18

Optimal Network Access Pricing for Natural Monopolies when Costs are Sunk and Revenues are Uncertain

Ephraim Clark

Finance Department, Middlesex University Business School

The Burroughs, London NW4 4BT, UK

and 

Joshy Z. Easaw

Department of Economics and International, University Of Bath,

Claverton Down, Bath, BA2 7AY, UK 

15/05/2003

Optimal Network Access Pricing for Natural Monopolies when Costs are Sunk and Revenues are Uncertain

Abstract

Based on the principle that competition in the final goods (services) market leads to a situation of social welfare maximization, regulation has come to focus on network provision and access pricing that can guarantee this competition. In this paper, we study optimal access pricing for natural monopoly networks with large sunk costs and uncertain revenues. Using techniques from the option pricing literature, we show that the optimal access price corresponds to a risk-free form of the Efficiency Component Pricing Rule (ECPR), that is, where the opportunity cost is based on the risk free rate of return. We also show that at levels of revenue above the optimal level that triggers entry, the entrant should pay a premium above risk-free ECPR that rewards the incumbent for relinquishing his rights to the risky cash flows at the higher revenue level.
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I.   Introduction


In this paper, we study optimal access pricing for networks that are natural monopolies. Our study incorporates uncertainty about the future revenue to be derived from providing the final good or service and the fact that many natural monopoly network investments are intrinsically irreversible because they include a large element of sunk costs. Using techniques from the option pricing literature, we show that the optimal access price is determined by a certain level of revenue that equates the position of incumbent and entrant and should be equal to the price derived in the Efficiency Component Pricing Rule (ECPR), that is, operating costs plus opportunity cost. The first contribution of  this paper to the literature is that we show that this opportunity cost should be based on the risk-free rate of return. The second contribution is that we show that the access price can differ from one entrant to another, depending on the level of revenue at the time of entry. At levels of revenue above the optimal level that triggers entry, the entrant should pay a premium above risk-free ECPR that rewards the incumbent for relinquishing his rights to the risky cash flows at the higher revenue level.


Most economists agree that regulation should be applied only when significant market power can lead to unregulated prices well above prices that would prevail in conditions of full competition. Thus, natural monopolies are the natural habitat for regulators, whose general goal should be to maximize present and future social welfare. The tendency in regulation has been to liberalize the final goods (service) market so that prices in this market are determined by the laws of supply and demand and to concentrate regulation on the price to be paid by final good (service) suppliers for access to the monopoly network. Traditional studies of network access pricing, such as Averch and Johnson (1962) for rate of return regulation (ROR), Laffont and Tirole (1994), Laffont, Rey and Tirole (1998a and 1998b) and Baumol and Sidak (1994) for marginal cost pricing and Laffont and Tirole (2000) for price cap regulation, are carried out in conditions of certainty and fail to consider sunk costs and the irreversiblity of many natural monopoly network investments. Non-traditional studies based on real option theory, such as Economides (1999) and Hausmann (1999) for the telecommunications industry and Clark and Mondello (2000) for water management, explicitly incorporate the role of uncertainty and sunk costs. Economides and Hausman deal with an oligopoly and underline the role of depreciation in determining the optimal access price while Clark and Mondello consider a natural monopoly. They point out the role of exit and re-entry in determining a socially optimal revenue interval. The main premise of all these studies is the need to incorporate the role of investment on the quality and supply of the final good (service) and also consider the irreversible nature of many investments and the effect of the uncertainty on the investment decision.

The problem is how to account for uncertainty and sunk costs while maintaining incentives for final goods (service) suppliers. If the access price is too low to cover sunk costs, the network provider will not have the incentive to maintain the network, thereby reducing future social welfare by reducing the supply of future final goods (services). If the access price is too high, final goods (service) providers will not find it worthwhile to enter or stay in the market, thereby reducing current social welfare through a reduction in competition. 

In this paper, using standard techniques in stochastic calculus under a set of mild assumptions
, we argue that the optimal access price is the certainty equivalent of expected risky project cash flows that rewards the network provider for undertaking the risky investment. We show that this price can be calculated as the solution to a conventional control problem in capital budgeting where the access price, rather than revenue, is the object of the optimisation. We also show that when entry is an ongoing process, estimating the optimal access price in this way guarantees that no advantage can be gained by timing the entry date. The optimal access price rewards the incumbent for relinquishing his rights to the risky cash flows at the higher income level. It also offsets what would otherwise be the entrant’s windfall for entering at a moment when revenue is higher than the optimal entry level. The situation is analagous to that of an entrant who enters by buying out an existing supplier. The price he would have to pay would reflect the current level of revenue. Thus, eliminating the windfall has the desirable effect of maintaining competition in the final goods market, since it ensures that no entrant is advantaged or disadvantaged with respect to other final goods suppliers as well as with respect to the incumbent.

We begin our analysis by examining the network investment decision when final goods (services) prices are welfare maximizing, that is, competitively determined.
 In such a case the relevant issue is the timing of the investment and the level of revenue that triggers it. In Section III we use this analysis to determine the optimal access price when the entrant has to interconnect to the natural monopoly network provided by the incumbent. Section IV concludes.

II.  Real Options and Optimal Access Price: The Model

           In the present section we analyze the monopolist's decision to invest, where we assume that prices for final goods (services) are determined in a perfectly competitive market. We consider such a scenario not as a representation of reality, since we are dealing with a natural monopoly, but rather to establish a benchmark that we then use as the basis to determine the optimal access price associated with the risky investment. 

We use the following notation:

I = the investment outlay 

P = price per unit

D = total demand

C = 
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 = operating costs for supplying the final good
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 = operating costs for operating the network
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  = depreciation defined as the loss of investment value due to usage and the passage of time.
 

We also make the following assumptions:

1. The investment outlay is constant, which means that the current period's cost of undertaking the investment is equal to the cost of the original investment.

2. The investment scale is constant and optimal.

3. Costs are constant.
 

Assumptions 1, 2 and 3 are made to facilitate the exposition and are not necessary for the demonstration.

4. The final goods market is perfectly competitive. From Newberry (1997), we know that competition in the final goods market leads to a welfare-maximizing price. This assumption eliminates the possibility of competition stifling behaviour such as that embedded in first mover advantage and makes it possible to focus on the aspect of network supply and the access price.

5. Price evolves stochastically through time. Since prices cannot be negative, we let P follow a process of geometric Brownian motion with drift to reflect the stochastic innovations as well as any long-term trend in price evolution:
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where 
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  is the expected rate of price growth, 
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 is the standard deviation of  
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 is a Wiener process with zero mean and variance equal to 
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6. Since demand includes a stochastic element and cannot be negative, we let D follow a process of geometric Brownian motion to reflect the stochastic innovations. The drift term is equal to zero because the investment scale is constant:


[image: image11.wmf] 

)

(

)

(

)

(

t

dw

t

D

t

dD

w

=

  




         (2)

The parameter 
[image: image12.wmf]w

 is the standard deviation of the expected percentage change in demand. The variable 
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 is a standard Weiner process with zero mean and standard deviation of dt. The relationship between D and P is reflected in 
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 is the instantaneous correlation between D and P. The negative correlation implies a downward sloping demand curve.

II.A The Value of the Investment 

Let 
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 represent the revenue from the investment project calculated as the unit price multiplied by the number of units sold:
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Using Ito’s lemma and equations 1 and 2, the evolution of 
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where the time arguments have been dropped for ease of notation and 
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Market equilibrium is a prerequisite for optimal resource allocation, where each asset just earns its risk adjusted required rate of return. The market equilibrium risk adjusted required rate of return on 
[image: image24.wmf]x

t

(

)

 can be found by applying the continuous time CAPM directly to
[image: image25.wmf]x

t

(

)

. The required rate of return will be given by


[image: image26.wmf]m

lsr

=

+

r

xm

          

          

          

          

          

      



(5)

where 
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 is the riskless rate of interest, 
[image: image28.wmf]l

 is the market price of risk, 
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 represents the known dividend rate, which is given by policy.

Net revenue is equal to 
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 and the value of the investment project, 
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.  Using standard methods in stochastic calculus gives the following differential equation:
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 whose general solution is
:


[image: image39.wmf]2

1

2

1

)

(

g

g

d

x

A

x

A

r

C

x

x

V

+

+

-

=



                       (7)
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Using the boundary conditions in Appendix 1 gives
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Equation (8) says that the value of the investment project is equal to the present value of the expected net cash flows where revenue (x) is discounted at the rate 
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 and cost (C) is discounted at the rate r.

II.B The Value of the Option to Invest

We now turn to the investment decision and the value of the option to invest. We want to know the value of the total investment opportunity of size 
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, given assumptions 1 through 6. The investment is undertaken if the level of revenue associated with the project warrants it, that is, when x reaches the threshold, noted as x*, where more is to be gained from investing than from waiting. This is the well-known option to defer (see for example, Dixit and Pindyck, 1994 and Trigeorgis, 1996), whose value, derived in Appendix 2 and noted as 
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           Equation (9) represents the value of the option to undertake the investment if it were possible for the firms supplying in the final goods market to provide their own network at constant returns to scale. The option will be exercised and the investment undertaken when the revenue to be realized from the investment reaches x*, determined in Appendix 2 as equal to:
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This, then, is a description of the monopolist's decision to invest if the prices in the final goods (services) market are those that would prevail in conditions of perfect competition. Equation (10) brings out the role of uncertainty in the investment decision.
 If investment decisions do not account for uncertainty, the investment would be undertaken according to equation (8) when 
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Comparing equations (10) and (11) shows that 
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. Thus, x** is the certainty equivalent of x* and the ratio 
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We now turn to the case where network provision is a natural monopoly with a fully deregulated and liberalized final goods market. The incumbent has already undertaken the investment and the entrants interconnect by paying an access price. 

III. Determining the Optimal Access Price

When there is a natural monopoly for network supply and the investment has already been undertaken, the problem is similar to the one described above but the focus changes from the optimal timing of the investment to determining the optimal access price. Consider the position of the incumbent who has undertaken the investment along with all the associated risks. If he cedes access to his investment, the access price, which is a fixed amount, should include compensation for the risks he has undertaken up to the time of cession. By the same token, the entrant will be taking on these risks and should be rewarded for doing so. In effect, the incumbent is exchanging his risky cash flows for a certainty equivalent, which was determined in preceding section. Thus, the problem now is to find the amount the entrant must pay that satisfies the certainty equivalent requirement for the incumbent but does not deter entry. 

The position of the entrant is analogous to that of the potential investor in the preceding section. Since he is under no obligation to enter the market, he has an option to defer entrance until it is in his best interest to do so. However, whereas the investment decision described above depended on the minimum level of revenue (x = x*) necessary to give up the option and undertake the investment, the entrant’s decision depends on the access price he will have to pay if he decides to enter. If the price is too high, he will not want to enter. On the other hand, if it is too low, the incumbent will not want to provide access.
 The problem is to determine the price that satisfies both parties. To do this, we model the position of the entrant.

Suppose that there are n potential entrants, each one willing to purchase 
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. In the absence of access payments the ith entrant would have neither the costs associated with running the network nor network depreciation costs. Thus, his revenue would be 
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Let 
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 of his network capacity. We can think of it as the present value of all the instantaneous payments to be paid by the entrants. Going through the same steps as before gives
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The first boundary condition is based on the argument stated in Appendix 1 that when revenue is equal to zero, the investment opportunity has no value:

        
[image: image75.wmf]0

)

0

(

=

i

f







        (14)

This implies that 
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The second boundary condition, called the value matching condition, relates to the fact that when the entrant contracts to pay the access price, he acquires the rights to the associated cash flows. The present value of these cash flows is given in equation (12). The present value of the instantaneous access payments is given as 
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Solving simultaneously gives the particular solution to equation (13) as
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where 
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 is given above,
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and
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The level of revenue necessary to trigger entry depends on
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In equation (10) we determined the minimum level of revenue to justify undertaking the investment. Thus, at levels of 
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Notice that M* includes the certainty equivalent of x* defined in equation (11) as x** = x*
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We recognize this as the certainty equivalent for 
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 in equation (11), which proves that M* satisfies both incumbent and entrants. The instantaneous payout to the incumbent by the entrants is 
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which, because 
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 is negative, is less than the minimum given in equation (20).


Now suppose that 
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The incumbent, however, would not accept M* because the certainty equivalent of 
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 the amount he would receive at M*. In fact the incumbent would require a value of 
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 The last two terms on the right hand side of equation (23) are equal to the certainty equivalent M* estimated at x*. The first term is the present value of the difference in revenue due to entry at 
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. The incremental payout rewards the incumbent for relinquishing his rights to the risky cash flows at the higher revenue level. It also offsets what would otherwise be the entrants’ windfall for entering at a moment when revenue is higher than the optimal entry level. If the price were the same for all entrants, regardless of the level of x at the time they entered, a higher entry level of x for one entrant would present him with a windfall gain with respect to those who entered at a lower level of x.

IV. Concluding Remarks

In this paper, we study optimal access pricing for natural monopoly networks  that incorporates uncertainty about the future revenue to be derived from providing the final good or service and the fact that many natural monopoly network investments include a large element of sunk costs. We show that the optimal access price is the certainty equivalent of expected risky project cash flows that rewards the network provider for undertaking the risky investment. It turns out that this price corresponds to the risk free form of the Efficiency Component Pricing Rule, that is, operating costs plus opportunity cost estimated at the risk-free rate of return. We also show that if entry occurs at a level of revenue above the optimal level that triggers entry, the entrant should pay a premium above risk-free ECPR that rewards the incumbent for relinquishing his rights to the risky cash flows at the higher revenue level. It also offsets what would otherwise be the entrant’s windfall for entering at a moment when revenue is higher than the optimal entry level and has the desirable effect of maintaining competition in the final goods market, since it ensures that no entrant is advantaged or disadvantaged with respect to other final goods suppliers as well as with respect to the incumbent.
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Appendix 1


The general solution to (6) is:
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The constants 
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 and 
[image: image119.wmf]2

A

 depend on the boundary conditions.  The first boundary condition in straightforward.  When revenue is equal to zero, the investment has no value:
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This condition implies  
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 = 0. If we rule out speculative bubbles, the second boundary condition is:
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which implies that 
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.  Thus, the solution to (A1.1) is that given in the text.

Appendix 2

In order to value this option, noted as 
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, we follow Dixit and Pindyck (1994) and set up a hedge portfolio with one unit of the option to invest and a short position in 
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.  Using standard techniques yields the following differential equation:
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The general solution to (A2.1) is:
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When revenue is zero, the option has no value. Thus, the first boundary condition is:
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which implies that 
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The second boundary condition depends on revenue and the cost of exercise.  There will be a value of 
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, where it will be optimal for the potential investor to exercise the option. At this point he will receive the value of the investment less the cost of exercising the option.  This cost is equal to the investment outlay.  Thus, the value matching condition is
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where 
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 is the exercise price, i.e. the investment outlay.  The smooth pasting condition that makes it possible to find [image: image135.wmf]x
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Solving equations (12) and (13) simultaneously gives the solution in the text where
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and
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� The assumptions refer to the application of Ito’s Lemma  and the solution of the resulting differential equation which require that the function be from C2 , that is a twice differentiable function with the second derivative continuous.


� See Newberry (1997).


� In accounting practice depreciation allowances are often influenced more by tax considerations than by the actual loss of the asset’s value. In this paper we are interested in the economic cost associated with the reduction in the value of the investment due to usage and the passage of time. See Economides (1999) and Hausmann (1999) for a discussion of this point in the context of the telecommunications industry.


� Stochastic operating costs can easily be included. However, it complicates the analysis without enhancing the understanding of the issues.


� As argued in Dixon and Easaw (2001) it is essential to remove any first mover advantage to enable a fully liberalized final goods market that ensures welfare maximizing outcomes. 





� An alternative, equivalent procedure involves applying the Girsanov theorem to obtain the risk neutral martingale measure. In this case, if we assume that �EMBED Equation.3��� is known or given by policy, �EMBED Equation.3��� becomes �EMBED Equation.3���.


� Note that the cash flow is net of depreciation, which is included in the cost. This implies that the cash flows accruing to depreciation are reinvested, thereby guaranteeing the perennity of the investment.


� We drop the time arguments to simplify the notation.


� Notice that the second member of the left hand side of equation 6 includes the risk neutral growth rate �EMBED Equation.3���, which was mentioned in footnote 7. This risk neutrality is the result of the hedging operations and requires that all discounting be done at the risk-free rate � EMBED Equation.3  ��� when there is no growth  and at �EMBED Equation.3��� when there is growth.


� For an in-depth treatment of this point see Dixit and Pindyck (1994 pp 140-147).


� Thus, when there is uncertainty, the level of revenue (and profit, since costs are assumed constant) must be higher to justify the investment. Since �EMBED Equation.3���, the uncertainty factor increases with volatility, which means that the required amount of revenue increases as uncertainty increases. 





� If the incumbent is forced to provide access at a price that is too low, he will not have the incentive to maintain the network.
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