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Introduction

The control and reduction of volatility of profits from operations is beneficial to shareholders’ wealth which

should seek it through appropriate hedging operations. This has been well proven both from a theoretical

and an empirical point of view.1

In a firm viewed as a nexus of exposures (MacMinn, 2002), enterprise risk management (ERM) can be

implemented in a transaction by transaction way or in a holistic integrated way hedging overall profitability

of the firm against marketable risks. In both these approaches to ERM, the role of real options is neglected,

overlooking the “in house” hedging effect of managing an industrial plant according to real options.

Capital budgeting for intrinsically illiquid assets like industrial plants is interwined with risk manage-

ment. Hence there is the need to value investment projects not only within the usual risk return framework

but also taking into account their diversifiable risk dimensions (Stultz, 1999).

In this normative paper, we add a new dimension to capital budgeting with real options: in a univariate

framework, (Kulatilaka, 1988), we model total variability in expanded NPV and in CF in each period of

the investment project life when this is managed exercising optimally real options. This allows us to tackle

downside risk from two different perspectives. From a static point of view, we provide a measure of what

is usually called the “project at risk” or a VaR of expanded NPV. From a dynamic point of view, instead,

we provide a measure of the downside risk in each epoch of the investment both from a timeless and a

path dependent perspective. This, in turn, ends up in modeling the survival probabilities of the investment

project.

Following this double perspective, the choice of real investments with real options can be taken trading

off absolute NPV loss or default probability with the expected increase in shareholders’ wealth. Moreover,

our model gives market hedging operations a benchmark of comparison provided by the “in house” hedging

properties of real options embedded in the investment project. We have chosen to apply our normative

model to a shipping finance case.2

This paper is organized as follows. In section 1, we provide a brief review of literature about CFaR in

order to position our paper in the existing literature. In section 2, we motivate the choice of the (Kulatilaka,

1988) model and report its extension to control cash flow from operations. The procedure followed to

compute VaR for NPV at time zero and CFaR in each epoch is described. In section 3 two case studies in
1Both strands of literature are vast and two dedicated papers would not suffice to summarize them. For just to give the

reader a red herring to follow, we quote the article by (Froot and Stein, 1997) and (Froot et al., 1993) among the stream of
literature that justifies risk management from a theoretical point of view. Among the empirical stream of literature, we quote
(Allayannis and Weston, 2001). For a textbook like approach see chapter 20 in (Jorion, 2001).

2See, for instance the studies of a leading shipping consultants firm (Drewry and Jupe, 2001) and (Drewry and Kellock & Co,
1999). For a more general view about capital budgeting practices in the shipping industry see (Cullinane and Panayides, 2000).



2 Controlling CFaR with Real Options - Nov-2002 - Giuseppe Alesii

shipping finance are reported focusing on the valuation of a very large crude carrier (VLCC) and of a dry

bulk ship. Section 4 draws the conclusions and sets the blueprint for several extensions and applications this

model may have. Three appendixes follow references, the first one about the time series used to estimate

the Ornstein Uhlenbeck process parameters, a second one about the econometric methods followed and the

results obtained, a third one about convergence tests of the Markov chain Montecarlo simulations.

1 A Brief Review about CFaR

The aim of this section is to give the coordinates of our model in the existing literature which deals with

CFaR. We start defining CFaR and review briefly the two mainstreams in the Cash flow at risk literature.

This review is useful to single out the differences and the analogies between existing models and ours.

Cash Flow at Risk (CFaR) is the flow equivalent of VaR. While VaR is the worst loss over a target horizon

with a given level of confidence on a stock represented by a financial asset, see (Jorion, 2001) page 22, CFaR

is the worst loss, out-flow of cash, over a given accounting period that an industrial investment project can

cause to a non-financial firm. A bank’s VaR is also its CFaR (Shimko, 1998). As a matter of fact a bank’s

portfolio is constantly marked to market hence any changes in asset value (VaR) is reflected in an immediate

change in earnings and, depending on the actual asset sale, in cash flows. Instead, non financial firms assets

are seldom and to a little extent marked to market, being mostly tangible and intangible assets whose

prices are not listed on a stock exchange (Hayt and Song, 1995). Those are mostly information intensive

assets which cannot be frictionlessly traded in capital markets (Froot and Stein, 1997). Their value can be

deducted in a very dubious way from thin second hand markets in which several trading anecdotes can be

spotted instead of a price regular time series, (Asplund, 2000).

For these reasons, the only way to tackle variability in operating profitability is to focus on projected

cash flows from operations over a multi year planning horizon (Hayt and Song, 1995). CFaR gives a single

consolidated measure of risk of an investment project which is easy to communicate within the firm to senior

management and board of directors and to the financial analysts community outside the firm.3 CFaR is

considered by the business community as a sufficient statistic of the default risk of an investment project

which can help in determining its credit rating.4

CFaR has been derived both endogenously and exogenously to the firm. Several prominent consulting

firms have derived their version of CFaR mostly exogenously, i.e. bottom up.5 For instance, NERA,
3For instance several firms state their CFaR target in their briefing reports drafted for the road show towards a financial

analysts audience, e.g. BHP Billinton
4See for instance the lecture given by Dr. Arlie Sterling, President of Marsoft, primary US shipping consultants firm, at the

German Ship Finance Forum held in Hamburg in April 2002.
5Following the layout of a Profit and Loss Statement, a bottom up perspective starts from the net income (or cash flow)
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see (Stein et al., 2000), has derived a comparables approach to CFaR using variability of net income of

public listed firms which are similar to privately owned in the same industry. In a similar procedure, but

for different purposes, KMV, see (Nyberg et al., 2001), has derived a model which estimates the asset value

and volatility for private firms in order to define the expected default frequency.

In one way or the other, both these methods aim to define the default point with respect to the individual

period in the life of a non financial firm investment project or the point below which cash flow produced

by operations is not enough to cover outflows due to financial structure and/or to strategic expenditures.

Both these methods share the same shortcomings. They rely mostly on financial markets data. It has been

proved thoroughly that financial markets, expecially stock exchanges, are more volatile than the underlying

fundamental value.6 Therefore, asset, like in KMV model, or cash flow, like in NERA model, volatility

estimate is certainly biased upward. In conclusion, it would be irrational to rely on the inefficient messages

that the stock market sends us.7

On the other side, a number of consulting firms and academic authors have derived endogenous, i.e.

top down, versions of CFaR or other variations on the theme of VaR similar to the cash flow version.

Among the consulting firms, the Riskmetrics Group has derived the Corporatemetrics models, see (Lee

et al., 1999) and (Kim et al., 1999), the Risk Capital Management Partners propose a similar model,

see (Shimko, 1998) and (Shimko, 2001). Among the academic authors that have derived CFaR endogenously,

we remember (Hayt and Song, 1995), (Turner, 1996), (Godfrey and Espinosa, 1998), (Dorris and Dunn, 2001)

and (Ku, 2001).

In these models the perspective is top down. Following the Corporatemetrics terminology, a business

model of the firm is sketched and an exposures mapping is constructed, e.g. an equation linking market

sources of uncertainty with profitability figures, Earnings or Cash Flows. Market price and rate scenarios

are derived from an econometric description of their time series, see (Kim et al., 1999) or from an historical

simulation, see (Godfrey and Espinosa, 1998). The exposure mapping equation is evaluated on each market

price and rate scenario 8 deriving a distribution of the profitability figure for each epoch within the horizon

covered recursively by the econometric model forecasting, page 102 (Kim et al., 1999). CFaR or EaR is

derived in the way usually adopted for the computation of a financial assets portfolio VaR.

figure to single out economic factor that contributed to its derivation. Instead, top down perspective starts from economic
factors to derive their influence on the (economic or financial) profitability figure.

6See for instance the vast literature about variance bounds a’ la (Shiller, 1981).
7In a blatant contradiction, Jeremy Stein stands as a prominent representative of both parties in this querelle . On one side

he states the caveats for a rational capital budgeting in an irrational world, (Stein, 1996). On the other side, he is one of
the co-authors of the comparables approach to the derivation of C-FaR for NERA, (Stein et al., 2000). The late Stein seems
to have forgotten what the early one wrote on the Journal of Business, i.e. that the stock market is inefficient and a rational
manager should not rely on its message for capital budgeting purposes.

8A scenario corresponds to a path for one or more market variables over a specific horizon in (Lee et al., 1999), page 51.
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Lurking in the background of this endogenous derivation of CFaR literature is the need for an active

management of the business model which should respond pro-actively to an ever changing competitive

arena, see for instance page 38 in (Turner, 1996), or page 110 (Godfrey and Espinosa, 1998) or page 370

in (Jorion, 2001). As a matter of fact, from this point of view, both streams of literature share the same

weakness, i.e. they assume a passive management of the business model. On one side, the NERA like models

presuppose that the firm behaves like a given group of comparables competitors. In this way the firm is

specified as a Marshallian black box, more or less a neo classic production function. On the other side, the

Corporatemetrics like models postulate that the exposures mapping stays the same for very long periods

while the management watches passively its firm going bankrupt due to changed business environment.

Feature C-FaR (NERA, KMV et al) CFaR (Corporatemetrics, Risk Capital
Management Partners et al)

Accounting definition overall firm’s profitability earnings derived component by component

Accounting figure financial with accrual conventions
EBITDA
Assets

, pure number figure
accrual basis (EaR), financial, fair value
mark to market basis (CFaR), hedging ac-
counting basis, absolute number figure

Horizon of the model 3-12 months 2-24 months

Econometric model to describe
time series and to create CFaR
distribution

AR(4) VAR, VECM non parametric scenario con-
struction

Benchmark for CFaR derivation Arbitrarily stated, expectations from
AR(4)

strategic or financial as stated in the bud-
get

Distribution of CF Normal, Classical OLS Gauss-Markov con-
ditions; stationary over the estimation pe-
riod

Not necessarily Normal, not necessarily
stationary resulting from paths on the
derivation period

Types of Risk C-FaR as a sufficient statistics of all the
risks of a firm, market and private

CFaR in a market risks framework as a re-
sult of an analytical mapping of the expo-
sures

Implied management passive, the same as in the industry com-
parables. Firm as a Marshallian Black Box

passive, the same as in the firm itself in the
last months. Firm specified as a map of
exposures with respect to a business plan

Suggested practical uses Mainly security analysis and investor rela-
tions. Also debt and risk management

Mainly individual risks hedging

End Users both inside and outside the firm mostly inside the firm

Table 1: Summary Comparison of Top down and Bottom Up derivations of Cash Flow at Risk

Both kind of models have some advantages and disadvantages, see table 1. To begin with, the accounting

figure chosen in NERA model is C-FaR= EBIT
Assets , see page 8 in (Stein et al., 2000). It is a pure number suitable

for comparison exercises in security analysis. On the other hand, this value is less appropriate for capital

budgeting or risk management purposes than a Corporatemetrics figure, see chapter 6 in (Lee et al., 1999).

In the latter model, profitability can be derived in the most suitable way for the problem to be tackled. In

conclusion, Corporatemetrics model is more flexible in the choice of the profitability figure.

Like VaR, CFaR is also defined as the maximum shortfall at a given probability level with respect to a

defined benchmark. In NERA model this benchmark is defined as the level forecasted through an AR(4)
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model. The errors are then pooled and sorted according to size, profitability, profit variability and stock

volatility. The distribution of errors for the sorted groups, or comparables, is used to derive C-FaR. To sum

up, C-FaR is derived cross sectionally building up a comparable virtual firm. Because of this, C-FaR looks

like a dress cut for the average customer but not for firms which are outliers within their industries.

On the other hand, in Corporatemetrics model market exposure mappings allows to tailor made a dress

for the individual firm. Although that is true, there is a high degree of subjectivity in the specification of

the business model. Within these business models, the end user can specify the benchmark she considers

most appropriate, strategic or financial as stated in her budget.

Like VaR computed for a portfolio of assets, CFaR is computed with respect to a portfolio of long

(revenues) and short (cost) positions influenced by several sources of uncertainty. According to NERA

model, relative EBIT is a sufficient statistic for all these risks. In this way the influence of each source of

uncertainty is not considered separately. This does not allow to specify hedging policies dedicated to specific

risks, as it happens in Corporatemetrics. In conclusion, while NERA model entails all non-financial risks

“in bulk”, including pure operational and private risks, Corporatemetrics entails only market risks that are

actually mapped.

Like VaR, CFaR is also defined on a definite horizon of time. NERA model has a shorter horizon than

the Corporatemetrics one. Because of this, the former is less appropriate for the description of the volatility

of firm profitability over multi year planning horizons.9

To summarize, existing cash flow at risk models have been mostly proposed by consulting firms as a

solution to risk management and investor relations problems. They are standard products that at most

assume a very simple structure of the firm, risk exposure mapping. Moreover, in any existing model,

management is postulated as passive, although, lurking in the background some authors feel the need to

specify and quantify the effect on CF risk of an active management.

2 The Control of CFaR with Real Options

Both families of CFaR derivations do not consider the fact that the active management of the firm can control

CFaR, increasing its upside potential and decreasing the downside risk. This active risk management can be

performed through the optimal exercise of real options, see (Trigeorgis, 1996) page 123. We claim that the

original contribution of this paper is to derive the distribution of controlled cash flows in each period through

the whole life of the project.10 In addiction to the flow dimension of risk, we derive its stock dimension
9This distinction resembles asset and earnings based VaR, see page 391 (Jorion, 2001).

10This allows us to compute not only CFaR in the presence of real options but also many widely (mis)-used capital budgeting
criteria, such as Pay back and IRR. We save this extension for another paper.
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computing a sort of VaR of the project expanded NPV.

It is possible to find something similar to this in the literature, see (Godfrey and Espinosa, 1998) and

(Chen et al., 2000), but, still, NPV-Project at Risk analysis is derived under a passive management hypoth-

esis.11 In the same way, the so called consolidated approach to project volatility estimation in chapter 9

of (Copeland and Antikarov, 2001) derived the distribution of the project NPV under a passive management.

Between passive and actually dynamic active management models, we place (Luciano et al., 2003) in which

VaR is computed in a static multiperiod framework for an inventory management problem. One of the few

authors that investigates the effects of real options on risk management is Gordon Sick (Calistrate et al.,

2001). Although that is true, even in the last reference, this effect is tackled with respect to stock variables,

i.e. NPV at time zero, and not with respect to flow, i.e. cash flow from operations. Finally, (Mun, 2002) on

page 326 proposes the computation of VaR for the expanded NPV. In this case simulation and real option

analysis are interwined although in a way much different from ours.12 A similar approach is followed by

(Cruz, 2002) page 323. Our model intuition resembles that of (Chorn and Carr, 1999) in (Trigeorgis, 1999),

although there intelligent decision pathways are derived for irreversible options only and risk reduction is

not quantified.

Finally, the procedure that mostly resembles to ours is given in (Li and Chiu, 2003) page 624, a case study

in a book recently edited by (Ronn, 2003). There from historical data they formulate a set of (heuristic)

rules for exercising real options. Then they run a Montecarlo simulation taking into account of these rules

for the management of power generation assets. To our knowledge, theirs is the only active management

framework in which a VaR of NPV is derived.

The procedure we have followed is numerical and it can be easily adapted by practitioners to any kind of

real business investment project. The model of (Kulatilaka and Trigeorgis, 1994) has been used in the version

developed by Kulatilaka, see (Kulatilaka, 1988), on a grid discretizing a univariate Ornstein Uhlenbeck

(OU). The Kulatilaka Trigeorgis model has been used to derive in a Bellman Dynamic Programming (DP)

method both the net present values of the investment project at time zero and the real options optimal

exercise thresholds throughout the whole life of the project. Then, the same Ornstein Uhlenbeck process
11An application of the classical risk analysis a’ la Hertz to shipping finance problems can be found in (Haralambides, 1993)

in (Gwilliam, 1993). There IRR is assumed as objective function in a passive management framework.
12To summarize briefly (Mun, 2002) procedure, he derives the distribution of the value at time zero of the underlying asset,

passively managed project, or the present value of the free cash flow of the discounted cash flow model simulated using a
uni/multivariate distribution of profitability factors, e.g. prices, costs, quantities, etc. From this distribution he takes the
expected value and the standard deviation to be used respectively at the starting node of a binomial lattice as underlying
asset to value european and american real options and as the volatility needed to compute binomial discrete movements. His
simulation of the actively managed plant is basically a Montecarlo simulation of input variables, see page 334 in (Mun, 2002),
taking into account parameters point estimates risk. In conclusion, Mun uses a stock variable in the real option model and
does not take into account of the optimal exercise of real options on cash flows which, instead, are simulated in the passive
management project only.
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is simulated with the same discretization used in the grid. On each simulated path observation, the profit

and loss equation of the firm is computed taking into account the optimal policy derived according to the

Bellman Principle of Optimality. Hence, to each path of the OU, it corresponds a simulated cash flow history

which has been optimally managed according to Bellman DP. On these cash flows histories, it is possible to

compute not only expanded net present values but also, for each epoch, it is possible to value variability in

CF both from a timeless and a path dependent perspective.

In the remaining part of this section, the Kulatilaka Trigeorgis real option model is briefly reviewed

in order to motivate its choice among the vast variety of real options models. Moreover, the scenario

construction method is described giving a graphic portrayal of the CF computation according to optimal

exercise real options thresholds. Finally, the procedures used to compute downside risk measure on expanded

NPV and Cash Flow are motivated merging two quite different frameworks of analysis, Fisherian capital

budgeting and risk management.

2.1 A review of the Kulatilaka Trigeorgis model

The most important difference between Kulatilaka Trigeorgis (henceforth KT) model and most of the real

options models stays in the computation of the value of the capital budgeting project with real options.

While most of the authors in real options base this valuation on a stock variable represented by the value

of the project depending on one or more stochastic state variables, 13 KT are among the few 14 that base

their valuation on the flow which is optimally produced in each epoch of the project technical life. In other

words, they used a running present value derivation of the expanded NPV. For these reasons, KT’s is the

most suitable model to assess the variability of cash flow in each epoch of the investment project and at the

same time to value the downside risk of capital budgeting decision criteria at the beginning of the life of the

investment, time zero.

The version of the KT model we have used here is univariate, with a stochastic state variable specified

as an arithmetic Ornstein-Uhlenbeck process, discretized in a grid (Kulatilaka, 1988), (Kulatilaka, 1993).

The choice of this specification is instrumental to the kind of case study we have developed in section 3

where the state variable we have chosen evolves like a mean reverting process. Moreover, this choice was

motivated by the nice properties of a grid discretization which avoids mesh ratio problems that a binomial

lattice has. Finally, extending the Kulatilaka model allows us to ignore the distinction between risk neutral

and natural/historical probabilities since in this model under certain, restrictive, conditions, they happen

13See for instance (Calistrate et al., 2001) for a (Cox et al., 1979) like model where the state variable is the value, i.e. stock
of the project.

14Among the others, we quote (Luenberger, 1998).
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to be the same.

In essence, Kulatilaka general real option model (GROPM),15 starts with the observation that an indus-

trial plant has several operating modes which can be chosen optimally in order to maximize the value at

time zero of the investment project, expanded net present value NPVe. In detail, an investment opportunity

can be left fallow, option to wait, or after it is implemented, it can be abandoned, option to abandon, or its

scale can be changed, option to expand/contract. In addition to these irreversible options, GROPM accom-

modates a number of reversible options such as the possibility to suspend production, mothballing option.

Therefore, after choosing a basic cost volume profit equation like (1) as our exposure mapping according to

Corporatemetrics terminology, we can compute in each epoch of the life of the project and for each level of

the state variable the profits we would get, choosing optimally those that correspond to the best operating

mode.

Π
(
θt, �

′, t
)
= Qt,
′ ·

(
Pt,
′ − Uvct,
′

)− Ft,
′ (1)

where:
θt := state variable level at time t, ∀t = 0, . . . , T being T the end of the technical life of the project. Any

of the primitive variables in a CVP equation can be specified as the stochastic state variable, i.e.
Q, volume produced and sold; P, unit price; Uvc, unit variable cost; F, fixed costs.

l = 1, . . . ,m := production modes of an investment project: wait, operate, suspended, expanded, contracted, aban-
doned;

Blatantly enough, the choice of the operating mode in each epoch and for each level of the state variable

is dependent on the operating mode held in the previous epoch, since profits are net of mode transition

costs. Because of this, the problem of the optimal management of the flexible plant is resolved choosing

NPV as criterion function and maximizing it applying Bellman Dynamic Programming, see equation (2).

F
(
θt, �

′, t
)
=
max
�′

{
Π
(
θt, �

′, t
)− c
,
′ + ρ · Eθ∗t+1

t

[
F
(
θt+1, , �

′, t + 1
)]}

(2)

where, in addition to previously exposed notation,
F (θt, 	, t) := value of the plant for the level of the state variable θt, for an optimizing operating mode

	 at time t;

E
θ∗t+1
t [ ] := expectation operator on equivalent martingale measure, hence starred, of the process θt;

ρ = 1/
(
1 + i1/m

)
:= present value factor, in which i1/m = (1 + rf )

1/m − 1.

c�,�′ := operating mode transition cost, being l the beginning mode and l′ the ending mode;

Boundary conditions for equation (2) are given by salvage values of the plant at the end of its technical

life. Recursions are performed in a simple backward induction process being this problem a finite horizon

DP one.

15See several extension and applications in (Kulatilaka, 1988), (Kulatilaka, 1993), (Kulatilaka, 1995) and (Amram and
Kulatilaka, 1999).
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Simultaneously, at each backward iteration, for any level of the state variable θt, the DP procedure gives

us one or more than one optimal operating modes see equation (3). In the cases in which θj,t ⇐⇒ �̂′j,t, we

have one mode regions. In the case in which θj,t =⇒ �̂′j,t, we have hysteresis regions, i.e. levels of the state

variable in which it is optimal within the DP procedure to maintain the same operating mode in which the

dinamic system entered the region.

θj,t =⇒

θj,t ⇐⇒

 �̂′j,t =
argmax

�′
{
F
(
θt, �

′, t
)}

(3)

The exogenous uncertainty faced by the firm is summarized by a state variable θt which follows an

arithmetic Ornstein-Uhlenbeck diffusion process, equation (4), see (Dixit and Pindyck, 1994) page 74. This

process can have, in theory, negative values 16. Although this is true, for a small level of σθ when compared

to η and θ, negative values are quite unlikely, see page 664 (Sick, 1995) in (Jarrow et al., 1995).

d θt = η ·
(
θ − θt

)
d t + σθ dZ (4)

where, in addition to the previous notation:
η : the speed of reversion, e.g. for η = 0 the process becomes a geometric brownian motion while for 0 < η < 1

the process tends to be mean reverting, negative levels are excluded to avoid mean aversion, one is excluded
to avoid overshooting ;

θ : the normal level of θ, i.e. the level at which θ tends to revert;
σ2
θ : instantaneous variance rate;

d t : time differential;

dZ : standard Wiener process, normally distributed with E (dZ) = 0 and V ar (dZ) = E
(
(dZ)2

)
= d t.

The stochastic process governing θt is discretized in an equally spaced grid. In this discretized space,

the state variable moves according to a one step transition probability matrix, (Kulatilaka, 1993) page. 279

Appendix, which is constructed discretizing a normal distribution for each of the levels of θt, see equation (5).

∆ θt ∼ N
(
η
(
θ − θt

)
·∆ t, σ2θ ·∆ t

)
(5)

It is possible to show, following (Cox et al., 1985) (Lemma 4), that expected values on these discretized

probabilities can be considered following a certainty equivalent drift rate, (Kulatilaka, 1993). Hence, any

cash flow dependent on this θt can be discounted at the risk free rate, under the restrictive condition that

systematic risk of the investment project is null.

2.2 Scenario Construction

As a too often neglected sideproduct of the KT model, the optimal exercise thresholds have been derived for

the whole life of the project. They partition the discretized space of the state variable in regions in which
16We wish to thank Andrea Berardi for pointing this out to us.
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different operating modes are optimal according to a Bellman DP procedure, see upper graph in figure 1.

We run a Markov chain Montecarlo simulation of the solution of the PDE equation in expression (4)

and we obtain recursively a path of the levels of θt ∀t = 0, . . . , T , see equation (6). This path meanders on
the grid going through the thresholds, passing from an hysteresis to a one mode region and the other way

around, see upper graph in figure 1.

θt = θt−1 · e−η∆ t + θ ·
(
1− e−η∆ t

)
+ εt (6)

where, in addition to the previous notation:

εt ∼ N
(
0,

σ2
θ

2·η ·
(
1− e−η∆ t

))
: noise term distributed normally with mean zero and variance as a fraction of σ2

θ .

0
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Figure 1: Path of θ and CF computation
Legend:
The upper graph in the figure represents the real options optimal exercise thresholds. To be specific, the highest represents

the investment trigger threshold, the lowest, in bold, represents the abandonment threshold. In the middle, the higher is the

restarting threshold while the lower is the mothballing threshold. An indicative path of θt is represented on the same graph. In

the lower graph in the figure the corresponding time series of CFt is represented in bold, together with an indicator function,

in bars, representing the operating mode in which cash flows at that epoch were generated.
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For each θt in each path we were able to compute Π (θt, �, t) as in equation (1). In the case study, the

price was specified as the state variable. Computation of cash flows in each period takes place taking into

due account the region in which the observation within the path happens to fall. Hence, exposure mapping

equation not only is non linear in the variable θt, but also it is path dependent. As a matter of fact, cash

flows will be computed taking into account the nature – reflecting, absorbing, transient – of the operating

modes the investment project may have. In other words, equation (1) is specified for each of the modes

where the dynamic system happens to operate, see expressions (7)-(10).

Π(θt, 	 = W, t) = 0 (7)

Π (θt, 	 = Oi, t) = QOi ·
(
P̃t − Uvc

)
− F ∀i = 1, . . . , m (8)

Π (θt, 	 = M, t) = −Mt (9)

Π (θt, 	 = A, t) = 0 (10)

where, in addition to previous notation,
	 = W : Waiting to invest mode, payoff is zero under the hypothesis that there are no opportunity

costs to wait. It is a reflecting state, meaning that once the dynamic system has come out
of it, it never comes back;

	 = Oi ∀i = 1, . . . ,mO : Operating modes, payoff is computed normally using the CVP equation for the observation of
the state variable on that epoch of the simulated path. These operating modes are transient,
meaning that the plant can be mothballed if DP principle of optimality requires it;

	 = M : Mothballed mode, operating activity temporarily suspended. This mode is transient, mean-
ing that production can be restarted when the DP principle of optimality requires so;

	 = A : Abandoned mode, operating activity definitively terminated, plant sold for salvage value.
This mode is absorbing, meaning that abandonment of operations and their sale for salvage
value is irreversible.

Therefore, a θt path corresponds to a time series of cash flows optimally managed according to Bellman

Optimum Principle, see lower graph in figure 1. In order to have the cash flows that the firm actually earns

we have to consider transition costs that must be afforded to move the dynamic system from one operating

mode to the other, see expression (11) for an example, beginning modes are on the rows, ending modes on

the columns. Modes are ordered as Wait, Operate, Suspended, Abandoned.

δ =



0 c1,2 +∞ +∞

+∞ 0 c2,3 +∞

+∞ c3,2 0 c3,4

+∞ +∞ +∞ 0

 (11)

where:
c1,2 := Lump sum invested in the project, transition cost from the wait to invest mode to the operating mode;
c2,3 := Mothballing costs, transition cost from the operating mode to the mothballed mode;
c3,2 := Restarting costs, transition cost from the mothballed mode to the operating mode;
c3,4 := Salvage Value, transition (negative) cost from the mothballed mode to the abandoned mode;
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Hence, cash flows actually used in the computation of the ensuing capital budgeting decision rules are

the payoff of the operating mode, as represented in equations (7)-(10) net of mode transition costs reported

in matrix (11), see equation (12), when and if they are actually afforded.

Π∗ (θt, �′, t)n = Π (θt, �′, t)− cl,l′ ∀t = 0, . . . , T (12)

To give a graphic portrayal of the CF computation, we have reported in figure 1 a simulated path of

the time charter and the corresponding cash flow that the investment project would yield when managed

according to dynamic programming thresholds. In the example represented, the investment project is

implemented at time t = 0 since the series starts at a level higher than the investment threshold, (operating

mode=2). The very low CF at the beginning is the result of the lump sum initially invested and the

first operating cash flow. After three epochs the time charter level goes below the mothballing threshold.

Hence the ship is laid up for four periods (operating mode=3) until the time charter level reaches the

restarting threshold. Even if in the following epoch it goes below it, the project is kept in operating mode,

hysteresis situation. The same kind of situation take place just before epoch 20 and 30. At period 47 the

time charter price goes below the abandonment threshold and the ship is scrapped for its salvage value

(operating mode=4).

2.3 NPV Forward Computation: Who pays for Successive Outflows?

NPV in capital budgeting and VaR and related measures are based on two very different set of hypotheses.

Hence, merging these two frameworks together requires some caveats in order to interpret results correctly.17

Therefore, in order to compute expanded net present values going forward on each of the time series

given by equation (12), it is convenient to delve into the hypotheses implicit in the computation of NPV in

traditional capital budgeting and of VaR and CFaR in risk management.18

NPV in traditional capital budgeting stands as a generalization of the Fisher’s Separation principle

(FSP).19 Among its hypotheses, the most relevant for our model are that capital markets are efficient and the

representative agent’s utility is time separable and linear in the CF consumed. In a multiperiod generalization

of FSP, the Fisherian NPV, this means that markets are perfect foresight efficient in discounting CF produced

in each epoch, offsetting the present value of negative and positive outflows paid in each epoch, making any
17We wish to thank Andrea Gamba for drawing our attention on this crucial issue.
18In classic capital budgeting, the question who pays for negative cash flows following positive ones is simply ignored in the

computation of NPV or it is solved with a double rate discounting in the computation of IRR (Teichroew, 1964). Moreover,
textbook like investments are usually Point Input Continuous Output (PICO), meaning an outflow at the very beginning and
some inflows in the following periods, see (Dean, 1950). Because of this, NPV computation does not have to take into account
the economic intuition of negative cash flows in epochs following the first. Here, instead, cash flows change sign frequently.

19See page 518 (Hirshleifer, 1992) in (Newman et al., 1992).
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capital constraint irrelevant.20 As a matter of fact any project is financed if only it has a positive expected

NPV. Moreover, implicit in this multiperiod generalization of the FSP, the representative agent has a utility

function which is time separable in the strong sense U(
∑T

t=0 ct) =
∑T

t=0 U(ct) and linear in the CF.

In a world like the one just sketched, it is irrelevant to compute downside risk, like VaR and CFaR.21

In other words, if E(NPV ) > 0, an efficient market will always finance any outflow due to the multiperiod

production frontier or technology. The net present value expanded for real options stays as the latest and

most sophisticated version of the traditional Fisherian NPV. As a matter of fact, in the DP algorithm

just described above, we implicitly assume a representative agent who spends c1,2 when the investment

threshold is reached while the funding for the successive outflows, due to negative operating cash flows and

further transition costs, is simply provided by a FSP like efficient market. Considering that on the average

the market will finance positive E(NPV ) projects, it would be rational for her to finance these outflows

following the first lump sums. In this framework, NPV = −c1,2 has the intuitive meaning of an investment

project which destroys completely the endowment of the representative agent; NPV < −c1,2 means a loss

in excess of the lump sum initially poured into the project, implicitly financed by an efficient market.22

This, in turn, will recoup on the average the funds provided together with the required interest rate, used

in expected net present value computation.

Hence, considering the DP valuation as a generalization of the FSP, we simply compute the NPV in each

of the time paths like equation (12) ignoring the fact that in some intermediate epochs negative cumulative

cash flows can be well in excess of the initial endowment. Some of these project realization will be financed

at a loss, NPV < 0, some will be financed with a profit, NPV > 0, being this imbalance between outflows

and inflows a temporary insolvency. At each epoch, cross sectionally on each project we have a distribution

of cash flows which allows us to evaluate the downside risk in a timeless framework (timeless CFaR) as a

matter of fact in this framework it is not relevant through which path the current level of the state variable

was reached.

On the other hand, if we remove the two main hypotheses of the FSP23, bankruptcy and insolvency

become relevant issues being the agent capital constrained. This means that we have to dedicate an endow-

ment not only to the initial payment c1,2 but also to successive outflows.24 In this framework, NPV < −c1,2

20The preference for timing of payments can be determined by discounting at a constant rate since the payments can be
shifted backwards and forwards at the market rate of interest (Borch, 1968).

21As a matter of fact those two concepts are linked to bankruptcy and insolvency respectively.
22If we remove the hypothesis that the representative agent has limited endowment or limited liability this would simply mean

that she would end up with negative wealth, or debts, after implementing the investment project. In one way or the other this
involves a role for a capital market or for the agent acting as her own banker.

23To recap, efficient markets and strong separability and linearity of the utility function of the representative agent.
24As an alternative, we could have specified a one project firm retaining cash flows and paying a dividend. This would have
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has no sense, there is no possibility of losing more than the initial endowment. Going forward on the project

realization, as soon as the endowment is exhausted by outflows, the one project limited liability firm goes

bankrupt and the abandonment option is exercised, even if subsequent CF pattern would have produced a

positive NPV. At each epoch, in this case, we evaluate the probability that cash flows deplete completely

the initial endowment. Moreover, we have a distribution of cash flows which is path dependent, taking only

those contingencies in which the firm survived (path dependent CFaR). In this framework the firm has an

additional decision variable: overfunding the project i.e. providing funds in excess of the initial expense c1,2,

trading off bankruptcy risk for NPV.25

In conclusion, in the Montecarlo simulations, we end up with two versions of expanded NPV. In one we

have a “Fisherian NPV” whose derivation hinges on two quite strong hypotheses, in the other we have a

“workable NPV” which takes into account the insolvency occurrences of a capital constrained representative

agent. In the former, expected value is computed on all the project realizations, time paths, including those

in which one or more insolvency episodes occurred. In the latter, expected value is computed only on the

project realizations that survived, discarding time paths that, although with a positive NPV, lead the firm

to bankruptcy. A “workable NPV” derivation would require a much different application of optimal control

theory. Therefore, we decided not to implement it in the ensuing case studies.

3 Two case studies in shipping finance

Among the others, in the real options literature it is possible to find two “realistic” cases in ship valuation,

(Dixit and Pindyck, 1994) on page 237, (Goncalves de Oliveira, 1999) page 185. These differ from those

developed below in a number of relevant details. The first one is the data generating process which is

respectively a driftless GBM and a GBM with drift. We have thoroughly shown in Appendix B that freight

rates follow a mean reverting process and that the estimation of an arithmetic Ornstein Uhlenbeck process

fits well the data available. Moveover, both these models are derived in a infinite time horizon, being based

on stationary dynamic programming. Being a ship a finite lived asset, we have preferred to study the

opportunity to invest in a ship over a finite time horizon, T=25 years. Because of these specific features, we

were able to derive exercise thresholds for the whole life of the project while this was not the case for the

two papers previously mentioned in which only individual levels of the state variable are given as thresholds.

Finally, while (Dixit and Pindyck, 1994) on page 237 evaluates the vessel with all the real options we have

considered here, (Goncalves de Oliveira, 1999) page 185 studies only the switching options to mothball and

decoupled cash flow to equity from operating cash flow on which the DP algorithm is based in this model.
25Funds in excess of the initial expense are put in an escrow account yielding the risk free rate.
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to restart.

Although the methods and the main purposes of the case studies just mentioned are very different from

ours, we have used them as base cases respectively for a very large crude carries (VLCC) 280.000 dwt, double

hull (DH),26 and a dry bulk cargo, namely a Panamax 80-90.000 dwt, taking from those two references,

when they were not available elsewhere, data necessary to our model. A summary of the data actually used

and of their sources is reported in table 3.

3.1 Value and Risk in Real Option Analysis: A Provisional Case Study

In this paragraph a provisional case study is reported. In the forthcoming draft the shipping finance cases

will be included. The initial investment c1,2 = 40. Costs to mothball the project are c2,3 = 2. Costs to

restart the project are c3,2 = 4. If the project is abandoned it yields c3,4 = 5.

The project has an expected technical life of 10 years and its operating mode can be revised every six

months exercising the options to start the project, to mothball, to restart or to abandon it. In operating

mode the profit is πO = 20 · θs − 7 while in mothballing mode it is πM = −1.5. In both waiting mode and
abandonment mode cash flows are nil.

The state variable has been specified as an arithmetic Ornstein Uhlenbeck with the following parameters:

η = .125, θ = .5, σθ = .125, in a grid with θmin = 0 and θmax = 1 with ∆ θt = 1%. This process has been

choosen after estimating the process parameters on 48 years of monthly time series reported in appendix A.

The proportions between the normal value and volatility are equivalent to those of dry bulk time charter

computed in appendix B. Reversion speed resembles that of the same time series.

We have derived the value of the investment project at time t = 0 in a backward induction procedure

applied to equation (1). Results are represented by the smoothed lines without markers in figure 2. The

same procedure has been run both for dynamic active management and passive management. From the

same procedure we have derived the real options exercise thresholds for the whole life of the project as

represented in figure 1.

We have performed 10,000 Markov Chain Montecarlo simulations of the state variable θt in equation (6)

in the same discretization used in the backward induction. Then, on each of these time series we have

computed CFt net of transition costs taking into due account the optimal operating modes indicated by

real options exercise thresholds. Results are reported in figure 1 as smoothed lines with markers. As a

matter of fact, while the RPVs have been derived for 100 different initial values simultaneously, Montecarlo

26As (Tolofari et al., 1987) proved, most of the economies of scale in shipping take place for levels of output, ton-miles, lower
than 50.000. Because of this, even a VLCC is representative of wide range of tankers.
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simulations have been performed for 10 initial values θ0 = 0.0, 0.1, 0.2, . . . , 0.8, 0.9, 1.0.

At a first glance on figure 2 expected values seem to be the same. This is confirmed by convergence tests

performed in Appendix C. Expected values differ at most 2%. This assures that both backward induction

and forward computation are modeling the same optimal dynamic behaviour.
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Figure 2: RPV and Montecarlo Markow Chain Expected Expanded NPVs
Legend: The graph reports RPVs for both the active and passive management of the project, with and without real options, smoothed

line without markers. Together with these values, the corresponding averages from the Montecarlo Markov Chain for selected levels of

θt=0 are reported, namely θt=0 = 0, .1, .2, . . . , .9, 1. These are represented with markers, circles and squares respectively.

Apart from average values, Markov chain Montecarlo simulations provide us with the whole distribution

of values of expanded NPVs at time t = 0, see figure 3. In the upper graph of this figure, the distributions

of passive management NPV are represented together with the average values plotted previously in figure 2.

These distributions resemble to a normal, and this is confirmed also by standardized kurtosis coefficient

reported in the last column of panel A in table 3 which is not significantly different from 3. This does not

happen for active management NPVs reported in the lower graph of the same figure. There, expecially for

low initial levels of θt, distributions are markedly leptokurtic and they almost collapse to a spike. This is

due to the presence of the option to wait, being the investment threshold at time t = 0 at θ0 = .59. For

levels higher than the threshold just mentioned distributions become again similar to a normal although

rather platikurtic, see last column of panel B in table 3.
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Panel A: NPV distributions and expected values under passive management.

Panel B: NPV distributions and expected values under dynamic active management.

Figure 3: Expanded NPVs distributions at time t = 0
Legend: NPV distributions are reported for each of the simulated initial levels of θ0. Dots along the “ridge” of the distributions

represent mean values. Those are the expected values that converge to dynamic programming results.
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For levels of θ0 > .59 both distributions are almost symmetric, as shown by the skewness standardized

coefficient not significantly different from zero in table 3. This is due to the fact that this investment project

has only downside risk real options.27 Instead, for levels of θ0 < .59 while passive NPVs distribution is still

symmetric, the active NPVs distributions show a marked positive asymmetry as (Trigeorgis, 1996) on page

123 suggested. This is confirmed by the difference between the median q.5 and the expected values reported

in panel B of table 3. This difference becomes not significantly different from zero for levels of θ0 greater

than the investment threshold.

The effect on risk management of real options are evident from a comparison of the first two columns of

the panels in table 3. While the probability of a negative NPV is highly and monotonically dependent on

the initial values of θt for passively managed projects, in the presence of real options these percentages are

drastically reduced and are lower also for levels of θ0 greater than the investment threshold. To the same

token, active dynamic management is very effective in controlling losses which exceed the initial lump sum

invested in the project, see column three in table 3. These observations dovetail with VaR computations at

99% and 95% confidence level. For all the initial levels of θt value at risk of NPVs is much lower for actively

managed projects than for passively managed ones. On these same distributions we have also tested the

applicability of stochastic dominance criteria. To sum up results that are not reported, first order stochastic

dominance is sometimes applicable while second order is always applicable, meaning, il va sans dir, that

dynamic active managed projects dominate passively managed ones.

Together with these results on a stock variable like NPV which, as shown above, is rather elusive, we

have computed cash flow at risk (CFaR) for each of the epochs, but the first, of the investment project,

see distributions in figure 4. Unlike NPV distributions, those for CFt are less immediate to interpret.

The exercise of the option to abandon produces a spike like behaviour for the last periods of the investment

project life. Instead, in this case too, the computation of VaR on cash flows help us to tackle the effect of the

exercise of real options on operational risk. As shown in table 4 CFaR at the 99% and 95% confidence level

is always much lower for actively than for passively managed projects. This dovetails with the probability

of incurring a loss reported in the second column in table 4. While a passive management leads to double

digit probabilties of incurring losses, these are less than half when a dynamic active management is followed.

In conclusion, this case study shows that real options are really effective in taming operational risk both

at the stock, VaR on NPVs, and at the flow level, VaR on CF or CFaR. This effect has been quantified using

value at risk and verifying the applicability of stochastic dominance criteria. The intuition of (Trigeorgis,

1996) page 123 is definetly verified and quantified.
27To recall, option to wait, option to mothball and option to abandon.
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Panel A: CF distributions and expected values under passive management.

Panel B: CF distributions and expected values under dynamic active management.

Figure 4: CF distributions in each epoch of the project life.
Legend: Cash Flows distributions are reported for each of the epochs of the life of the project for an initial level of θ0 = .6. Dots along

the “ridge” of the distributions represent mean values.
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A. Passive Management Results:

t Prob(loss) min V aR99 V aR95 q.5 Ave. sim. Std Max

1 0.25% -0.8 0.6 2.0 4.8 4.9 1.8 11.8
2 2.55% -3.0 -1.0 0.8 4.8 4.9 2.5 13.0
3 4.45% -4.0 -1.8 0.0 4.8 4.8 2.9 13.0
4 6.30% -5.2 -2.6 -0.6 4.6 4.7 3.2 13.0
5 8.80% -7.0 -3.4 -1.2 4.6 4.6 3.5 13.0
6 10.20% -7.0 -4.0 -1.8 4.6 4.5 3.7 13.0
7 12.10% -7.0 -4.8 -2.0 4.4 4.5 3.9 13.0
8 13.55% -7.0 -5.6 -2.4 4.4 4.3 4.0 13.0
9 15.45% -7.0 -5.6 -2.6 4.2 4.2 4.1 13.0
10 16.15% -7.0 -5.8 -3.0 4.2 4.2 4.2 13.0
11 15.90% -7.0 -6.0 -2.8 4.2 4.1 4.2 13.0
12 17.35% -7.0 -6.8 -3.4 4.0 4.0 4.3 13.0
13 17.45% -7.0 -6.2 -3.6 4.0 4.0 4.3 13.0
14 18.55% -7.0 -6.2 -3.8 3.8 3.8 4.3 13.0
15 20.20% -7.0 -6.8 -3.6 3.8 3.8 4.4 13.0
16 19.75% -7.0 -7.0 -4.0 3.8 3.7 4.4 13.0
17 19.95% -7.0 -6.8 -4.2 3.8 3.7 4.4 13.0
18 20.15% -7.0 -6.8 -4.2 3.7 3.6 4.5 13.0
19 21.55% -7.0 -7.0 -4.2 3.8 3.5 4.5 13.0

B. Active Management Results:

t Prob(loss) min V aR99 V aR95 q.5 Ave. sim. Std Max

1 0.25% -0.8 0.6 2.0 4.8 4.9 1.8 11.8
2 2.55% -3.0 -1.0 0.8 4.8 4.9 2.5 13.0
3 4.45% -3.5 -1.8 0.0 4.8 4.8 2.9 13.0
4 6.10% -3.5 -2.4 -0.4 4.6 4.7 3.2 13.0
5 8.05% -3.5 -2.6 -0.8 4.6 4.6 3.4 13.0
6 8.40% -3.5 -2.6 -1.2 4.6 4.6 3.6 13.0
7 9.15% -4.0 -2.4 -1.0 4.4 4.6 3.6 13.0
8 8.95% -2.6 -2.4 -1.2 4.4 4.5 3.7 13.0
9 8.90% -3.6 -2.0 -0.8 4.2 4.5 3.7 13.0
10 7.35% -3.8 -1.6 -0.4 4.2 4.5 3.7 13.0
11 5.55% -1.5 -1.2 -0.2 4.2 4.5 3.7 13.0
12 2.95% -2.6 -0.6 0.0 4.0 4.5 3.6 13.0
13 0.70% -0.8 0.0 0.0 4.2 4.5 3.6 13.0
14 0.05% 0.0 0.0 0.0 4.2 4.5 3.6 13.0
15 0.05% 0.0 0.0 0.0 4.2 4.4 3.7 13.0
16 0.05% 0.0 0.0 0.0 4.4 4.2 3.8 13.0
17 0.05% 0.0 0.0 0.0 4.4 4.1 3.9 13.0
18 0.05% 0.0 0.0 0.0 4.2 4.0 4.2 13.0
19 0.05% 0.0 0.0 0.0 0.0 4.2 5.4 13.6

Table 4: The Effect of Real Options on Cash Flow at Risk
Legend: Results have been derived for θ0 = .6. on the cross section of 2,000 simulations.
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4 Conclusions

In this normative model we model total variability in NPV0 and CFt ∀t = 0, . . . , T for an industrial

investment project in the presence of real options. To begin with, with a backward induction process, we

derive expanded NPVs and real options optimal exercise thresholds in an extension of (Kulatilaka, 1988).

Then we perform a Markov chain Montecarlo simulation of the state variable θt ∀t = 0, . . . , T , specified as
an arithmetic Ornstein Uhlenbeck process. Going forward on these simulated time series, we compute cash

flows, taking into due account the optimal exercise of a whole string of real options, both reversible and

irreversible. With these controlled cash flows series, expanded net present values have been computed.

The expected value of these simulated expanded NPVs converges to that computed recursively in the

Bellman DP procedure which provided us with the optimal exercise thresholds previously used to control

CFt. In addition to the expected value, our model provides the whole distribution of expanded NPVs at

time zero and of cash flows at each epoch of the investment project. We have described total variability

applying Value at Risk (VaR) concepts to these distribution. Hence, we derived an actively managed project

at risk or VaR of the expanded NPV. Moreover, we computed a cash flow at risk CFaR for each epoch of

the investment project. As a complement to this local measure of risk, we have verified applicability of

stochastic dominance criteria in the comparison of actively and passively managed investment projects.

The results of this paper confirm what (Trigeorgis, 1996) page 123 observes but does not quantify:

real options reduce variability in expanded NPV, leading to a positive asymmetry in its distribution. In

this paper it is shown what is the effect on downside risk of the options to wait, to mothball and to

abandon.28 As a matter of fact, VaR on NPV decreases dramatically with the exercise of real options

previously mentioned. Therefore, we conclude that real options are effective not only in enhancing value

but also in taming operational risk. The same kind of effect is observed on CF from operations through the

computation of Cash Flow at Risk (CFaR).

The results of this paper can be considered as a base to value credit risk and to decide financial structure

to finance the industrial project. Under the assumption of no interaction between financial structure and

industrial strategy, having assessed analytically risk from operations it is easy to set up a normative model

of financial leverage and debt duration based on a trade off between bankruptcy risk and shareholders value

increase. Moreover, bankers would find in this model a way to comply with regulations, as Basel II, which

require an analytical determination of the borrower credit risk.

A side product of this paper is the computation of IRR and PBP corresponding to a NPV optimizing
28The exercise of upside potential real options would lead to an even more positively skewed distribution. We leave the study

of the latter for another paper.
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dynamic strategy in the presence of real options. As a matter of fact, while all the models in real options

literature compute only expected expanded present values, practitioners often require an internal rate of

return and a payback period for the investment. Our model can be easily extended to provide such invest-

ment criteria which are intrinsically path dependent. Finally, this model can be easily extended to other

data generating processes: e.g. GBM univariate and multivariate; geometric and arithmetic OU processes

discretized on a binomial lattice.

In conclusion, this paper adds a new dimension to capital budgeting with real options, i.e. total vari-

ability. This dimension is usually ignored in the real options literature 29 as it is ignored in the financial

options one. Other normative models should be devised to make workable choices among different invest-

ment projects in this new risk return framework. Here VaR for E(NPVe) and CFaR for cash flows are just

sketched. Instead, a whole trade off theory between the downside risk measures and expected increase in

shareholder values should be applied in this framework.30 As an alternative, a useful tool for analyzing the

distribution of NPVe would be a three moment CAPM which takes into account not only mean and variance

but also skewness.31

29Being (Calistrate et al., 2001) the only notable exception to our knowledge.
30See for instance, (Baumol, 1963) and all the other bankruptcy minimization criteria such as (Telser, 1955), (Kataoka,

1963) and (Roy, 1952).
31See for instance (Jurczenko and Maillet, 2001) and reference contained therein.
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A Data description

The monthly time series used in the shipping finance case study are taken from (Stopford, 1988) figure 2.1

page 57-58.32 Several primitive time series have been spliced together from different sources, see table 5, in

order to make up the series reported in figure 5. The resulting spliced series spans the period 1/1947|−|7/2000
for both a dry bulk cargo and an oil tanker.

Start End Denomination
1 1/’47 12/’65 Trip Index 1947=100
2 1/’60 12/’90 Time Charter Index 1966=100
3 1/’91 8/’91 Baltic Freight Index BFI
4 1/’47 9/’49 British Ministry of Transportation = US Maritime commission
5 9/’49 12/69 British Ministry of Transportation, SCALE INTASCALE
6 9/’69 12/’74 World Scale
7 1/’75 7/’99 VLCC/ULCC
8 1/’75 6/’85 MED SIZE CRUDE
9 1/’71 7/’99 1 year Time Charter $ 000 Per Day 60.000 DWT Bulker

Table 5: Stopford Time Series of Dry and Bulk Time Charter 1947| − |2000

For a dry bulk cargo 60.000 DWT Bulker, older series have been rescaled to the most recent ones, namely

series 1, 2 and 3 with series 9. To the same token, for an oil tanker, series 4 has been spliced together with

series 5, 6 and finally series 7. Both series have been converted into time charter rates (TCR, $/day).

In principle, Stopford’s series provide an accurate account of the year by year movements in rates, while

they do not necessarily reflect movements in rates over long periods, see legend of figure 2.1 page 57-58

(Stopford, 1988). Hence, in order to convert these series into TCR, we consider the series constructed above

as an index which allows us to rescale any TCR for the same kind of ship, bulk or oil tanker. This is

instrumental to getting the statistical properties of the series and feed them into valuation algorithms.

For example, for oil tanker, Jan/’99=45 in Stopford’s series, while in Drewry’s series 1Q’99 it is 11,900

for an 80,000 DWT. Hence series has been re-scaled dividing it for 45 and multipling for 11,900. The major

shortcoming of this procedure is that a point rescaling may not take into account of the discrepancies in

construction of the two series. On the other hand, rescaling the series on two averages, e.g. 12 months

averages, may iron out these time specific discrepancies towards structural differences in series construction.

32We wish to thank professor Martin Stopford for providing us with these time series. Any inappropriate use of these series
is our fault.
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B Ornstein Uhlenbeck Parameters Estimation.

Econometric Methods

The arithmetic Ornstein Uhlenbeck process parameters have been estimated using several econometric meth-

ods in order to cross check their results being our model so sensitive to any change in the estimates. Two

of these methods use OLS, while the other two use a GMM and a MLE respectively. The first two methods

have a linear specification of the corresponding discrete time model while the last two have a non linear

specification which is closer to the continuos time counterpart. Inference on the first two hinges on the

asymptotic properties of the estimators and of their s.e. Instead, finite sample inference is used to test

GMM and MLE estimates.

Being the results amazingly the same while the methods and their hypotheses are so different, we could

be quite adamant in concluding that the two time series of Dry Bulk Carrier Time Charter Index and Oil

Tanker Time Charter Index constructed by Martin Stopford, see figure 5, are effectively described by two

Arithmetic Ornstein Uhlenbeck processes, with, respectively a low and high reversion speed.

The simplest among the econometric methods used is the one by (Dixit and Pindyck, 1994), page

76-77.33 They rearrange the terms of the solution to the stochastic differential equation of the Arithmetic

Ornstein Uhlenbeck process, see equation (6), in a form that can be considered the limiting case as ∆ t → 0

of the OUP equation, (13).

θt − θt−1 = θ ·
(
1− e−η·∆ t

)
+
(
e−η·∆ t − 1

)
· θt−1 + εt

θt − θt−1 = α̂+ β̂ · θt−1 + εt (13)

From expression (13), imposing just the ordinary OLS conditions,34 (Dixit and Pindyck, 1994) derive

the OUP parameters, see (14). Hence, their model hinges on a linear model which does not imply any

non linear relationship between η and σ. Moreover, they do not provide standard errors for the nonlinear

functions of the regression estimates. Finally, regression (13) resembles a traditional Dickey Fuller regression

with all the implications that this has about correct inference.

θ = − α̂

β̂ η = − ln
(
1+β̂

)
∆ t

σ̂ = σ̂ε ·
√

2·η
1−e−2·η∆ t (14)

33The reader should be aware that in the original presentation of Dixit and Pindyck there where two typos. One omitting
∆ t in the exponent of expression (19) and the other omitting a 2 in the expression for the computation of σ on page 77.

34The same discrete time model is used in other articles, see for instance (Chan et al., 1992) page 1218 table III. The crucial
difference is that here it is only a linear relationship between the level and the variation of the time series, there in addition to
the usual condition on the residuals, respected by construction, other conditions are posed on the proportionality of the variance
with respect to the current level of the process. Including this nonlinear relation requires a GMM method to get estimates.
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(Gourieroux and Jasiak, 2001), page 290, propose a variant of the (Dixit and Pindyck, 1994) method.

They do not rearrange equation (6) and suggest a simple Maximum Likelihood estimation of the three

parameters of the OUP, see expression (16).

θt = θ ·
(
1− e−η·∆ t

)
+ e−η·∆ t · θt−1 + εt

θt = θ ·
(
1− β̂

)
+ β̂ · θt−1 + εt (15)

The estimates and their asymptotic variances are given by expression (16).

θ = 1
T ·∑T

t=1 θt

Vasy(θ) = σ̂2
ε

T ·
(
1−β̂

)
β̂ = Cov(θt,θt−1)

V ar(θt)

Vasy(β̂) = 1
T ·

(
1− β̂2

)
σ̂2ε = 1

T ·∑T
t=1 ε

2
t

Vasy(σ̂2ε ) = 2·σ̂4
ε

T

(16)

where35: εt = θt − θ − β̂ ·
(
θt−1 − θ

)
From these estimates we get the remaining two parameters of the OUP, namely the reversion speed and

the volatility of the process together with their asymptotic variances derived through the δ method, see

expression (17).

η̂ = −log(β̂)

Vasy(η̂) =
[
∂
(
−log(β̂)

)
β̂

]2
· Vasy(β̂)

σ̂2 = −2·log(β̂)
1−β̂2

· σ̂2ε

Vasy(σ̂2) =
[
∂(σ̂2)
∂θ

]
·Σ

β̂,σ̂2
ε
·
[
∂(σ̂2)
∂θ

]′ (17)

where:[
∂(σ̂2)
∂θ

]
=

[(
∂(σ̂2)
∂β̂

) (
∂(σ̂2)
∂σ̂ε

)]
;

Σ
β̂,σ̂ε

=

 Vasy(β̂) 0

0 Vasy(σ̂2ε )


Apart from θ, (Gourieroux and Jasiak, 2001) estimates are by construction identical to those of (Dixit

and Pindyck, 1994), the only difference being that the former give asymptotic standard errors for the esti-

mates of the OUP parameters being a non linear function of the parameters estimated in expression (15).36

In both of the previous methods estimation does not involve non linear relations between estimated para-

meters.
35The reader should be aware that the expression for Vasy(σ̂

2
ε ) contains a typo, having been omitted the exponent 2. Because

of this, in order to get the s.e. of the standard deviation the expression should be raised to 1/2 twice. Once to get the s.e. of
the variance estimate, another to get the s.e. of the corresponding standard deviation estimate.

36The asymptotic properties of these estimator would require a Monte Carlo investigation. We save this task for a dedicated
paper.
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Instead, in order to estimate simultaneously all three OUP parameters in a non linear function like

equation (6) it is necessary to adopt GMM or MLE estimation methods, as suggested in (Roncalli, 1998)

page 79, (Roncalli, 1999) page 196. The solution of the Ornstein Uhlenbeck process PDE can be explicited

with respect to εt, see expression (18).

εt = θt − e−η h θt−1 − θ ·
(
1− e−η h

)
(18)

Imposing moment conditions on εt, see expression (19), it is possible to estimate OUP parameters[
η, θ, σθ

]
using a perfectly identified GMM.



Et−1 [εt] = 0

Et−1
[
ε2t − σ2θ

(
1−e−2η h

2 η

)]
= 0

Et−1 [εt xt−1] = 0

(19)

Blatantly enough, moment conditions are constructed taking into account the non-linear relations be-

tween the three OUP parameters. Another method that takes fully into account non-linearities in the

solution of the OUP partial differential equation is MLE. From expression (18) the expression (20) of the

log-likelihood can be derived and maximized on the OUP three unknown parameters:

�t = −1
2
ln(2π) − 1

2
ln

(
σ2
(
1− e−2αh

2a

))
− 1
2

ε2t

σ2
(
1−e−2ah

2a

) (20)

Estimation Results

Applying the four econometric methods listed above on the 53 years period, 643 monthly observations, the

results reported in table 6 for the linear methods and in table 7 for the non linear methods have been

obtained. All four methods give quite similar and significant estimates for all three parameters.

Dry Bulk Dry Bulk ships time charter index seems to have a lower reversion speed that Oil Tanker ships

time charter. These estimates are generally very significant, size less than 1%, but for the MLLE and GMM

for Dry bulk for which the level of significance is more than 5% and 10% respectively.

Asymptotic standard errors given by (Gourieroux and Jasiak, 2001) allow us to perform a specification

test comparing the variances of the residuals and of the OU process itself, see panel C in table 6. These

tests indicate that σθ 	= σε at a high significance level. This allows us to conclude that the two time series

DGP is very well described by an arithmetic Ornstein Uhlenbeck process.
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This result confirm previous conjectures by other authors that do not prove them empirically. For

instance (Tvedt, 2000) in (Brennan and Trigeorgis, 2000) who concludes that while demand for shipping

follows a GBM, the freight rate follows an Ornstein Uhlenbeck process although his specification is different

from ours; moreover, (Bjerksund and Steinar, 1995) in (Trigeorgis, 1995) uses an arithmetic OUP in order

to derive the value of several shipping contracts. On the other hand our result contradicts the empirical

hypotheses of another strand of literature. For instance, (Dixit and Pindyck, 1994) on page 237 set up a case

study in ship valuation base on a driftless GBM generating gross revenue. In the same way (Goncalves de

Oliveira, 1999) bases its model on a GBM with drift. Both these models have been heavily conditioned by

the choice of continuous time/simbolic stochastic calculus framework which does not provide very tractable

general solutions for a OU process. Because of this they preferred to adapt reality to their method.
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A.Ornstein Uhlenbeck Parameters for Dry Bulk ships time charter A.1 Regression Estimates

Parameters Dixit Pindyck Gourieroux Jasiak
b 64.65901 -0.01044 64.65901 0.98956
sd 41.57789 0.00572 41.57789 0.00572
t 1.55513 -1.82397 1.55513 172.93280

Asy s.e. 0.00569

A.2 Parameters Estimates

Method Dixit Pindyck Gourieroux Jasiak
Parameters Estimates Estimates (Asy s.e.) [Asy z H0: = 0]

θ 6195.062 6462.879 (131.537310) [49.133427]
η 0.125904 0.125904 (0.021119) [5.9615585]
σε 480.272 480.272 (113.465) [4.2327855]
σθ 1672.445 1672.445 (331.879) [5.0393301]

B. Ornstein Uhlenbeck Parameters for Oil Tanker ships time charter B.1 Regression Estimates:

Parameters Dixit Pindyck Gourieroux Jasiak
b 02.50112 -0.07827 02.50112 0.92173
sd 0.56663 0.01527 0.56663 0.01527
t 4.41406 -5.12462 4.41406 60.35319

Asy s.e. 0.01531

B.2 Parameters Estimates:

Est Dixit Pindyck Gourieroux Jasiak
Parameters Estimates Estimates (Asy s.e.) [Asy z H0: = 0]

θ 31.957 32.290 (0.717062) [45.030313]
η 0.977970 0.977970 (0.097240) [10.057234]
σε 7.046 7.046 (1.665) [4.2327855]
σθ 25.410 25.410 (5.044) [5.0380435]

C. Test of the specification [Asy z H0: = σε = σθ]:

z < Z DRY OIL
(σθ−σε)
s.e.σθ

[3.5921991] [3.6409848]

(σε−σθ)
s.e.σε

[-10.507002] [-11.031396]

Table 6: Linear Estimates for Ornstein - Uhlenbeck Parameters
Legend: (Dixit and Pindyck, 1994) method is based on the following regression

θt − θt−1 = θ ·
(
1− e−η·∆ t

)
+
(
e−η·∆ t − 1

)
· θt−1 + εt

θt − θt−1 = α̂+ β̂ · θt−1 + εt

from which it is easy to derive point estimates of the OUP parameters

θ = − α̂

β̂ η = − ln
(
1+β̂

)
∆ t

σ̂ = σ̂ε ·
√

2·η
1−e−2·η∆ t

(Gourieroux and Jasiak, 2001) method is a variant of the (Dixit and Pindyck, 1994) method based on the following regression

θt = θ ·
(
1− e−η·∆ t

)
+ e−η·∆ t · θt−1 + εt

θt = θ ·
(
1− β̂

)
+ β̂ · θt−1 + εt

where estimates and their asymptotic variances are given as follows

θ = 1
T
·∑T

t=1
θt

Vasy(θ) =
σ̂2

ε

T ·
(
1−β̂

)
β̂ =

Cov(θt,θt−1)
V ar(θt)

Vasy(β̂) = 1
T
·
(
1− β̂2

) σ̂2
ε = 1

T
·∑T

t=1
ε2t

Vasy(σ̂
2
ε ) =

2·̂σ4
ε

T

where εt = θt − θ − β̂ ·
(
θt−1 − θ

)
The remaining two parameters of the OUP, namely the reversion speed and the

volatility of the process together with their asymptotic variances are derived through the δ method.
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A) MLL estimates:
DRY OIL

MLLE η θ σε η θ σθ
estimates 0.128193 6728.7175 1671.1405 0.964414 32.655753 25.390472
std.err. 0.069053 1789.1332 46.880135 0.198357 3.602852 0.737393

t-statistic 1.856455 3.760881 35.647093 4.862021 9.063861 34.432765
p-value 0.063849 0.000185 0. 0.000001 0. 0.

Value of the maximized
LogLikelihood Function -668.53732 -2164.31778

Total observations 642 642
Usable observations 642 642

Number of parameters to be estimated 3 3
Degrees of freedom 639 639

B) GMM estimates:
DRY OIL

GMM η θ σε η θ σθ
estimates 0.128184 6729.1461 1671.1472 0.964426 32.655069 25.390436
std.err. 0.083463 1900.1472 77.425405 0.309515 3.675637 1.522903

t-statistic 1.535818 3.541382 21.583965 3.115932 8.884192 16.672391
p-value 0.125078 0.000427 0. 0.001916 0. 0.

Value of the minimized
Criterion Function 0 0
Total observations 642 642

Usable observations 642 642
Number of parameters to be estimated 3 3

Degrees of freedom 639 639
Number of moment conditions 3 3

Table 7: Non Linear Estimates for Ornstein - Uhlenbeck Parameters
Legend: MLL and GMM estimates have been computed from the following discrete time equation

εt = θt − e−η h θt−1 − θ ·
(
1− e−η h

)
imposing, respectively the minimization of the following log-likelihood for MLLE

	t = −1

2
ln(2π)− 1

2
ln

(
σ2

(
1− e−2αh

2a

))
− 1

2

ε2t

σ2
(

1−e−2ah

2a

)
and the following moment condition for GMM estimates

Et−1 [εt] = 0

Et−1

[
ε2t − σ2

θ

(
1−e−2η h

2 η

)]
= 0

Et−1 [εt xt−1] = 0
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C Convergence Tests

The gist of the present paper stays in the convergence of the expected Running Present Value in the DP

procedure and the average of the Markov chains Montecarlo simulations. This fact guarantees that these two

procedures model the same dinamic optimal behaviour although the former is based on backward induction

while the latter is based on a forward computation of the expanded net present value.

Therefore, this appendix reports some results about convergence of expected value of Markov chains

Montecarlo simulations towards the values produced by the Dynamic Programming procedure. We have

checked both the results based on active and passive management. Moreover, we have checked whether the

grid discretization has some influence on convergence choosing a level in the middle of the discretized state

variable space θ = .5 together with the minimum and the maximum θ = 0 and θ = 1.

To test convergence we have computed expected values of the Markov chains Montecarlo simulations for

several number of experiments n, namely 100-1,000 (step 100), 1000-2000 (step 250), 2,000-3000 (step 500),

3000-5000 (step 1000), 5000-10,000 (step 2500). Changing the step allowed us to test the variability of the

results in different neighborhoods of n. Because of this experiments have a higher degree of granularity in the

hundreds while this decreases as the number of experiments increases. This experiment design was choosen

to show that results variability decreases as the number of experiments increases. We have consideres the

relative difference between the averages as computed above and the corresponding RPV.

Results reported in figure 6 show that averages of Montecarlo simulations converge to the corresponding

RPVs. This is true for both the active and passive management expanded present values. Convergence

seems to be quite fast. As a matter of fact results become quite stable for 5000 simulations experiments.

Reminding the economic intuition of these values and the high transaction costs to buy and sell investment

projects like those valued in this paper, relative differences in the order of 1-2% can be considered quite

good.
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Panel A: Convergence of results on θt=0 = 0.
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Panel B: Convergence of results on θt=0 = .5.
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Panel C: Convergence of results on θt=0 = 1.

Figure 6: Convergence results of Montecarlo towards RPV Results
Legend: The graphs report convergence results for three different relevant initial values of the Ornstein Uhlenbeck process as the number

of experiments increases. Left column reports results for the Passive Management RPVs while right column reports results for the Active

Management RPVs. The dashed line represents the difference between the average of the experiments and the the Running Present Value

at time t = 0 in the DP procedure divided by the latter.


