actions then it is likely that the firm will proceed with learning at . The pilot 
project  will not be preferred over  at t = 0 unless it also provides an improved 
impact for the second phase control C as well. In Table 4 we provide sensitivity with 
respect to the level of the growth factor.  

1L
0=t

GL 1L

2

 

[Insert Table 5] 

 

As expected, the higher the growth factor the more likely that we will proceed with the 
pilot project immediately. 

 

V. Conclusions 

 

We analyze investment options with embedded learning (explorative research, marketing 
research, etc,) and control (attribute or quality improvement, advertisement etc.) actions. 
The paper extends the analysis of investment options to provide analytic solutions for 
compound options with embedded optional pilot project built up, learning, and control 
actions when the project value follows diffusion or jump diffusion process. Analytic 
formulas allow pricing of compound options with embedded ability to introduce a pilot 
project, learn, and enhance project value, having in the case of a pure diffusion process 
Geske (1979) as a special case. The results can easily be extended to multiperiod 
sequential options, thus providing Carr (1988) as a special case. We show that the 
availability of options to learn (reduce or eliminate parameter uncertainty) and control 
can substantially affect project option values and optimal decisions. 
 
We develop an extended numerical model for multistage problems, with multiple 
interacting controls with path-dependent distributional characteristics and cost structure, 
and early exercise feature, and apply it to the case of new product development. The most 
general framework allows optionally the build up of a pilot project before the completion 
of the final one, and activation of learning and control actions in two phases, one before 
the pilot project, and one after. Within this framework we demonstrate the importance of 
learning actions (exploration activities, investigative R&D, marketing research) prior to 
value-enhancing (attribute enhancing R&D, advertising activities, etc.) actions. 
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Appendix 
 
 
In this section we provide the analytic valuation formulas for European compound-growth 
options, for three cases other than the call on a call option. All formulas are provided for the 
most general case of jump diffusion, with a control activated at  if the compound-growth 
option is exercised, and conditional on the activation of another control at t . They are as 
follows: 
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Compound-growth put on call: 
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Compound-growth put on put 
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The parameters required as input to the bivariate and univariate cumulative normal 
distribution and the probability of jumps are defined as in the analytic model provided by 
equation (7) of the main text. 
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Figure 1:  The partial derivative of the call option value with respect 
to the mean impact (γ), and the volatility (σ) of control 
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Notes: Numerical results using analytic formula for the control call with S = 100, X = 100, r = δ = 0.05, Τ = 1 
and control parameters σ = 0.1 and γ = 0.1. 
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Figure 2: Values of call option with learning versus control at different costs 
 
Panel (a): Cost of control and learning is zero 
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Panel (b): Cost of control = 10, Cost of learning = 5 
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Panel (c): Cost of control = 25, Cost of learning = 5 
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Notes: Numerical results using analytic formula for the control call 
with X = 100, r = δ = 0.05, σ = 0.1 Τ = 2. For control σi = 0.3 and 
γ = 0.2, and for learning σL = 0.3 
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Figure 3: Sensitivity of control´s impact and volatility on a compound call option 
 
Panel a: Out of the money (S = 60) 

 
 
Panel b: At the money (S = 100) 

 
 
Panel c: In the money (S = 140) 
 

 
 
Notes: Numerical results using analytic formula for the compound option with controls. Parameters are development cost X = 100, 
cost of control X1 = 5, r = δ = 0.05, σ = 0.1,  and T . 11 =T 22 =
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Figure 4: Optimal timing of learning (L), control (C), and early development (EE) in 
a two stage investment problem: The set of possible decisions 
 
Panel (a): Optimal timing of learning (L) and early development (EE) with no 
control action (C)  
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Panel (b): Optimal timing of learning (L), early development (EE), and control 
action (C)  
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Figure 5: A multi stage investment option with multiple interacting learning and 
control actions for the new product development problem 
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Volatility switching matrix of learning and control actions 
 

L 1 L G C 1 C 2

W (0.3)2 2(0.3)2 (0.3)2 -
L 1 - (0.3)2 (0.3)2 -
L G - - - (0.3)2

C 1 - - - (0.3)2

From

To

 
 
 
Mean impact switching matrix of control actions 
 

L 1 L G C 1 C 2

W 0 0 0.1 -
L 1 - 0 0.2 -
L G - - - 0.
C 1 - - - 0.

From

To

2
1  
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Table 1: Compound option with learning: Comparison of numerical and analytic 
values    
 

Time Vol. of Control Analytic Numerical Analytic Numerical Analytic Numerical
0.000 0.000 0.000 1.103 1.103 14.320 14.320

T2 = 1 0.100 0.001 0.001 1.656 1.659 14.839 14.839
0.200 0.016 0.015 3.773 3.774 16.864 16.865
0.300 0.282 0.283 7.079 7.083 19.883 19.885
0.400 1.743 1.747 10.660 10.666 23.341 23.346
0.500 4.424 4.429 14.266 14.273 26.991 26.997
0.000 0.013 0.013 2.123 2.124 14.100 14.100

T2 = 2 0.100 0.027 0.026 2.648 2.651 14.675 14.675
0.200 0.126 0.125 4.406 4.409 16.547 16.548
0.300 0.616 0.619 7.203 7.207 19.310 19.313
0.400 2.038 2.041 10.447 10.451 22.506 22.511
0.500 4.400 4.404 13.792 13.798 25.906 25.913
0.000 0.302 0.301 3.860 3.861 13.635 13.635

T2 = 5 0.100 0.378 0.378 4.244 4.247 14.091 14.091
0.200 0.668 0.670 5.427 5.431 15.462 15.464
0.300 1.338 1.340 7.339 7.342 17.560 17.562
0.400 2.552 2.555 9.747 9.751 20.091 20.094
0.500 4.319 4.323 12.402 12.407 22.850 22.855

Time Vol. of Control Analytic Numerical Analytic Numerical Analytic Numerical
0.000 2.964 2.964 8.670 8.667 25.992 25.992

T2 = 1 0.100 3.220 3.219 10.239 10.240 26.537 26.537
0.200 4.511 4.511 13.344 13.346 28.567 28.568
0.300 6.707 6.708 16.827 16.831 31.587 31.589
0.400 9.357 9.360 20.413 20.419 35.045 35.049
0.500 12.223 12.227 24.019 24.026 38.695 38.701
0.000 3.133 3.133 9.857 9.854 25.407 25.406

T2 = 2 0.100 3.506 3.506 11.001 11.002 26.045 26.045
0.200 4.796 4.796 13.576 13.579 27.957 27.958
0.300 6.838 6.839 16.674 16.678 30.725 30.727
0.400 9.299 9.302 19.957 19.962 33.921 33.925
0.500 11.973 11.978 23.304 23.310 37.321 37.327
0.000 3.946 3.943 11.345 11.341 23.977 23.976

T2 = 5 0.100 4.320 4.320 12.004 12.006 24.510 24.510
0.200 5.400 5.401 13.699 13.701 25.991 25.992
0.300 7.029 7.030 15.970 15.973 28.137 28.139
0.400 9.006 9.009 18.527 18.531 30.679 30.682
0.500 11.187 11.191 21.220 21.225 33.440 33.445

S = 80 S = 100 S = 120
Growth option factor m  = 0

Growth option factor m  = 0.10
S = 80 S = 100 S = 120

 
Notes: Parameters are r = δ = 0.05, σ = 0.10, 21 2

1 T=T  ,  γ = 0 and cost of control   = 5.  For the numerical lattice we use 

N

1X

sub = 200 steps. 
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Table 2: Project value for four different scenarios with increasing flexibility and 
impact 
 
 

Timing of L and EE after L
Dec. Dec. Dec. Dec.

S Value at t =0 Value at t =0 Value at t =0 Value at t =0
240 109.032 W 140.000 EE 140.000 EE 140.000 EE
230 101.245 W 130.000 EE 130.000 EE 130.000 EE
220 93.457 W 120.000 EE 120.000 EE 120.000 EE
210 85.671 W 110.000 EE 110.000 EE 110.000 EE
200 77.886 W 100.000 EE 100.000 EE 100.000 EE
190 70.106 W 90.000 EE 90.000 EE 90.000 EE
180 62.336 W 80.000 EE 80.000 EE 80.690 L
170 54.589 W 70.000 EE 70.000 EE 71.520 L
160 46.891 W 60.000 EE 60.000 EE 62.472 L
150 39.292 W 50.000 EE 50.000 EE 53.567 L
140 31.889 W 40.000 EE 40.480 C 44.896 L
130 24.806 W 30.000 EE 31.670 C 36.417 L
120 18.223 W 20.000 EE 23.362 C 28.458 L
110 12.401 W 13.272 L 15.592 C 20.911 L
100 7.503 W 7.824 W 8.656 W 13.954 L
90 3.833 W 3.912 W 4.322 W 7.934 L
80 1.489 W 1.499 W 1.618 W 2.999 L
70 0.377 W 0.378 W 0.395 W 0.395 W
60 0.052 W 0.052 W 0.053 W 0.053 W
50 0.003 W 0.003 W 0.003 W 0.003 W
40 0.000 W 0.000 W 0.000 W 0.000 W

and EE

Learning only Learning and control
Diff. impact of C 

L  only at T1
Timing of L, C

 
Notes: Parameters are r = δ = 0.05, σ = 0.10, T2 = 5 and 21 2

1 T=T , σL = 0.30 with XL = 5 for all cases. For case I only learning 

is available at T ; no early development, no timing of learning. For case II there is optimal timing of learning and 
development option. For case III there is optimal timing of learning, control and development option with  γ(W,C) = γ(L,C) = 
0.1 and σ(W,C) = σ(L,C) = 0.30 . Case IV is the same as case III but control characteristics are different if prior action is L  i.e 
γ(W,C) = 0.1, σ(W,C) = 0.30, γ(L,C) = 0.2, σ(L,C) = 0.30. For the numerical lattice we use N

1

sub = 30 steps. 
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Table 3:  Multistage investment program with a pilot project option and two phases 
of learning and controls: Sensitivity with respect to the effectiveness of learning 
actions  
 
 

γ(L G,C 2) = 0.2

Dec. Dec. Dec.
S Value at t =0 Value at t =0 Value at t =0

240 155.495 C 1 164.770 L 1 170.096 L G

230 144.523 C 1 153.281 L 1 158.230 L G

220 133.564 C 1 141.814 L 1 146.400 L G

210 122.629 C 1 130.381 L 1 134.615 L G

200 111.747 C 1 118.995 L 1 122.890 L G

190 100.925 C 1 107.689 L 1 111.274 L G

180 90.153 C 1 96.446 L 1 99.761 L G

170 79.471 C 1 85.296 L 1 88.365 L G

160 68.965 C 1 74.308 L 1 77.109 L G

150 58.589 C 1 63.483 L 1 66.080 L G

140 48.468 C 1 52.891 L 1 55.347 L G

130 38.700 C 1 42.644 L 1 44.903 L G

120 29.294 C 1 32.784 L 1 34.831 L G

110 20.575 C 1 23.535 L 1 25.390 L G

100 12.514 C 1 14.982 L 1 16.521 L G

90 6.599 W 7.840 W 9.006 W
80 2.720 W 3.198 W 3.951 W
70 0.755 W 0.849 W 1.180 W
60 0.113 W 0.119 W 0.179 W
50 0.006 W 0.006 W 0.009 W
40 0.000 W 0.000 W 0.000 W

γ(L 1,C 1) = 0.1 γ(L 1,C 1) = 0.2

Growth  m = 0.1
 γ(L G,C 2) = 0.1 

γ(L 1,C 1) = 0.2

 
Notes: Parameters are r = δ = 0.05, σ = 0.1 and T = 5.  The problem has as follows: The firm has the option to 
invest in a first phase of learning or controls ( , C ), develop the project early (EE), invest in a pilot project 
( ) and invest in a second phase control action  . The sequence of actions and other parameters are given 

in figure 5 and the cost for each action is  and .  

1L

= X

1

2C

1
=C

GL

10
21
=CL XX 20=GX
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Table 4:  New product development (investment program with a pilot 
project option and two phases of learning and control): Sensitivity 
with respect to the level m of pilot project cash flows 
 

Dec. Dec. Dec.
S Value at t =0 Value at t =0 Value at t =0

240 164,770 L 1 170,096 L G 194,096 L G

230 153,281 L 1 158,230 L G 181,230 L G

220 141,814 L 1 146,400 L G 168,400 L G

210 130,381 L 1 134,615 L G 155,615 L G

200 118,995 L 1 122,890 L G 142,890 L G

190 107,689 L 1 111,274 L G 130,274 L G

180 96,446 L 1 99,761 L G 117,761 L G

170 85,296 L 1 88,365 L G 105,365 L G

160 74,308 L 1 77,109 L G 93,109 L G

150 63,483 L 1 66,080 L G 81,080 L G

140 52,891 L 1 55,347 L G 69,347 L G

130 42,644 L 1 44,903 L G 57,903 L G

120 32,784 L 1 34,831 L G 46,831 L G

110 23,535 L 1 25,390 L G 36,390 L G

100 14,982 L 1 16,521 L G 26,521 L G

90 7,840 W 9,006 W 17,430 L G

80 3,198 W 3,951 W 9,360 W
70 0,849 W 1,180 W 3,920 W
60 0,119 W 0,179 W 1,002 W
50 0,006 W 0,009 W 0,105 W
40 0,000 W 0,000 W 0,002 W

γ(L G,C 2) = 0.2 ,   γ(L 1,C 1) = 0.2
Growth  m  = 0.2Growth  m  = 0.1Growth  m  = 0

 
Notes: Parameters are r = δ = 0.05, σ = 0.1 and T = 5.  The problem has as follows: The firm has the option to 
invest in a first phase of learning or controls ( , C ), develop the project early (EE), invest in a pilot project 
( ) and invest in a second stage control action  . The sequence of actions and other parameters are given 

in figure 5 and the cost for each action is  and .  is defined as the 

mean impact of control C  conditional on prior activation of learning action , and  as the mean 

impact of conditional on prior activation of pilot project .  

1L

1
=L

1

2C
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