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Abstract

This paper applies modern financial option valuation methods to the problem of new wireless network
capacity investment decision timing. In particular, given a cluster of base stations (with a certain traffic
capacity per base station), we determine when it is optimal to increase capacity for each of the base
stations contained in the cluster. We express this in terms of the fraction of total cluster capacity in use,
i.e. we calculate the optimal time to upgrade in terms of the ratio of observed usage to existing capacity.
We study the optimal decision problem of adding new capacity in the presence of stochastic wireless
traffic for services. We develop a four factor algorithm that captures all of the constraints of wireless
network management, based on a real options formulation. We study the upgrade decision for different
upgrade decision intervals (e.g. monthly, quarterly, etc.), and we investigate the effect of a safety level
(i.e. the maximum allowed capacity used in practice on a daily basis—which differs from the theoretical
maximum).

1 Introduction

Wireless telephones are now regarded as essential communication tools, dramatically impacting how people
approach personal and business communications. As new network infrastructure is built and competition
between wireless carriers increases, digital wireless subscribers are becoming ever more critical of the ser-
vice and voice quality they receive from network providers. Wireless operators must provide a guaranteed
level of service to customers while maximizing profit. The current environment, with decreasing revenue
per minute and increasing demands on networks from new features in wireless equipment, places conflicting
demands on network managers [10].

Traditional wireless network management is based on experience and heuristics. While these methods
often appear to work well in practice, theoretical work is needed to evaluate the generally agreed upon
approaches. Previous work on in the related area of bandwidth network management [3] presented some
interesting numerical methods and results, but there was little high quality data which could be used to
estimate parameters. The lack of high quality data can be partly attributed to the relative infancy of the
bandwidth market. On the other hand, wireless networks have been in place for quite some time, and better
data can be obtained. In addition, the algorithm developed in [3] could only handle the case where decision
date intervals were equivalent to the time period required to order, install and test new equipment.
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In this paper we apply a real options framework to the problem of the optimal timing of investment into
new capacity and extend the algorithm of [3] to handle arbitrary decision date intervals. Given a cluster
of base stations, our objective is to find the percentage (in terms of the ratio of observed usage to existing
capacity) at which it is optimal to add capacity by installing one or more carriers to each of the base stations
in the cluster. This optimal upgrade decision will maximize the value of the investment to the network
operator. The remainder of this paper is organized as follows: Section 2 describes the modeling framework;
Section 3 presents the mathematical model and the decision to upgrade algorithm; Section 4 provides the
estimated model parameters; and Section 5 contains various simulated results. Conclusions are given in
Section 6.

2 Background

As in the bandwidth market [3], the revenue to the owner of a wireless network is determined by the pre-
vailing price per minute and the amount of traffic. Average revenue per wireless user is decreasing with
relatively little uncertainty (Figure 1). However, an examination of wireless network traffic reveals some
interesting features. Although traffic has obviously been increasing, it has done so in a somewhat uneven
way, with apparent randomness. This is shown for an illustrative switch in Figure 2. In Appendix A, we
show that not all network traffic movements can be attributed to deterministic drift and cyclical patterns.
When cycles, trends, anomalous drops and statutory holidays are removed, large volatility in network traffic
remains.
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FIGURE 1: Price paid on average by wireless network subscribers in $ per minute. The price is
obtained by dividing the average revenue per user by the usage per subscriber. The price decline
can be fit reasonably well by the function P

�
t ��� P0 exp

���
µt � , where µ � ���

08 � year. These data
were obtained from Bell Canada quarterly financial reports.

Traditionally, for a given set of base stations (i.e. a cluster) and a desired grade of service/blocking
probability, the traffic engineer predicts the amount of capacity (or the number of carriers) necessary to
satisfy the given demand while maximizing revenue. When there is high traffic, the base stations experience
very high blocking and new equipment must be installed at the base station level (i.e. carriers). Figure 3
provides a representation of a simplified cluster of base stations/cell sites. A typical cluster contains at least
20 cell sites. Each cell site has a certain coverage area that is divided into sectors. A simplistic solution to
blocking would be to conduct a traffic study at the cell site level and increase the capacity of the cells that
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FIGURE 2: Daily bouncing busy hour data traffic on a representative switch. Data obtained from
[9]. To remove weekly cycles, the weekday with the most traffic on average in a year is selected.
The stars are used to indicate this day. In our data, the day with highest average traffic turned out
to be Thursday, so we use weekly data sampled every Thursday to estimate the volatility σ and the
growth rate µ.

are experiencing too much blocking.
However, due to the Code Division Multiplexing Access (CDMA) [7] technology that is currently used

in leading edge wireless networks, it is not possible to only add carriers to the cell sites where high blocking
occurs. A user on a network using CDMA technology may talk simultaneously to many base stations since
a principle called soft hand-off is used [7]. As such, when there is too much blocking on a particular cell
site, all the cell sites within the cluster must have a new carrier added to maintain homogeneity.

When studying the number of traffic minutes before a cell site starts blocking, the following factors
should be considered:

� The number of carriers currently deployed.

� Whether efficiencies arising from pooling resources of each carrier can be realized, i.e. the ability to
allocate mobile traffic to the least busy carrier.

� Currently, carriers are grouped into blocks of three, meaning traffic can be allocated evenly for three
carriers. However, for the fourth carrier, a new pooling group must be formed. For this study, we
will assume that the traffic is homogeneous throughout the cluster and that the carriers are a shared
resource.

With these factors in mind, we can consider traffic and grade of service/blocking probability. We must
also define the unit of measurement for traffic. Traffic is measured in units of Erlangs [8]. An Erlang is
defined as the average number of simultaneous calls, or equivalently, the total usage during a time interval

3



������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

	�	�		�	�		�	�		�	�		�	�		�	�	


�
�

�
�

�
�

�
�

�
�

�
�


������������������������������

������������������������������


�
�

�
�

�
�

�
�

�
�

�
�


������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

Base station (or cell site)

Sector

FIGURE 3: An example of a cluster of cell sites. A typical cluster contains at least 20 base stations.
The coverage area or sector is generally not hexagonal, but this diagram gives an idea of how cell
sites are deployed.

divided by the length of that interval. Most network management systems measure usage during a one
hour interval. The blocking probability is the probability that a call is blocked when there is no channel
available. The blocking probability is evaluated for the load during bouncing busy hours. In practice,
network managers study the load during bouncing busy hours and then decide whether or not new carriers
must be deployed. The calculation used to determine the bouncing busy hour is as follows:

1. For each sector of every cell site, determine which hour had the most traffic for a given day. This is
called the busiest bouncing hour. This hour will most likely be different for each sector. Note that the
hour begins at the top of the hour, i.e. the busiest hour is not the 60 consecutive minutes where traffic
is the highest.

2. For a given carrier, sum the number of minutes during the busiest hour for every sector of every cell
site. This number will be the bouncing busy hour traffic for that switch on that particular day.1

Based on the Erlang mathematical models (Erlang-B or Erlang-C [8]), the relationship between blocking
probability and demand can be established. See [8] for details.

In this work we assume that a single carrier can handle approximately 20 users. Using Erlang tables,
this means 13.2 Erlang of traffic can be handled at 2% blocking. If a second carrier is added, 40 users can
be accommodated, meaning 31 Erlang of traffic can be handled at 2% blocking. The carried load at 2%
blocking more than doubles when a new carrier is added, even though the maximum load only doubles.
Table 1 gives a synopsis of an Erlang table.

3 Mathematical Model

As noted above, traffic data on a typical switch appears to contain a random component (see Figure 2). A
simple model for network traffic is geometric Brownian motion. Letting Q represent the bouncing busy
hour network traffic in minutes per hour, we have

dQ � µQ dt
� σQ dz (3.1)

1In telecommunications, a switch is a network device that selects a path or circuit for sending a unit of data to its next destination.
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Users Erlang Minutes of traffic in the hour

20 13.2 792
40 31.0 1860
60 49.6 2976

TABLE 1: Correspondence table between users, Erlang and minutes of traffic in the hour that can
be approximately handled by a single sector of a carrier at 2% blocking. Carriers usually cover
three sectors.

where µ is the drift or growth rate, σ is the volatility, and dz is the increment of a Wiener process. Equation
(3.1) implicitly assumes that traffic is lognormally distributed. Note that if σ � 0, then equation (3.1) implies
exponential growth at rate µ, i.e. Q � Q0 exp

�
µt � where Q0 is a constant. Because of their scaling with time,

the volatility and drift terms have different effects. For short time periods, the volatility (uncertainty) term
will dominate, while for longer time periods the drift term becomes important. Appendix A provides details
on our estimation of the parameters µ and σ of equation (3.1) based on traffic data time series.

In order to determine the optimal time for an equipment upgrade, we must determine the value V of an
investment in equipment for various level of capacity. V depends on the following factors:

1. Actual demand for service is uncertain and given by the stochastic differential equation (SDE) (3.1).

2. Upgrade decisions can be made at various times. There is a time lag between when the equipment is
ordered and when it comes on-line.

3. Revenues, capital costs, and maintenance costs must be taken into account correctly.

Our goal is to determine the optimal course of action so as to maximize the value of the investment, in light
of the fact that actual usage of the network in the future is uncertain. The procedure is similar to that used
in pricing financial options. We will employ a dynamic programming approach, and solve for the optimal
policy by proceeding backwards in time.

We define a set of observation times tobs ��� 0 � ∆tobs � 2∆tobs �
� � ���

. At these times, we assume that any of
the following events take place:

� Maintenance costs are paid.

� Partial or complete payments are made for capital expenditures.

� Decisions about possible upgrades are made.

� Upgrades come on-line.

Typically, we will take ∆tobs � 1 month. We assume that the set of times when possible upgrade decisions
are made is discrete and denote this set by tup. If tα

up � tup, then tα
up � ∆tobs is an integer.

If a decision is made to upgrade at tα
up, then the actual upgrade is completed at tα

up
� γ. We assume that

γ � ∆tobs is an integer. Note that γ corresponds to the time necessary to order and set up the equipment.
Since we use a dynamic programming approach to find the optimal policy, we work backwards in time,

so that at any time tβ
obs � tobs we cannot know when a decision was made to upgrade to a higher level of

capacity. Hence, we have to solve for all possible times at which an upgrade could occur. Consequently, we
need an additional discrete state variable Fl for l � 0 � � � � � lmax

�
1, which we define as

Fl � �
elapsed time since last decision to upgrade � � ∆tobs

�
1

as observed the instant after the previous observation date.
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For example, assume that γ � 3 months and ∆tobs � 1 month. Suppose that t ��� 12 months
� ε � 13 months

�
ε � . Then:

� F1 � 1 � a decision to upgrade was made at t � 12 months. The new equipment will come on-line
at t � 15 months.

� F2 � 2 � a decision to upgrade was made at t � 11 months. The new equipment will come on-line
at t � 14 months.

� F3 � 3 � a decision to upgrade was made at t � 10 months. The new equipment will come on-line
at t � 13 months.

We need to keep track of the maximum capacity of each cluster, which we assume is a discrete variable
denoted by Q j, where j � 0 � � � � � jmax

�
1. In addition, we will allow different levels of upgrades to occur. In

other words, we can upgrade from Q j to Q u, where u � � j
�

1 � � � � � jmax
�

1
�
. Note that u � j corresponds

to an existing cluster of capacity Q j where no decision to upgrade has been made. By convention Fl � 0 � 0
when u � j. Hence, V

�
Q � Q j � j � 0 � τ � represents a cluster of capacity Q j where no decision to upgrade has

been made.
Consequently, the value of an investment is given by V � V

�
Q � Q j � u � Fl � τ � . This represents the value

of an investment with
� Maximum capacity Q j,

� A decision made to upgrade to capacity Q u,

� The elapsed time since the decision to upgrade was made (as observed at the instant after previous
observation date) is Fl .

The above holds for all times τ � T
�

t �� τobs, where τobs � T
�

tobs. Furthermore, we must carefully
distinguish between the instant before and after observation times, since F l is incremented at these times.
We assume that once a decision to upgrade has been made, it cannot be reversed. Note that this assumption
can be easily changed in our model, but irreversibility appears to be consistent with practice (i.e. equipment
is rarely if ever removed or downgraded once it has been deployed).

At each observation time tα
obs, the value of Fl will be changed. Let t � � tα

obs
� ε, t � � tα

obs

�
ε. Then

F �l � F �l � 1 � (3.2)

since the elapsed time will be incremented by one. Absence of arbitrage implies

V
�
Q � Q j � u � F �l � t � � � V

�
Q � Q j � u � F �l � t � � � (3.3)

or
V
�
Q � Q j � u � F �l � 1 � t � � � V

�
Q � Q j � u � F �l � t � � � (3.4)

Since we work backwards in time, let τ � � t � � τ � � t � . Thus

V
�
Q � Q j � u � F �l � 1 � τ � � � V

�
Q � Q j � u � F �l � τ � � � (3.5)

But we need to account for the cost of upgrading in equation (3.5). Let C j � u
�
t � l denote some designated

fraction of the cost of upgrading from a cluster of maximum capacity Q j to one with maximum capacity
Q u

2. Then we subtract the cost of the upgrade from (3.5)

V
�
Q � Q j � u � F �l � τ � � � V

�
Q � Q j � u � F �l � 1 � τ � � � C j � u

�
τ � � l � (3.6)

2The designated fraction can be specified in a variety of ways. For instance, with four months lead time, one quarter of the cost
could be paid in each of the four months. Alternatively, all of the cost could be paid up front.
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where l � 1 � � � � � lmax
�

2.
At l � lmax

�
1, we set

V
�
Q � Q j � u � F �lmax � 1 � τ � � � V

�
Q � Q u � 0 � 0 � τ � � � C j � u

�
τ � � lmax � 1

�
(3.7)

Equation (3.7) indicates that it is possible to upgrade from Q j to Q u but the new equipment will not be
ready for some time.

At each upgrade date, tup, we maximize the value of the investment V . For a given cluster j, we have
for l � 0

V
�
Q � Q j � j � 0 � τ �up � � max � V �

Q � Q j � j � 0 � τ �up � � V �
Q � Q j � u � F1 � τ �up � � C j � u

�
τ �up � 0 � � (3.8)

for u � j
�

1 � � � � � jmax
�

1. Equation (3.8) indicates that a decision to add capacity will only be justified if
the value of the investment exceeds the value of not investing.

Based on standard hedging arguments, a partial differential equation for the value of an investment
V
�
Q � Q � u � F � τ � where cash flows are a function of Q is found to be

∂V
∂t

� 1
2

σ2Q 2 ∂2V
∂Q2

� �
µ
�

κσ � Q ∂V
∂Q

�
rV � R

�
Q � Q � t � � 0 � (3.9)

where V is the value of the investment in dollars, R
�
Q � Q � t � is the revenue term in dollars per year, r is

the risk free interest rate and κ is the market price of risk. Informally, the tradeoff between the risk of an
investment that depends on Q and its anticipated return is captured by κ. In Appendix B, we describe how
we estimate the market price of risk κ from market data.

In the valuation of financial options, the value of the option at the expiry date is a known function of
the underlying stock price. However, the value of the option prior to expiry is not known, but may be found
by solving a partial differential equation similar to (3.9). In our case, we consider an investment horizon T
(analogous to the expiry date of a financial option). Mathematically, we then have

V
�
Q � Q � u � F � τ � � f

�
Q � �

Although the methods discussed in this paper can be used with any suitable choice of f
�
Q � , for simplicity

we will restrict our attention to the case where the value of all capital investment at t � T is equal to the
salvage value of the upgraded equipment. We will assume that f

�
Q � � 0, i.e. the salvage value at t � T is

zero. We choose the investment horizon to be T � 5 years. Implicitly, we assume that new technology will
render all existing equipment obsolete at t � T .

Since the value of the investment is known at t � T , the forward equation (3.9) is transformed into a
backward equation by substituting τ � T

�
t to give

∂V
∂τ

� 1
2

σ2Q 2 ∂2V
∂Q 2

� �
µ
�

κσ � Q ∂V
∂Q

�
rV � R

�
Q � Q � τ � � (3.10)

Define V
�
Q � Q j � u � Fl � τ � to be V

�
Q � τ � j � u � l where the indices j � 0 � � � � � jmax

�
1, u � j

�
1 � � � � � jmax

�
1,

and l � 0 � � � � � lmax
�

1. Fl represents the elapsed time since the decision to upgrade was made. A set of
equations must be solved for each possible cluster capacity Q j, j � 0 � � � � � jmax

�
1, where jmax

�
1 is the

maximum number of cluster capacities. This can be accomplished using a general numerical partial differ-
ential equation (PDE) solver [13, 14]. The numerical PDE approach involves a finite volume discretization
of equation (3.10) along the axis representing the demand Q [6]. The finite volume method has been ex-
tensively studied in [13, 14]. As it is beyond the scope of this paper, we will not present the details of the
discretization scheme. Interested readers should see [4, 6].
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Consider a set of clusters with a maximum capacity Q j . For example, Q 1 could be a one-carrier cluster
(i.e. a cluster where there is only one carrier per cell site), Q 2 a two-carrier cluster, and so on (see Figure 4).
Let V

�
Q � τ � j � u � l be the value of an investment in a cluster with maximum capacity Q j. We must solve a set

of PDEs (3.10) for each upgrade possibility, i.e.

∂V j � u � l
∂τ

� 1
2

σ2Q 2 ∂2V j � u � l
∂Q 2

� �
µ
�

κσ � Q ∂V j � u � l
∂Q

�
rV j � u � l � R

�
Q � Q j � t � � (3.11)

Q1

Q0

Q2

maximum minute rate (minutes)

demand for minutes

two−carrier cluster

three−carrier cluster

one−carrier cluster

Possible upgrade one−carrier cluster −−> three−carrier cluster

Possible upgrade
one−carrier cluster −−> two−carrier cluster

Possible upgrade 
two−carrier cluster −−>three−carrier cluster

FIGURE 4: For a particular plane with fixed l, we consider a set of clusters Q j with maximum
capacity Q j. We solve a set of PDEs (3.11) for each upgrade possibility.

Let N be the number of nodes along the axis representing the discrete values of demand Q . Each
time step of the solution requires solving approximately

�
lmax

�
1 � � jmax

�
1 � � jmax

�
2 � � 2 one dimensional

problems of size N.

3.1 Revenue

We assume that the owner of the cluster receives continuous payments. For a maximum capacity Q j (in
minutes per bouncing busy hour), we have

R
�
Q � Q j � τ � � min

�
Q � Q j � P �

τ � � (3.12)

The function P
�
τ � is given by

P
�
τ � � P0 exp

���
α
�
T
�

τ � � � (3.13)

where P0Q has the units of dollars per year and α is a decay parameter. The payment received can be no
larger than the maximum capacity of the cluster multiplied by the price. We assume that the price is a known
decreasing function of time. Note that this does not create an arbitrage opportunity because unused minutes
cannot be stored for later use.

The data underlying Figure 1 shows that today the average revenue per user is approximatively
�
229$/min.

However, this value corresponds to non-marginal revenue received based on daily traffic, and not bouncing
busy hour traffic. Consequently, to estimate P0 we need to adjust the average revenue per user (ARPU)
appropriately. Based on estimates and discussions with industry personnel, marginal revenue represents
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seventy percent of the average revenue per user
�
229 � �

7 � �
1603 [9]. Our studies indicate that bouncing

busy hour represents approximatively 10% of total daily traffic. We assume that zero revenue is obtained on
weekends. Consequently, P0 is given by

P0 � Max minutes at 2% blocking per hour� 10 (busy hr represents 10% of the total daily traffic)� �
7 (marginal revenue) � ARPU � 250(excludes weekends) �

where P0 has units
�

dollars
minutes

bbhr year � . The total revenue per year for various number of carriers per cell site for the

cluster is given in Table 2.
Furthermore, we require that the adjusted revenue per user P0 be the same at all points in a cluster so

as to avoid arbitrage. For example, if P0 of a three-carrier cluster was less than that of a two-carrier cluster,
we could buy minutes on the three-carrier cluster and then immediately sell it at the two-carrier cluster spot
price making a free profit. Consequently, equation (3.11) becomes

∂V j � u � l
∂τ

� 1
2

σ2Q 2 ∂2V j � u � l
∂Q 2

� �
r
�

κσ � Q ∂V j � u � l
∂Q

�
rV j � u � l � min

�
Q � Q j � P0 exp

���
α
�
T
�

τ � � � (3.14)

Number of carriers per cell site Revenue for the cluster in $ per year

1 19,043,640
2 44,723,700
3 71,557,920

TABLE 2: Maximum total revenue per year for the cluster based on bouncing busy hour traffic.

3.2 Maintenance Costs

A cluster will have some unavoidable maintenance costs. These maintenance costs are assumed to be con-
stant over time and paid at discrete time intervals ∆tmaint (e.g. monthly). Given a cluster j with maximum
capacity Q j, we have

V j � u � l � Q � τ �maint � � V j � u � l � Q � τ �maint � � M j∆τmaint � (3.15)

where M j is the maintenance cost in $/year. Since maintenance costs are paid at discrete time intervals, it is
important to appropriately determine if the maintenance costs are paid before or after the partial upgrades are
made (3.7). We assume that ∆tmaint � ∆tobs. However, we assume that, going forward in time, maintenance
costs are paid before upgrade decisions are made. If t � � tα

obs
� ε, and t � � tα

obs

�
ε then

t �maint � �
tα
obs

�
ε � � ε � t � � ε �

t �maint � t �maint

�
ε
�

Consequently, going backwards in time, upgrade decisions are made before maintenance fees are paid.

3.3 Upgrade Decision

We assume that while new equipment is ordered and tested, the current stream of revenue is not interrupted.
In other words, there is no down time. Using our dynamic programming approach, we solve the PDEs

9



Qj+1 Qj+2 Qj+3

Qj

Decision to
upgrade was
made 

1 month ago

2 month ago

3 month ago

4 month ago

FIGURE 5: At each observation date τobs, update the solution of the intermediate problems between
the cluster of maximum capacity Q j and Q u where Q j � Q u. This figure shows the case where we
are considering upgrading to 1, 2, or 3 higher levels. The solid lines represent the capacity, while
the dotted lines represent the times at which a decision to upgrade to a higher capacity was made
(e.g. one month ago, two months ago, etc). In this example, we assume there is a four month period
between when the upgrade decision is made and when the new equipment is available for use.

(3.11) backwards in time (τ increasing) and determine the optimal decision at each upgrade decision date
τup. Investments are assumed to be decided upon at the beginning of each month.

Consider the clusters ordered as j � 0 � � � � � jmax
�

1 where Q j � 1
� Q j (see Figure 4):

� Stage I: At each observation date τobs, update the solution of the intermediate problems between the
cluster of maximum capacity Q j and Q u where Q j � Q u. Figure 5 provides a graphical representation
of the execution of Algorithm 1 at each observation date. The pseudo-code for this stage is given in
Algorithm 1.

� Stage II: At each upgrade decision date τup, compare the solution V
�
Q � τ � j � 0 � 0 with the solution of

the partial investment into a cluster with higher capacity. Figure 6 provides a graphical representation
of the execution of algorithm 2 at each upgrade decision date. The pseudo-code for this stage is given
in Algorithm 2.

� Stage III At each maintenance date τmaint , the maintenance costs are paid according to (3.15). The
pseudo-code for this stage is given in Algorithm 3.

� Stage IV If τ � T , terminate. Otherwise, solve the PDE for each problem to the next observation date
and repeat the above process.
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Algorithm 1 At each observation date τobs, update the solution of the intermediate problems between the
cluster of maximum capacity Q j and Q u.

for j � 0 � � � � � jmax
�

2 do
// loop over the different clusters
for u � j

�
1 � � � � � jmax

�
1 do

// loop over the upgrade clusters possibilities for cluster j
for l � 1 � � � � � lmax

�
2 do

// copy the solution of the intermediate plane above to below
V j � u � l � Q � τ �obs � � V j � u � l � 1

�
Q � τ �obs � � C j � u

�
τ �obs � l

end for
at l � lmax

�
1

V j � u � lmax � 1
�
Q � τ �obs � � Vu � u � 0 � Q � τ �obs � � C j � u

�
τ �obs � lmax � 1

end for
end for

Qj+1 Qj+2 Qj+3

Qj

4 month ago

2 month ago

1 month ago

3 month ago

Decision to upgrade
was made

FIGURE 6: At each upgrade decision date τup, compare the solution V
�
Q � τ � j � 0 � 0 with the solution

of the complete investment into a cluster with higher capacity V
�
Q � τ � j � u � 1. This figure shows the

case when we are considering upgrading to 1, 2, or 3 higher levels. The solid lines represent
the capacity, while the dotted lines represent the time at which a decision to upgrade to a higher
capacity was made (e.g. one month ago, two months ago, etc.). In this example, we assume there
is a four month period between when the upgrade decision is made and when the new equipment
is available for use.

3.4 Upgrade Costs

In Algorithm 1, equation (3.6) and equation (3.7), C j � u
�
τ �obs � l is a fraction of the upgrade cost from cluster

of maximum capacity Q j to a cluster of maximum capacity Q u. The average revenue per user (ARPU)
charged for usage of the wireless network is assumed to be declining over time. Upgrade costs are assumed
to follow the same decreasing pattern as ARPU. Thus we will use the same decay factor α as for ARPU (see
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Algorithm 2 At each upgrade decision date τup, compare the solution V
�
Q � τ � j � 0 � 0 with the solution of the

partial investment into a cluster with higher capacity.
for j � 0 � � � � � jmax

�
2 do

// loop over the cluster with capacity j
for u � j

�
1 � � � � � jmax

�
1 do

// loop over the upgrade clusters possibilities for cluster j
V j � j � 0 � Q � τ �up � � max � V j � j � 0 � Q � τ �up � � V j � u � 1 � Q � τ �up � � C j � u

�
τ �up � 1 �

end for
end for

Algorithm 3 At each maintenance date τmaint , the maintenance costs are paid.
for j � 0 � � � � � jmax

�
1 do

// loop over the different clusters
for u � j

�
1 � � � � � jmax

�
1 do

// update the solution with the appropriate maintenance cost
for l � 0 � � � � � lmax

�
1 do

V j � u � l � Q � τ �maint � � V j � u � l � Q � τ �maint � � M j∆τmaint

end for
end for

end for

equation (3.13)), i.e.

C j � u
�
t � l � Ĉ j � u exp

���
α
�
t
�

elapsed time since start of upgrade � � � (3.16)

where Ĉ j � u is the initial fraction of the upgrade cost from a cluster of maximum capacity Q j to a cluster of
maximum capacity Q u.

4 Parameter Values

This section briefly describes the estimation of parameter values. Details regarding estimates of the growth
rate µ and the volatility σ can be found in Appendix A. The volatility σ and the growth rate µ for the minutes
per busy hour have been estimated by averaging σi and µi for three different time series i (corresponding
to data obtained from [9] for three separate representative switches). It is found that µ � �

30 per year and
σ � �

65 per year
1
2 .

We next consider the market price of risk κ. In Appendices B and C, two approaches are presented to
estimate the market price of risk. Using these different methods, we obtain values of κ � �

08 and κ � �
03.

The difference between these two values is due to the fact that in the second approach (see Appendix C),
we estimate the correlation between the demand and a stock market index (i.e. TSE300), while in the first
approach, we estimate κ from the β of the stock of companies whose revenue is primarily from wireless
networks. However, since we have only one year of bouncing busy hour traffic data, it is difficult to have an
accurate estimate of the correlation in the second approach. Fortunately, our results do not appear to be very
sensitive to κ � � � 03 � � 08 � .

The hardware cost of adding one carrier to a cell site is approximately $100 � 000. This does not include
engineering/commissioning costs and costs required for hardware upgrades at the switch. $150 � 000 per
carrier is our total approximate cost with everything included. Table 3 contains a summary of different
upgrade costs.
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Number of carriers per cell site Cluster upgrade cost

1 $3,000,000
2 $6,000,000
3 $9,000,000

TABLE 3: Given a cluster with 20 cell sites, this table presents the upgrade costs of adding one or
more carriers to each of the cell sites of the cluster. Including all additional costs, $150 � 000 is the
approximate cost per carrier.

Once an order has been placed to upgrade a cell site with an additional carrier, it takes approximately
two months before the hardware is delivered, one month to install the hardware, and one month to set up
and optimize the new carrier. Hence, it takes about four months from order placement for the equipment to
be online.

The monthly maintenance fee of a cluster is the cost of a cell site technician and a T1 cable connection.
A cell site technician maintains approximately 20 cell sites. The cost of a cell site technician is assumed to
$150 � 000 per year. Hence the monthly salary cost per cell site is assumed to be $150 � 000 � 20 � 12 � $625
per month or $7 � 500 per year. Cell site leasing costs are approximately $1 � 500 per month and T1 backhaul
costs are approximately $500 per month per T1. Since, there is one T1 per carrier, a 3 carrier site would
have 3 T1s provisioned. Electricity and warranty costs are respectively $250 and $200 per cell site. Thus
the total maintenance cost for the cluster cost per month is about $150 � 000 � 12

�
$1 � 500 � 20

�
$500 � 20

��
$250

�
$200 � � 20 � $61 � 500. Table 4 contains a summary of the maintenance costs.

Number of carriers per cell site Cluster monthly maintenance cost

1 $61,500
2 $71,500
3 $81,500

TABLE 4: Maintenance costs for a cluster in dollars per month. The maintenance costs vary de-
pending on the number of carriers installed on the cluster.

For voice traffic, the price per carrier is decreasing every year, but not by a significant amount. Vendors
offer features to increase the traffic handling capability of each carrier every couple of years. By offering
enhancements, the vendor feels justified in keeping the dollars per carrier rate relatively stable. Five percent
per year is probably a good assumption for the decay factor of the average revenue per user.

Note that this decay factor is not the same as in Figure 1 (i.e. 8%). Figure 1 was constructed using
Bell Canada quarterly financial reports. The decay factor and volatility were estimated using the methods
described in Appendix A. From our discussions with network operators [9], we found that a decay factor of
5% was more representative for the expected future decrease of the average revenue per user. Furthermore,
the initial installation cost for a cluster is approximatively $20 million and we will assume that the upgrade
cost (Table 3) decreases at a rate of 5% per year.

As for cluster characteristics, we assume:

� A cluster is composed of 20 cell sites.

� Each cell site starts with one carrier and can be upgraded to contain up to three carriers.

� Traffic is homogeneous throughout the cluster.
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� It takes 4 months after order placement until the upgraded cluster is completely operational.

� Each cell site of the cluster has three sectors.

� The maximum number of minutes per hour that can be handled at 2% blocking for a particular sector
of a carrier of a cell site is given in Table 5.

� The maximum number of minutes that can be handled at 2% blocking for the cluster (20 cell sites) in
the hour per sector and in the year per sector is given in Table 6. It is computed by multiplying the per
hour capacity (see Table 5) times the number of hours per year.

Users Erlang Minutes of traffic in the hour

20 13.2 792
40 31.0 1860
60 49.6 2976

TABLE 5: Maximum number of minutes that can be handled at 2% blocking for a particular sector
of a carrier of a cell site.

Minutes of traffic in the hour

One cell site Cluster (20 cell sites)

792 15,840
1860 37,200
2976 59,520

TABLE 6: Maximum number of minutes that can be handled at 2% blocking for the cluster (20 cell
sites) in the hour per sector.

The remaining parameters are summarized in Table 7.

Parameter Value

Investment horizon (T ) 5 years
Decay in price (α) .05/year

Growth rate (µ) .3/year
Volatility (σ) .65/year

1
2

Risk free rate (r) .04/year
Market price of risk (κ) [.03 .08]

TABLE 7: Model parameters that are used to solved equation (3.14).

5 Results

The volatility σ and growth rate µ have been estimated from reliable bouncing busy hour traffic data time
series (see Appendix A). The tests conducted on these time series indicated that there was a large amount
of volatility σ in the traffic data despite the general belief in the industry that traffic is very seasonal and
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predictable. Consequently, in the following we assume that the volatility σ and growth rate µ are given, and
we focus on the upgrade time interval and the safety level factor. For a more detailed analysis of the effects
of the volatility and growth rate, readers are referred to [3].

Table 8 contains different simulation results for the same safety factor level. The safety level is the
percentage of the maximum capacity, at 2% blocking, of the cluster that is allowed to be used. In Table 8,
the safety level is set to 100%, meaning that all of the cluster capacity, at 2% blocking, is available and the
stream of revenues becomes capped as the maximum capacity is reached. In Table 8, we present our results
for both values of the estimated market price of risk κ. We notice that for the higher value of κ � �

08, the
percentage in terms of the maximal cluster capacity at which it is optimal to upgrade is higher than when
κ � �

03. This result is in accordance with our modeling framework, since as κ increases, the drift term
(r
�

κσ) of (3.10) decreases, and the upgrade should occur later. However, in Table 8 we observe that the
difference between the two market prices of risk, in terms of the optimal upgrade percentage, is negligible
( � 4%). This indicates that our results are not very sensitive to our estimate of κ.

In Table 8, we find that at present it would be optimal to add a new carrier to each cell site of the cluster
if 80-82% of its maximum capacity is reached when considering monthly upgrade decision dates. Table 8
presents the results for other upgrade decision intervals. As the upgrade decision interval is increased from
monthly upgrade decisions to annual upgrade decisions, the upgrade percentage decreases from 80% to
50%. Intuitively, this simply reflects the fact that with less frequent decisions it is better to upgrade earlier,
since there are fewer opportunities to make decisions. This behavior is consistent with the results found in
[2].

Upgrade decision Add one carrier Add two carriers
interval κ � �

03 κ � �
08 κ � �

03 κ � �
08

monthly 80% 82% 94% 97%
quarterly 69% 71% 78% 83%

semi-annually 62% 64% 71% 77%
annually 49% 51% 60% 62%

TABLE 8: Today’s upgrade decision in terms of upgrade percentage with respect to the maximum
capacity of the cluster at 2% blocking. We allow 100% usage of the total cluster capacity. Above
100%, the revenue stream is capped by the cluster maximum capacity. Parameters are r � �

04,
σ � �

65, µ � �
3, and T � 5 years. It takes four months between the time the equipment is ordered

and the time it is online.

Finally, we observe from Table 8 that in all simulations we conducted, it may be optimal to add two
carriers for each cell site of the cluster instead of just one, if the traffic is high enough.

5.1 Quality of Service Modeling

Our modeling framework enables us to take into account criteria such as quality of service. For instance,
it is conceivable that engineers prefer a safety buffer between the maximum capacity (at 2% blocking) and
the capacity available to customers. Once this threshold is reached, the quality of service deteriorates. To
compensate, customers may receive rebates or free calls. Of course, customers may also seek alternative
vendors.

We adopt the following simple model to investigate how quality of service can affect the upgrade de-
cision. Let φ be the safety factor, representing a percentage of the maximum capacity of the cluster. Then
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Safety factor Add one carrier

No safety 64%
100% 57%
90% 55%
80% 53%

TABLE 9: Today’s upgrade decision with different safety factor values in terms of upgrade percent-
age with respect to the maximum capacity of the cluster at 2% blocking. Parameters are r � �

04,
σ � �

65, µ � �
3, κ � �

08, T � 5 years. Upgrade time is four months. Cluster upgrade decisions are
taken every six months.

specify revenue as

R
�
Q � Q j � τ � �

���� R
�
Q � Q j � τ � � � Q � P

�
τ � � if Q � φQ j

P
�
τ � Q j max

�
1
� Q � φQ j

φQ j
� 0 � 0 � otherwise.

For example, φ � �
9 implies that only 90% of the maximum capacity of any given cluster (at 2% blocking)

can be used. Note that the above expression implies that revenues eventually drop to zero as demand keeps
increasing. Effectively, we are adding a financial penalty as the quality of service deteriorates. It might also
be possible to develop penalty functions based on the effect of quality of service on customer “churn rates”
(i.e. the loss of customers to other vendors as a result of poor service), or other criteria. This differs from
the cases considered above in Table 8 where revenue was simply capped once capacity was reached.

In Table 9, we present the results for several simulations with the safety level ranging from 100% to 80%
when the upgrade decision is considered every six months for κ � �

08. We observe that as the safety level
decreases, the upgrade occurs sooner in terms of the percentage of the total capacity of the cluster. Similar
behavior is reported when upgrade decisions are made for shorter time intervals (e.g. quarterly, or monthly).
This phenomenon is intuitively correct: if there is a financial penalty for poor quality of service, upgrades
will occur sooner.

6 Conclusion

In this paper, we considered the issue of management of wireless network capacity. While the method
presented here is similar to that described in [3], the limitations embedded in the algorithm in that work are
alleviated by developing a four dimensional model. This enables us to consider different upgrade decision
intervals independent of the time period before the new equipment becomes operational.

As previously noted, in practice current upgrade decisions are often based purely on quality of service
criteria. We believe that it is important to also consider financial criteria in terms of maximizing net revenues.
By developing appropriate penalty functions which assign a cost to poor quality of service, we can combine
both financial and quality of service criteria. This approach will require managers to assign a cost to quality
of service issues. Penalty functions could be real financial incentives provided to users (e.g. during high
blocking periods, all calls are free), or they could be based on customer churn rates.
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A Estimation of Growth Rate and Volatility Parameters

We obtain daily bouncing busy hour traffic data from [9] for three representative switches for a time period
of a little over one year (from mid-2000 to mid-2001). We will refer to these different switches as A, B, and
C. An initial analysis of the traffic data showed a strong autocorrelation of the time series within each week
(see Figure 7(a)). This is not surprising, since we expect that there will be repetitive patterns within each
week. To filter out this effect, we average the yearly network traffic for each day of the week separately, and
choose the day with the highest average bouncing busy hour traffic (see Figure 7(b)). We then use this same
day each week to estimate week to week effects.
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(a) One year total daily bouncing busy
hour traffic, switch A. The stars indicate
the weekly highest traffic days.
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(b) One year total daily bouncing busy
hour traffic, switch A. The data corre-
sponds to the highest average day traf-
fic per week. This day is chosen based
on the average network traffic that day
encounters throughout the year. Once
that day is found, it remains the same
for the rest of the year.

FIGURE 7: Total daily bouncing busy hour traffic time series for switch A.

Prior to estimating the drift term µ and the volatility σ, an inspection of Figure 7(b) reveals several
suspicious large drops in traffic. Basing our volatility estimate on this data would produce a very high value.
Some of the short term declines are simply due to statutory holidays or scheduled maintenance. As these
are known events for low network traffic, we should not take them into account when estimating volatility.
Consequently, the dates corresponding to statutory holidays and suspicious changes are smoothed out using
interpolation. The month of December is also ignored since it is a known low traffic period. Figure 8
presents the time series once the holidays and the large drops have been removed and smoothed out.

Equation (3.1) implicitly assumes that bouncing busy hour traffic is lognormally distributed. Con-
sequently, based on the bouncing busy hour traffic logarithmic weekly changes (i.e. ui � log

� Qi � 1
Qi

� for
i � 1 � � � � � M �

1, where M is the number of points in the time series once the weekly cycles have been
removed) the drift term is estimated using a least squares method. Next the estimated trend is removed. The
final results are presented in Figure 9.

As a diagnostic test, we use the Ljung-Box Q-statistic (see, e.g. [1]) on the detrended logarithmic relative
traffic change. We calculate this for 4 lags. For each switch, this test statistic indicates that there is no
remaining serial correlation in the data.

The volatility is finally estimated under the assumption that relative changes in network traffic are log-
normally distributed, as implied by equation (3.1). Table 10 presents our results for different time series.

From Table 10, we notice that network traffic is highly volatile. The volatility values can be compared
to volatilities in the range of 15% to 30% for stock market indices. For our simluations we will average the
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FIGURE 8: One year total daily bouncing busy hour traffic on switch A without major holidays and
suspicious events. The month of December is ignored. The data corresponds to the highest average
day traffic per week. This day is chosen based on the average network traffic that day encounters
throughout the year. Once that day is found, it remains the same for the rest of the year.
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FIGURE 9: One year logarithmic daily bouncing busy hour relative traffic changes. Known holidays
and suspicious changes have been replaced using interpolation. The month of December is ignored
and the trend of the time series has been removed.

results for both the drift term and volatility, using µ � �
30 � year and σ � �

65 � (year)
1
2 .

Bouncing busy hour daily traffic time series

Drift term µ � � year � Volatility (filtered data) σ � � year � 12
Switch A -.24 .90
Switch B .41 .74
Switch C .73 .32

TABLE 10: Summary table of results for the time series for three representative switches provided
by [9].
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FIGURE 10: Return on TSE300 index
versus return on Microcell Communica-
tions. Each point represents pairs of
daily returns. The vertical axis measures
the daily return on the stock and the hor-
izontal axis that of the TSE300.

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04

−0.1

−0.05

0

0.05

0.1

0.15

Return on market

R
et

ur
n 

on
 s

to
ck

Rogers Wireless Communications

FIGURE 11: Return on TSE300 index
versus return on Rogers Wireless Com-
munications. Each point represents
pairs of daily returns. The vertical
axis measures the daily return on the
stock and the horizontal axis that of the
TSE300.

B Estimation of the Market Price of Risk

We follow the general approach described in [11] which uses stock market data. However, Bell Mobility
is not a publicly traded company, so we need to find public Canadian companies whose revenue streams
are similar to that of Bell Mobility. Two such companies are Rogers Wireless Communications Inc. and
Microcell Telecommunications Inc.

For each company, we must first compute the systematic risk exposure using the standard capital asset
pricing model. Because each firm has significant amounts of debt outstanding, we will initially use the
levered equity’s beta β as the measure of the systematic risk. To estimate βs, we run linear regressions of
returns for each stock versus the return on the market. We use the TSE300 index as a proxy for the return on
the market. Figures 10 and 11 present the return for the market versus the return for Microcell and Rogers.

Figures 12 and 13 show the line of best fit superimposed on each point representing pairs of daily return
data. For Microcell Telecommunications we find β � 1

�
0455, while β � �

5603 for Rogers Wireless.
Once the levered betas for both firms have been estimated, we calculate the beta for the hypothetical

unlevered firm. To compute the unlevered firm’s beta from the levered equity beta, the firm’s debt, market
capitalization and corporate tax rate must be estimated. The unlevered firm’s beta is then given by

βunlevered � E
E

� �
1
�

Tc � Dβ � (B.1)

where

E � market capitalization (total number of shares times share price) �
D � long term debt �
Tc � corporate tax rate

�
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FIGURE 12: The figure shows the line
of best fit superimposed on the points
in Figure 10. The slope of the regres-
sion line β � 1

�
0455. For this regression,

R2 � �
3301.
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FIGURE 13: The figure shows the line
of best fit superimposed on the points
in Figure 11. The slope of the regres-
sion line β � �

5603. For this regression,
R2 � �

2150.

Long term debt $ 1,887,048,000
Corporate tax rate 40%

Stock price (on February 13, 2002) $2.68
Number of shares 240,000,000

TABLE 11: Microcell Telecommunications Inc. corporate data. Dollar figures are in
Canadian funds. This data is based on a financial analysis published by the web site
http://www.globeinvestor.com/ on February 13, 2002 and Microcell Telecommunications Inc.’s
quarterly financial reports.

Note that for both companies, we will use the statutory rate of 40% for the corporate tax rate. Tables 11 and
12 contain the information we used to calculate the unlevered beta for each company.

Using equation (B.1), we find that

βunlevered
Microcell � 2

�
68 � 240

2
�
68 � 240

� �
1
� �

4 � � 1887
�
048

1
�
0455

� �
37876 �

and

βunlevered
Rogers � 17

�
78 � 144

�
4

17
�
78 � 144

�
4
� �

1
� �

4 � � 2305
�
638

�
5603

� �
36411

Averaging these two values, we estimate that the unlevered Bell Mobility β is given by βunlevered
Bell Mobility � �

3714.
Note that our use of unlevered betas means that our real option valuation is biased low for an investment
project financed with debt, as interest tax shields have not been accounted for. The value of these tax shields
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Long term debt $ 2,305,638,000
Corporate tax rate 40%

Stock price (on April 18, 2002) $17.78
Number of shares 144,400,000

TABLE 12: Rogers Wireless Telecommunications Inc. corporate data. Dollar figures are
in Canadian funds. This data is based on a financial analysis published by the web site
http://www.globeinvestor.com/ on April 18, 2002 and Rogers Wireless Telecommunications Inc.’s
quarterly financial reports.

Long term debt $ 14,861,000,000
Corporate tax rate 40%

Stock price (on August 2, 2002) $39.08
Number of shares 808,600,000

TABLE 13: Bell Canada Enterprises corporate data. Dollar figures are in Canadian funds. This
data is based on a financial analysis published by the web site http://www.globeinvestor.com/ on
August 2, 2002 and Bell Canada quarterly financial reports.

could be added later, if desired. Given the current financial situation in the telecommunications sector, it
appears unlikely that new debt financing would be available at present.

Now that we have estimated the unlevered beta for Bell Mobility, we can compute the market price
of risk κ. As mentioned, we follow the methodology described in [11]. For readers unfamiliar with this
approach, we present here a short description.

In [11], it is claimed that using the β of the firm’s stock to estimate the risk premium in a real options
model constitutes a significant improvement over earlier work which used the traditional approach based on
the covariance of changes in the state variable(s) with the market portfolio. Briefly, and more simplistically
than in [11], the idea is as follows.

Suppose there is a single stochastic factor X (in our context this is Q ), which follows the risk-adjusted
process:

dX � �
µ
�

λ � Xdt
� σXdz � (B.2)

where µ is the real world drift, σ is the volatility, λ is the risk premium (market price of risk multiplied by
volatility λ � κσ is our new notation), and dZ is an increment of a Wiener process. Let the firm’s stock price
be S. From Ito’s lemma [11, 12], we have:

dS
S
�

�
1
2 σ2X2SXX

� �
µ
�

λ � XSX
�

St �
S

dt
� σXSX

S
dz � (B.3)

where the risk premium is:
λXSX

S

�
(B.4)

The authors of [11] then use the intertemporal capital asset pricing model (ICAPM) in the following
way. The firm’s stock β, denoted by βS, is the covariance between returns on the market portfolio M and
returns on the stock. This can be written as a function of the “β” of the stochastic factor X :

βS � σSM

σ2
M

� XSX

S
σXM

σ2
M

� XSX

S
βX � (B.5)
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where σSM is the covariance between changes in S and M and similarly for σXM . In the ICAPM, the expected
return on the stock is:

rS � r f
� βS

�
rM

�
r f � � r f

� XSX

S
βX

�
rM

�
r f � (B.6)

where r f denotes the risk free rate of interest and rM is the expected return on the market portfolio. Equating
the risk premium from (B.4) with that implied in (B.6) gives:

λXSX

S
� XSX

S
βX

�
rM

�
r f �

� λ � βX
�
rM

�
r f � � (B.7)

Using (B.5), we have:

λ � SβS

XSX

�
rM

�
r f � � (B.8)

i.e. the risk premium is a function of the expected excess market return, the firm’s current stock price, the β
of the firm’s stock price, the current level of the stochastic factor X , and SX .

Returning to our context, we then have:

λ � κσ � Sβunlevered
Bell Mobility

Q SQ

�
rM

�
r f � � (B.9)

where S is BCE’s current stock price, Q is the current level of traffic, and SQ is the first derivative of the
stock price with respect to the level of traffic.

All the parameters from equation (B.9) are known except SQ , rM and r f . For the risk free rate r f , we
assume a value of r f � �

04. We assume that the expected market return rM is 6% higher than the risk
free rate (roughly consistent with the average level for the past 50 years of Canadian data). Thus we have
rM � �

1. SQ is a more challenging parameter since there is no direct data from which we can determine SQ .
Consequently, to estimate SQ , we estimate a linear regression based on BCE stock price and traffic data.
Figure 14 presents the results. We find that SQ � 9

�
0057 � 10 � 05 dollars per (minutes/busy hour).

Consequently, replacing SQ by its corresponding value, using Q � 1
�
9197 � 105 minutes per hour(Q

corresponds to the busy bouncing hour traffic data as of August 2, 2002) and the stock price information
contained in Table 13 and equation (B.9) gives

λ � 39
�
08 � �

3714
1
�
9197105 � 9

�
005710 � 5

� �
1
� �

04 �
� 14

�
5143

17
�
2882

� �
06

� 0
�
0503

Hence, the market price of risk κ � λ
σ � �

077.

C Estimation of the Market Price of Risk, An Alternative Approach

In this section we present another approach to estimate the market price of risk κ. This follows the discussion
in [5]. The assumption is that the investment to upgrade capacity depends solely on the network usage.
Consequently, if we can determine the correlation between market returns (i.e. TSE index) and the bouncing
busy hour changes, it is possible to estimate the market price of telecom risk as follows

κ � ρκM � (C.1)

23



1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
5

22

24

26

28

30

32

34

36

38

40

42

Traffic

S
to

ck
 p

ric
e

Best Linear Fit:  A = (9.01e−05) T + (15.4)

Data Points
Best Linear Fit
 

FIGURE 14: The figure shows the line of best fit superimposed on these points. The slope regression
coefficient SQ � 9

�
005710 � 05 . For this regression, R2 � �

6198. We use the one year time series of
bouncing busy hour traffic data obtained from [9]

where ρ is the instantaneous correlation between the bouncing busy hour changes and returns on a broad
index of stock market prices (in our application, the TSE300), and

κM � rM
�

r f

σM
�

where rM is the anticipated market return, r f is the risk free rate, and σM is the market volatility. We assume
that rM

�
r f � �

06, and that σM � �
2383. The volatility σM is determined using the same historical period as

the network traffic time series.
Using the same time series as in Appendix B [9] we find that ρ � 0

�
1171. Thus

κ � 0
�
1171 � �

06
0
�
2383

� �
03
�

Consequently, we find that κ varies between � �
08 (Appendix B) and � �

03 (Appendix C). The differ-
ence between these two values is due to the fact that in the second approach (Appendix C), we estimate the
correlation between the demand and a stock market index (i.e. the TSE300). However, since we have only
one year of bouncing busy hour traffic data, it is difficult to have an accurate estimate of the correlation.
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