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Abstract

In this paper we develop an equilibrium-based net present value
model of an operating electricity production unit whose supply is given
by a stochastic, mean-reverting process. The price process for electric-
ity is derived from an underlying pair of stochastic, aggregate supply
and demand processes that are also mean-reverting, while the instan-
taneous supply and demand functions are iso-elastic. The model is
illustrated by a set of experimental data.

Introduction

1.1 Electricity as a peculiar commodity

In recent years, electricity markets all over the world have been deregulated.
The regulating bodies aim for more efficient production and pricing of elec-
tricity by allowing competition among producers, while still controlling the



natural monopolies of distributors. New challenges are introduced along with
this process. In deregulated electricity markets, price uncertainty is typically
high, and valuation of real and derivative assets and risk management are
therefore important topics, as opposed to the situation when prices were reg-
ulated. A deep understanding of price behaviour is necessary to facilitate
such activities.

Electricity differs in several respects from many other commodities. Some
important features are':

e Non-storability: There is currently no technology by which electricity
can be stored effectively once generated. Therefore electricity demand
and supply has to be balanced continuously in a transmission network
to prevent the network from collapsing.

e Non-traded asset: The lack of storage technology implies that elec-
tricity cannot be considered a financial asset held purely for investment
purposes. The usual cash-and-carry arbitrage relationship does not ap-
ply to electricity.

e No lower bound: Since electricity cannot be sold short there is no
lower bound on electricity prices. In fact, negative prices have occurred
in several electricity markets. This may happen, as power plants have
to get rid of excess output in periods when demand is low.

e Generating technology: Electricity may be generated from natural
gas, coal, oil, nuclear fuel, water turbines and renewable sources such as
wind power, solar energy and biomass. Some of these are more flexible
when it comes to scaling production in the short run.

e Transmission capacity: After electricity is generated, it is trans-
mitted over high-voltage power lines before being distributed to the
end users. In periods of high demand, the electricity transmitted may
come close to maximum capacity. Increased demand cannot be met
by increased supply, and prices may jump to extreme levels for short
periods of time. In some electricity markets ” price spikes” are common
(see Deng (2000) and Clewlow and Strickland (2000)).

1See Leong (1997), Kaminski et al. (2000), Deng (2000), Clewlow and Strickland (2000)
and Philipovi¢ (1998) for a thorough discussion on several of these issues.




e Seasonal patterns: In many markets prices peak twice a year, once
during winter due to demand for heating, and once in mid-summer
caused by the demand for air-conditioning. Electricity markets also
exhibit daily and weekly price patterns.

Some of these fundamentals, such as non-storability, are common to all
electricity markets, while others, such as seasonal patterns due to chang-
ing weather conditions, generating technology and transmission capacity, are
specific to each regional electricity market. Hence, we cannot expect to find
a global “fit-all” stochastic representation of electricity price dynamics.

1.2 Spot- and forward based models

The answers to risk management and valuation questions in the electricity
sector proposed to this date, builds heavily on theories that have been devel-
oped for other commodities or financial assets. Some authors have suggested
electricity spot price models. This approach was originally developed for
traditional commodities, building on the theory of storage.? From the list of
electricity market characteristics discussed above, we see that electricity does
not fit the standard storage based commodity model since the non-storability
is the most salient feature of this commodity. Continuous dynamic hedging
is impossible directly in the underlying asset. Still, spot price models have
been investigated in the literature. In these models the spot price is treated

2In the commodity literature, the theory of storage developed by Kaldor (1939), Work-
ing (1948) and (1949), Telser (1958) and Brennan (1958) and (1991), is the dominant
model of commodity spot and futures prices. The futures and spot price differential is
equal to the cost of storage (including interest) and an implicit benefit that producers
and consumers receive by holding inventories of a commodity. This benefit is termed the
convenience yield. The most obvious benefit from holding inventory, is the possibility to
sell at an occurring price peak.

Brennan and Schwartz (1985) coupled the theory of storage with the dynamic hedging
argument of contingent claims analysis developed originally for the stock marked. The
authors modelled the commodity spot price as a geometric Brownian motion. Assuming
continuous trading opportunities in the commodity, a constant risk free rate and constant
proportional convenience yield, they developed no-arbitrage valuation expressions and
optimal managing policies for a real asset (mine). Gibson and Schwartz (1990) provide a
generalisation in which the convenience yield is modelled as a mean reverting Ornstein-
Uhlenbeck process. Schwartz (1997) added the interest rate as a third stochastic factor,
while Hilliard and Reis (1998) generalised this three-factor model to also include jumps.



as a state variable on which derivatives are written, and for valuation pur-
poses this state variable is adjusted for risk (making ad hoc assumptions).
Examples are Kamat and Ohren (2000), Clewlow and Strickland (1999b)
and (2000) and Philipovi¢ (1998). The technically most advanced of these
studies is Deng (2000). He models the log of the spot price with mean re-
version, regime switching, stochastic volatility and different types of jumps.
The research mentioned above is rather limited when it comes to empirical
estimation and testing. The reason is, of course, limited data availability in
most electricity markets. As far as we know, the most comprehensive em-
pirical study of electricity spot prices is Lucia and Schwartz (2000). They
estimate several spot price models with mean reversion in levels and natural
logs and different seasonal specifications in the Nordic electricity market.

The main problem with spot price based models is that forward prices are
given endogenously from the parameters governing the spot price dynamics.
Thus theoretical forward prices will in general not be consistent with market
observed forward prices. As a response to this, a line of research has focused
on modelling the evolution of the whole forward curve, taking as given the
initial term structure. Examples of this research, building on the pioneering
work on modelling forward interest rate by Heath et al. (1992), are Cor-
tazar and Schwartz (1994), Clewlow and Strickland (1999a) and (2000) and
Miltersen and Schwartz (1998). The advantages of working directly with for-
ward prices are even greater for electricity than for other commodities. The
model is consistent with observable forward and futures prices, and, as op-
posed to electricity spot price models, we are working directly with tradable
assets. Previous work along these lines are Clewlow and Strickland (1999a)
and Bjerksund et al. (2000) who assume a multi-factor lognormal evolution
of the forward curve where the volatility term structure is given by deter-
ministic functions of time to maturity of the forward contract. A forward
price model can provide us with some of the answers we might be interested
in. The drawback of this method is low liquidity in many regional markets,
and fairly short contracts. If we want to calculate the value of a production
unit, say, we need to consider far more distant prices.

1.3 An equilibrium approach

In the process of deregulation of the electricity industry, the ownership struc-
tures of the production units change. Typically production owned by mu-
nicipalities or other governmental bodies are sold to private investors. The
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question we ask in this paper is: What is the correct price for an operating
electricity unit? To address this question we construct an equilibrium model
with stochastic supply and demand and a corresponding equilibrium spot
price. We then derive a simple net present value formula for the value of a
production unit. Using suggestive parameter values, we compute the theo-
retical value of a production unit. The qualitative behaviour of the model
is investigated by numerical analysis using experimental data.

The resulting equilibrium electricity spot price is a generalisation of the
one-factor model suggested by Schwartz (1997), but in our setting the elec-
tricity spot price is endogenous. Its dynamics depends on supply and de-
mand dynamics in the market. There are several advantages of such an
approach. First, it is possible to distinguish between generating technolo-
gies, as different technologies will have different underlying characteristics in
terms of volatility, correlation with aggregate supply and demand variables
etc. Second, as our spot price process is endogenous, its parameters can be
estimated from historical time series of underlying variables. This representa-
tion is particular convenient as the history of deregulated electricity markets
is very short. The empirical foundation for estimating the parameters of
an exogenous price process is therefore accordingly short. Reliable data for
the underlying supply and demand parameters are probably easier to find,
since they to some extent are determined by independent factors, such as
weather changes, population growth and aggregate economic growth. Based
on long-term data series of such variables, possibly somewhat adjusted in
light of observed market behaviour over the recent history with deregulated
markets, a better foundation for predictive analysis may be obtained.

2 The economy
Let aggregate supply be iso-elastic, given by the function
M x 57

where v (> 0) is the (constant) price elasticity of supply, S is the energy
price, and M, which is a rough measure of aggregate capacity, follows the
mean-reverting diffusion

dM = (B4 — ks In(M)) Mdt + oy MdByy (1)



Likewise, let aggregate demand be iso-elastic, given by the function
N x S°

where £ (> 0) is the magnitude of the price elasticity of demand, and N,
which is a rough measure of the aggregate market size, follows the diffusion

AN = (By — rix In(N)) Ndt + oxNdBy (2)

The two Brownian motions are correlated with dBy;dBy = py,ndt. In equi-
librium, where supply equals demand, we have

S = (N/M)®

where « = 1/(¢ + ) (> 0). Thus the spot price only depends on the sum
of elasticities of supply () and demand (g). For some technologies (such as
wind power), production can hardly be scaled at all, so v = 0 is a reasonable

: : s _ S 89S _ S 9°S _ S 925 _

assumption. Notlngzthat onf = ayr o = O i = ala+ 1) 57, oy =
_1\.8 2s _ S _ 2.8 5 T
afa — 1) 3, and 5525 = 55222 = —a’ 17, Ito’s lemma yields:

S S
45 = (B = k(M) M (—ayr) dt+ (—agp ) owMdBu
+(By — iy In(N)) N @%) dt + (a%) on NdBy
1 s 1 S
+§Oz(a + 1)W0%4M2dt + ia(a — 1)WU?VN2dt
1 S
+§ (—2a2m> omonNpynMNdt

= (ﬁS — (HN IH(N) — Ky ln(M))) Sdt + aS (O’NdBN - UMdBng)

where
«
Bs=a(By—Buy)+ 5 ((a +1)o3, + (a—1)o% — 2aaMaNpMN)

As observed from (3), the spot price volatility is proportional to « - the
inverse of the sum of the elasticities of the underlying supply and demand
curves. Thus the underlying spot price will be highly fluctuating if neither
supply nor demand are elastic; even if the demand and supply processes
themselves are not very volatile.



When valuing real assets, the spot price process is usually given as an ex-
ogenous process. In the seminal paper by Brennan and Schwartz (1986), the
spot price is assumed to be geometric Brownian motion. This model has been
modified by Schwartz (1997). He assumes mean reversion in the log of the
price. If we set Ky = k) = kg, and note that In(S) = (aIn(N) — aln(M)),
(3) simplifies to

dS = (Bg — ks In(S)) Sdt + aS (o ndBy — opdByy) (4)

Hence, the price process is mean-reverting, with parameters determined by
the underlying supply and demand processes. We can express (4) as

dS = (Bg — ksIn(S)) Sdt + S ((deBN — opmpyndBy + ngdB)

where B and By are independent Brownian motions. If we set p,,y = 1, the
expression above reduces to

dS = (ﬂs—ﬁgln(S)) Sdt+UssdBN (5)

where 05 = a(on — o)) . Setting kg = 0 gives the Brennan and Schwartz
(1986) model, and assuming that kg is a positive constant, gives the one-
factor model of Schwartz (1990).

3 The value of a production unit

We assume that the market is characterised by perfect competition so the
supply from a single producer has no effect on price. Now, let the uncertain
supply, @, of a producer be given by

dQ = (Bq — keIn (Q)) Qdt + 0oQdBq (6)

The Brownian motion, dBy, is correlated with dBy and dB), in (1) and (2)
with dBqdBy = pgydt and dBgdBy = pgydt respectively. The income, I,
is defined as I = Q5. Note that In/ =In @ +1In S. Applying Ito’s formula we
get

dIl = QdS+ SdQ + dQdS
= (B —a(kyIn(N) — ky In(M)) — ko In(Q)) Idt
+C¥O’NIdBN — OfO'MIdBM + O'QIdBQ (7)
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where
Br=P0s+Bg+aoq (UNPQN - UMPQM)

If the spot price process follows the diffusion in (4), and we set kg = kg = £,
then (7) reduces to

dI = (B; — krInl) Idt + aonIldBy — aoy IdBy + 0gldBg

We recognise the simple mean reverting process.
Let the cost be given by a fixed component, C'r, and a variable component
dependent on the quantity produced, #(). Hence we have

C=Cpr+6Q
The earnings, A, are given by
A=1-C

In the set-up above, both price and quantity are continuous functions of
time. However, if we observe price and quantity from the market place
with hourly, daily, weekly or monthly intervals between observations, we find
strong seasonal patterns in the data. If we instead use yearly production and
yearly average prices, the processes suggested above make more sense.

Assuming that no new investments are made, we can find the value of a
production unit, V', as the expected value of the future earnings, discounted
by a risk adjusted discount rate k. At time ¢ = 0 the value of the production
unit is

Vo = B l /0 ' e"“A(s)ds]

- [ e (B [1(s)] — Eo [C(s)) ds

0

- " e (Bo [1(5)] — Cr — 0, [Q(s)]) ds (8)

0

where T' is the remaining life time of the production unit. This provides a
closed form solution for the value of the production unit. We show in the
appendix that the explicit closed form expression becomes

T
Vo = / (IOeA(s)—ks . e—ksCF . eex(s)—ks) ds

0
T T T
= ToeAe) ks — C’F/ e Fds — 0/ eX(®)=ks g 9)
0 0 0
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where

As) =s (ﬂl - %£2> —Z(s) + ¥(s) — O(s) + %F(s)
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KN
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6(3) = (,DQS + In Q(O) <1 — e_’iQs) + i_z(e—liQs o 1)

2 2 2 2 2 9 9
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1 02 1 — e—2rqs 1 — e—26nNs 1 — 26
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1— e—(mQ-!-KN)s ) 1_ e—(KM+KN)S
+2a0n0 — 200 N0
NOQPNQ kg + NOMPNM v+ Fin

1 _ e—(nQ-l-fcM)s

_QOzO'MO'QpMQ HQ+/€M

2

K/J PR Q

See appendix for a proof.
In our numerical examples, we solve these integrals numerically. Of course

the value of the firm depends crucially on the value of k. Since electricity is
risky business, one might argue that k£ should be big. However from CAPM
we know that only systematic risk is priced in an efficient marketplace. A
basic result from this famous equilibrium theory says that

Cov(ry,rm)

Var (ry,) (rm =y

k:Tf—|—
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where r; is the risk free rate, 7y is the return on an investment in a pro-
duction facility and r,, is the return on the total market. We see that the
crucial component is the covariance between 7y and r,. A great deal of the
uncertainty in the electricity industry is caused by exogenous factors such
as weather and temperature. These factors have a far less direct impact on
the return of the market as a whole, and thus this covariance component will
in fact be relatively small. Setting this covariance to zero (which may be
empirically plausible) means that k& equals the risk free rate of return.

4 Numerical examples

In this section we explore the characteristics of the model by some numeri-
cal experiments, pertubating exogenous parameters around a reference data
set. Considering the low price elasticities of supply and demand in elec-
tricity markets, we assume € + v = 0.5 as reference parameters. The ag-
gregate demand and supply processes are symmetric in exogenous variables:
oy = oy = 0.15, B, = By = 5, and k) = ky = 1. This implies strong
mean reversion. We assume that aggregate supply and demand are corre-
lated by setting p,;5 = 0.5. This could be a proxy for assumed capacity
adjustments made possible e.g. in hydroelectric power production by stor-
ing water. It could also be a proxy for adjusting imports and exports along
transmission lines with restricted capacity, assuming that the domestic spot
price fluctuates around an international, fixed (or less volatile) spot price.
The volatility of the firm-specific production process is set to og = 0.20,
as the supply of the firm may be more volatile than aggregate supply; for
example, this is likely for hydroelectric power production which depends on
rainfalls. The drift parameters are set to 35 = rg = 1. Initial values for
all stochastic variables are set to the mean-reverting value (M, = e(#m/rnm),
Ny = elBn/on) Qo = elPa/m@)); the discount factor is 5 percent (k = 0.05),
and the time horizon is infinite. For simplicity, all costs are set to zero.
Table 1 shows the net present value of the firm under these assumptions,
and under two alternative assumptions for most exogenous variables. The
net present value of income with the reference data equals 54.26. This is
slightly lower than the deterministic value (o) = oy = 0¢ = 0), which
yields 54.37. The corresponding geometric Brownian motion of demand and
supply (ky = ky = kg = By = By = Bg = 0) is 77.67, so the effect of mean
reversion is strong. The first row of results shows that the value of the firm
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Low Reference data High
Parameter | V Parameter | V, Parameter | Vj
« 1.00 53.76 | 2.00 04.26 | 4.00 o7.11
PUN 0.00 55.46 | 0.50 54.26 | 1.00 53.08
Pom 0.00 55.06 | 0.50 54.26 | 1.00 53.47
PoN -1.00 52.69 | 0.00 54.26 | 1.00 55.87
oM 0.00 53.89 | 0.15 54.26 | 0.30 59.58
oN 0.00 55.43 | 0.15 54.26 | 0.30 53.16
oQ 0.00 55.57 | 0.20 54.26 | 0.40 52.00
By & kpr [ 0.5& 0.1 1 70.69 | 5.0& 1.0 | 54.26 | 50.0 & 10.0 | 53.77
By & iy | 0.5& 0.1 | 54.94 | 5.0& 1.0 | 54.26 | 50.0 & 10.0 | 55.21
Bo& kg [05&0.1 |51.36|50& 1.0 |54.26 | 50.0 & 10.0 | 55.37

My = exp(By/km) = 148.4, No = exp(By/rn) = 148.4,
Qo = exp(Bg/Kq) = 2.72

Table 1: Value of a production unit.

increases when demand or supply becomes less elastic (i.e., when « increases).
This is intuitive, as low price elasticities combined with uncertainty makes
price peaks more likely. The explanation of the second row is somewhat
similar: The firm benefits from low correlation between supply and demand
as this also makes price peaks more likely.

A small firm also benefits from having a production pattern that is not
correlated with aggregate supply; i.e., pg), ought to be low. This leads to
higher production during periods when other firms do not produce as much;
i.e., when prices are high. Likewise, a high pgy is obviously preferred as this
leads to high production when demand is high.

Effects of uncertainty depend on where it appears. High uncertainty in
aggregate supply is beneficial, apparently because it can bring periods with
low supply and extremely high prices. Since the log-function is concave,
the downward speed when production is above the long-term mean-reverting
value is lower than the upward speed on the lower side. Therefore increased
uncertainty tends to increase the long-term expected value of production.
The same effect works in the opposite direction for aggregate supply, so
aggregate supply uncertainty harms the firm, while firm-specific uncertainty
of supply is beneficial.

The next three rows show that the results do not change much when scal-
ing the mean-reverting speed up or down by a factor of 10 in either direction,
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except for weak mean reversion in aggregate supply. Low speed is best for
the firm for aggregate supply (3,;, k), while high speed is preferred for
aggregate demand (By, xy) and firm-specific supply (8, k). Low mean
reversion in aggregate supply (rxy = 0.1) leads to a net present value of 70.69,
which is surprisingly close to the geometric Brownian case (77.67). Other in-
vestigations indicate that this is highly related to the elasticity of supply and
demand. With inelastic markets, slow mean reversion in aggregate supply
tends to imply long periods of low supply when uncertainty is governed by a
geometric diffusion term. It would be very interesting to test general validity
of such a result by further empirical analyses.

5 Concluding remarks

We have developed an equilibrium-based net present value model of an oper-
ating electricity production unit. It should be noted that the model is general,
so it may also apply to other markets with similar supply and demand charac-
teristics. One nice feature of the model lies in its explicit formulation of basic
supply and demand relationships. This may simplify further empirical work,
which is the obvious next step, because some required variables appear to be
highly related to phenomena such as temperature changes and other natural
phenomena for which long-term data exist. Considering the total number of
variables in the model, a satisfactory empirical analysis does not appear to
be trivial. In particular, ongoing market liberalisation in many countries is
coupled with capacity adjustments as well as increased trade opportunities
along transmission lines with restricted capacity. Thus both production as
well as transmission capacities are changing more or less continuously, and
it is not straightforward to determine the extent of virtually any market. If
such technical difficulties can be overcome, one may hope that the model can
be used to estimate the market value of actual production units. Up until
now, such valuations seem to be based on less scientific approaches.
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6 Appendix

6.1 Some useful results
The mean-reverting Ornstein-Uhlenbeck equation is given by

dX = (’U,X—kxX)dt—i‘deBt (10)
where x and m are real constants and B; is standard Brownian motion.

Proposition 1 The mean-reverting Ornstein-Uhlenbeck process is given by

t
X, = e Fxtx, — Z—X(e_kxt —-1)+ JXe_kt/ e*dB(s) (11)
X 0
Proof.
See eg. Oksendal (1995).
|

Let a stochastic variable, Y, be governed by the stochastic differential
equation (SDE)

dY = (uy — ky n(Y))Ydt + oyYdB; (12)
where uy and ky are real constants and B; is standard Brownian motion.

Proposition 2 The natural log of Y is governed by the mean-reverting Ornstein-
Uhlenbeck process:

dInY = (gy — ky In(Y)) dt + oy dB (13)
where
L,
gy = Uy — 50')/
Proof.
Apply Ito’s formula on InY.
|

Corollary 3 The solution of the integral InY 1is given by

¢ gyt IHOO) —kyt 9Y |, _pvt
n(Y)(s)ds = 2= 4 0 (1 _ kv Y (o—hvt _q
/0 n(Y)(s)ds T ( e > + (e )

t t
+2 / dB(s) — T e kvt / HAB(s)  (14)
ky Jo ky 0
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Proof.
The integral form of (13) is

t t t
/ dInY (s) :/ (gy — ky ln(Y)(s))ds+ay/ dB(s) (15)
0 0 0
We also have the obvious relationship
Y (#) — InY(0 / dInY (s (16)

Combining (15) and (16) gives

InY(t) —InY(0) = /OtdlnY(S)
= /Ot (9y — ky InY(s))ds + oy /OtdB(S)
= gyt —ky /OtlnY(s)deray /Ot dB(s)

t t
ky/o InY(s)ds = gyt—|—ay/ dB(s) +InY(0) —InY (%)

/OtlnY(s)ds - th /dB +— (InY(0) — In Y (1)) (17)

From (11) and (13) we know that the solution to InY'(¢) is

t
InY(t) =e ™nYy, — Z—Y(e_kyt -1+ 0ye_kyt/ "3 dB(s) (18)
Y 0

Inserting (18) into (17) yields the desired result.
|

6.2 The net present value of a production unit

Now we set out to prove (9). Let the SDE governing the stochastic income, I,

be given by (7). Then, by Ito’s formula, the natural log of income is governed
by the following SDE:

dinl = (B; —a(knIn(N) —kyIn(M)) — koln(Q)) dt
1
—§§2dt +aondBy — a0y dByy + 0gdBg
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where

€%t = (aoydBy — aoydBy + 0gdBg)?

_ [ oPof + ool + 04— 2070NpN oM 5
+2apNQUNUQ — QOépMQO'MO'Q

The integral form of In I is

/Otdlnf(s)ds = /Ot (ﬁf — %§2> ds — aky /Otln (N(s))ds
+ak /Ot In (M(s))ds — kg /Ot In (Q(s)) ds
+040N/OtdBN—ozaM/OtdBM—i—aQ/OtdBQ

Remembering (11) and (13), and using (14) we have the following

. /Otln (N(s))ds = —Z(t)— aoy /Ot dBy(s)

t
+aaNe_”Nt/O e"™*dBy(s)

OJHM/OtlIl(M(S))dS = \If(t)+aaM/0tdBM(3)

¢
—ao e M /o e"M3d B (s)

g [ Q) ds = ~6(1) ~ g [ dBals)
—l—aQe_"Qt/Ot e"?*dBg(s)
where
=(t) = apyt + aln N(0) (1—e7) + %(e"’wt _1)

\Il(t) = aSDMt + O[lnM(O) (]_ — e_HMt) _|_ O{SOM (6—HMt o 1)
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(20)

(21)

(22)



O(t) = wot +nQ(0) (1 - e7re') + “:—Z(e—wt _1)

and )
_ 2
v; =B — 39
for j = N, M and @) respectively. Inserting (20), (21) and (22) into (19) and

collecting drift and diffusion terms gives
t 1,

InI(t) — In1(0) = / (5, - 3¢ ) ds
0

t t
(t) — aaN/ dBy(s) + ozUNe_”Nt/ "N dBy(s)
0 0

(1]

+U(t) + aoy /Ot dBy(s) — ao e M /Ot "™ dBy(s)
—0(t) — g /O "B (s) + oge et /0 " e5asd By (s)
+aaN/OtdBN - OzUM/OtdBM—i—UQ/OtdBQ

_ /Ot (51 _ %§2> ds — =(t) + U (t) — O(1)
+ao e N /Ot "3 dBy(s) — ao e Mt /Ot e"M3d By ()
+oge e /Ot e"*dBg(s)

The natural log of income, In I(¢), is normally distributed with

InI(t) ~N (In1(0) + A(t),T(t))

where . 1
A(f) = /0 (5, _ §§2> ds — Z(t) + V(1) + O(t)
and
1 o2 1 — e~ 2kt 1 — e~ 26Nt 1 — e 26mt
L) = -a?2(-9 2 o L—e ™
®) 2 <a2 KQ TN KN oM KM
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1— e—(KQ+KN)t 1 — e—(feM—i-nN)t

2
+2a0NUQpNQ Ko . — 2« ONOMPNM Foar & R

1 — e—(nQ—i—fcM)t

—QOZUMO'QIOMQ /{jQ—i—/{M

By the property of the lognormal distribution we have that

Bw) = exp(ndy+ A + %r@))

_ Iyexp (/Ot (51 _ %g?) ds — Z(£) + () + O() + %r(z))

which proves the first integral in (9). The second integral is obvious. We
know from (13) and (11) that In @, is normally distributed with

o2
In Qt ~N <e—ﬂQtQ0 _ &(e—nczt . 1), Q. (1 N e—?KQt))
RQ 2KQ
By the property of the lognormal distribution we know that
2
— —kqt _(p_Q —kot __ U_Q __—2kqt
E[Q] = exp (6 ?'Qo o (7"t —1) + Trg <1 e “fQ ))

which concludes the proof.
H
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