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Real Investment Opportunity Valuation and Timing Using a Finite-Lived American 
Exchange Option Methodology 

 
 
 
 
 

Abstract 
 
 
In practice, the investment opportunities that can be delayed are more like exchange than simple call options, 
because there are uncertainties both in the gross project value (underlying asset) and in the investment cost 
(exercise price). Companies that have the option to invest at anytime until a certain date (the maturity), also often 
have some opportunity costs (the lost cash flows) in holding the option instead of the project. Incorporating these 
aspects leads to a more realistic evaluation process. In this research, we value three real investment projects as 
finite-lived American exchange options, correcting and applying the Carr (1988) model. We conclude that, as 
expected, the traditional Net Present Value method substantially undervalues projects with this kind of flexibility 
(excluding those that are deep in-the-money). This leads to wrong decisions about the timing of these 
investments. We also conclude that the results from using the corrected 1988 Carr model differ substantially 
from those that we obtain from using the uncorrected version. As expected, the corrected model gives results that 
are higher in value. 

 
Keywords: Real Options; Investment Under Uncertainty; Deferment Option; Exchange Options. 



Real Investment Opportunity Valuation and Timing Using a Finite-Lived American 
Exchange Option Methodology 
 
 
1. Introduction 

It is widely accepted that the traditional Net Present Value (NPV) method is inadequate to value real 

investment opportunities in an uncertain environment (see Pindyck, 1991; Trigeorgis, 1993; Ross, 1995; among 

others). Although several papers focus on the value and timing of project adoption under uncertainty,1 these 

papers make a simplifying but problematic assumption. Although the exercise price is fixed and known in 

advance (at the moment of the purchase of the option) in a typical (“vanilla”) call option, such is rarely the case 

in a real options context. While a company may be able to make a fairly accurate estimate of the cost of current 

investment, there is much less precision about investment costs in the future. 

As a consequence, the real option to invest in the future corresponds to an exchange option and not to a 

simple call option, because of its uncertain exercise price. The investment corresponds to the exchange of a risky 

asset, investment cost, for another, the gross project value. So, generally, when we value an investment 

opportunity, we are exposed to two sources of uncertainty, i.e., to two stochastic variables. Simplifying the 

evaluation process and assuming only one stochastic variable (the gross project value) may lead to wrong results. 

Therefore, the Black-Scholes (1973) model should not be used to value projects with these characteristics. 

There are only a few models with the capacity to value investment opportunities with two stochastic 

variables. The most relevant models are by Margrabe (1978), Mcdonald and Siegel (1986) and Carr (1988 and 

1995).2 Each of these models has shortcomings and limitations. 

Margrabe’s model is not fully adequate because “his” exchange (European) option can only be 

exercised at maturity. This characteristic is unrealistic because a company owning an option to invest can, in 

principle, exercise that option at any time until maturity. In other words, the investment opportunities generally 

are American options. The Margrabe model can value American options only in the particular situation where 

the underlying asset does not distribute dividends. The reason is that, in the absence of dividends, an American 

option should never be exercised prior to maturity. In a real options context, “dividends” are the opportunity 

costs inherent in the decision to defer an investment (Majd and Pindyck, 1987). As in a financial options context, 

deferment implies the loss of the project’s cash flows. Those lost cash flows must be seen as foregone 

“dividends”, and must be taken into account. 

The model of McDonald and Siegel values American options with two stochastic variables. The model 

has an important shortcoming since it assumes that the option, if unexercised, has an infinite maturity (that is, the 

option is perpetual). In practice, most investment opportunities do not continue forever, so they cannot be 

accurately valued using this model.  

                                                      
1 Examples include Majd and Pindyck (1987), Siegel, Smith and Paddock (1987), Dixit (1989), Trigeorgis (1991), Ingersoll 
and Ross (1992), Kemna (1993) and Lee (1997). 
 
2 Also Pindyck (1993) studies the impact of the uncertain costs on the project’s value. However his work differs from ours in 
several ways, namely: (i) the projects take considerable time (several years) to complete (e.g., a nuclear plant, or the 
development of a new drug), (ii) the uncertainty is over the cost of completion, (iii) there are two types of uncertainty during 
the completion (technical uncertainty and input cost uncertainty), and (iv) finally, the value of the completed project is known 
with certainty and, at the end, his model is extended to incorporate uncertainties in that variable using a dynamic 
programming procedure. 
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The Carr model has the capacity to evaluate finite-lived American exchange options (AEOs). It 

simultaneously incorporates a limited temporal dimension, the flexibility to act (invest) at any time until 

maturity, and also uncertainty both in the gross project value and in the investment cost while allowing them to 

be correlated. In this paper, we follow, correct and apply the Carr (1988) model. 

By viewing investment opportunities as options, analogous to financial options, we overcome the rigid 

and deterministic characteristics of the traditional NPV method, and capture some important, and contingent, 

sources of value, like operational flexibility and strategic interactions (Dixit and Pindyck, 1994; and Trigeorgis, 

1996). We use the model to evaluate three real investment projects, and to analyze the optimal time to implement 

these investment projects. 

We make three important contributions to the literature. Firstly, we correct an error in the Carr (1988) 

model that has a non-negligible impact on the option’s value. Secondly, we apply the corrected version of this 

model to three real project evaluations. Third, we illustrate the substantial differences in the values obtained by 

applying the original and the corrected versions of the Carr model and the traditional NPV model. 

The remainder of this paper is organised as follows. In the next section, we present the methodology 

and correct an error in the Carr (1988) paper.3 In section 3, we show how the methodology can be 

operationalized, describing the three real investment projects and the inputs of the model. In section 4, we apply 

the corrected methodology to these three real investment projects, and analyse the model outputs. Section 5 

concludes the paper. 

 

2. Methodology 
2.1 Valuation of Compound Exchange Options 

Carr (1988) develops a model to value European compound exchange options. Carr (1988) proposes an 

approximate method to value American exchange options (AEOs), using a two moment extrapolation process. 

Carr (1995) extends the previous model to value AEOs using a three moment extrapolation process. 4 

The methodology proposed by Carr to value an AEO involves three steps. In the first step, the value of 

an European Exchange Option (EEO) on dividend-paying assets is determined.  Assuming that V and D follow a 

geometric Brownian motion process given by: 

 

(1b)                                          )(

(1a)                                            )(

dZddtddD
dD

dZvdtvvV
dV

σδµ

σδµ

+−=

+−=
 

 

 

then the value of the EEO, or e(V,D,t), is given by the following equation (Mcdonald and Siegel, 1985): 

 

                                                      
3 The Carr (1988) paper has an error, which is corrected in this paper. 
4 This paper extends the methodology of Carr (1988). While this paper uses a three moment extrapolation process, it does not 
correct for the error in Carr (1988). 
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(2)                )()(),,( 2111 dNDedNVetDVe tt dv δδ −− −=  

 

 

where: 

 

V is Gross Project Value; 

D is Investment Cost; 

vµ and dµ  are the instantaneous expected return on V and the expected growth rate of the investment 

cost, respectively; 

vσ and dσ are the volatility of V and D, respectively; 

vδ and dδ are the “dividend-yields” on V and D, respectively; 

dZ is the standard Wiener process (dZ = dtτε , ε~(0,1)); 

)(1 dN is the cumulative standard normal distribution; 

t

ttPeLn

2

2
2

1
).(

d1
σ

σδ +−

= ; 

tdd σ−= 12 ; 

D

V
P ≡ ; 

dδδδ −≡ v ; and 

dvdv
σρσσσσ 2222 −+= , where ρ is the correlation between changes in V and D. 

 

In equations (1a) and (1b), the current values for V and D are known, and their future values have two 

components. The first component is deterministic since it corresponds to the drift, and the second component is 

stochastic since it corresponds to a stochastic process with variance increasing linearly with time. 

In the second step, the value of a Pseudo-American Exchange Option (PAEO) is determined. Let t be 

the evaluation date, and T be the maturity date of the option. We can divide the time interval (T-t) into n equal 

periods. Let t)(TE n −  be the value of the PEAO, where (T-t) is the time to maturity and the index n says that 

the option can be exercised at the end of any of the n periods until maturity. For n=1, the value is the same as 

that of the EEO, as given by the expression (2). 

For n=2, we have a PAEO that can be exercised at T/2 or T. The option will not be exercised at T/2 if 

the opportunity cost of doing that exceeds the benefits; i.e., if: 

 

D-V )()( 2111 >− ∆−∆− dNDedNVe TT dv δδ  (3) 
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where ∆T=T/2. 

Instead of using two stochastic variables (V and D), we can redefine the expression by using P≡V/D. 

So: 

 

(4)                     1- )()( 2111 PdNedNPe TT dv >− ∆−∆− δδ  

 

Let P* be the unique value of P that transforms the expression (4) into the following equation: 

 

(5)                1- )()( 2111
∗∆−∆−∗ =− PdNedNeP TT dv δδ  

 

If the value of P is higher than P* at moment T/2, then the option is exercised to pay (V-D). In the other 

case where P<P*, the option is not exercised. It is essentially an EEO that expires at T and pays max(0, V-D). 

These contingent payoffs can be replicated by a portfolio with three European options, as shown in Table 1. The 

first option is an EEO with maturity at T. The second is also an European option with maturity at ∆T, and 

involves the exchange of P* units of D for one unit of V. The third option is a compound EEO that involves the 

exchange of (P*-1) units of D for the first EEO. Its maturity also is at ∆T. 

 

[Please place Table 1 about here.] 

 

The PAEO is similar to a portfolio containing the first two EEOs, with maturities corresponding to the 

two possible exercise dates (∆T and T). However, if an option is exercised earlier it cannot be exercised at 

maturity. This is the reason for also including the short position on the compound option. 

The value of a PAEO with n=2 corresponds to the value of this portfolio. The first two options can be 

valued using the expression (2). The third option can be valued using the following formula (Carr, 1988): 

 

( ) ( )

( ) )6(*
21

.
)1*(                                                            
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.
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By grouping all of the options, we arrive at the following value of the PAEO: 
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Using the following statistical equivalence: 

 

);,(2);,(2)(1 ρρ −−=− baNbaNbN  

we can simplify (7) to obtain: 
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In the third step, the AEO is valued using an extrapolation process. Let 1E be the value of the EEO and 

2E  the value of the PAEO. The value of the AEO can be estimated using the Richardson extrapolation method. 

Using the corrected version of the extrapolation formula presented by Carr (1988) gives (see Appendices B and 

C for more details on the derivation): 5 

            (9)                                          
3

12
2

EE
EAEO

−
+≈  

 

                                                      

5 The extrapolation formula presented by Carr is: .
3

12
1

EE
EAEO

−
+≈  
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Since all of the options have the same underlying assets and maturities, 1E  and 2E can be valued using 

equations (2) and (8), respectively. 

 

2.2 Application of the Methodology to the Valuation of Real Options 
Because of the “now or never” characteristic of the traditional NPV method, the value of a real 

investment opportunity equals the difference between 
t

V and 
t

D , where 
t

V  and 
t

D  are the gross project value 

and the investment cost at moment t, respectively. According to this criterion, it is optimal to invest if 
t

V >
t

D . 

As pointed out by several authors, this criterion may be incorrect given uncertainty, and when project 

implementation can be deferred. The real options theory not only overcomes these problems but it also changes 

the valuation formula and the optimal investment decision (timing). The value of a real investment opportunity 

must include both the in-the-money value (NPV) and the value of the flexibility to postpone. Thus, the value of 

the project equals the traditional NPV plus the value of the Deferment Option (DO).6 

In practice, the value of the investment opportunity (IO) is given by the maximum of the values of the 

AEO and the NPV; i.e., max (AEO, NPV). The value of a project is equal to its traditional NPV if, and only if, 

the value of the DO is zero. This may occur under the circumstances discussed by Kester (1984). 

Also, it is important to know what is the optimal moment to invest. At every moment t, the company 

tries to maximise the value of the IO by choosing between: (i) immediate exercise of the option to invest, or (ii) 

the deferment of the investment option in order to obtain more information about V and D. The company defers 

whenever the value of the “live” option is larger than the value of the option if exercised today, i.e., when the 

DO’s value is positive.  

 

3. Model Implementation: Assumptions and Inputs 
 

One of the largest Portuguese companies has the opportunity to invest abroad in three independent real 

investment projects (A, B and C) (for further details see Appendix D). The values for each of the valuation 

inputs for each of these projects are summarized in Table 2 and are discussed next. 

 

[Please place Table 2 about here.] 

 

3.1 Gross Project Value (V) 
The Gross Project Value V corresponds to the present value of the project’s appropriately discounted 

expected cash flows, given the information available at the evaluation date. V is the value that the firm receives 

by paying the exercise price (i.e., by making the investment). While the value of V at the evaluation date is 

known, its future values are unknown. We assume that V is a stochastic variable that follows the geometric 

Brownian motion process defined in (1a). According to the data provided by the said company, the values of V0 

are: 1,844,575 Euros, 2,419,106 Euros, and 1,785,776 Euros for projects A, B and C, respectively. 

                                                      
6 Since our methodology calculates the value of the IO as a whole, we can obtain the value of the DO by finding the 
difference between the value of the AEO and the traditional NPV. 



 7 

 

3.2 Investment Cost (D) 
The investment cost D is the exercise price of the IO. It is the amount of capital that the company needs 

to invest “today” in the project. We do not know the value of D in the future, when the option to invest will be 

exercised. As for V, we assume that D follows the geometric Brownian motion process presented in (1b). 

According to the data provided by the said firm, the current values of D are: 1,662,000 Euros for projects A and 

B, and 2,622,000 Euros for project C. 

 

3.3 Time-to-Maturity (T-t) 
The company estimates that each of the projects can be deferred for about 4 years before each 

opportunity disappears. Thus, we adopt a 4 year maturity for each project’s deferment option. Since the options 

are American, the IO can be exercised anytime until (or at) the maturity date. 

 

3.4 Dividend-Yield of V ( vδ ) 

Let µ be the (total) expected rate of return on V and α be the expected percentage rate of changes of V. 

We assume that δ=µ-α so that investment before the maturity date may be optimal, as in Dixit and Pindyck 

(1994). 

As with call options, δ corresponds to the dividend yield of the stock. The total return earned by the 

owner of the stock is then: δ+α=µ. In the absence of dividends on the underlying stock, the optimal decision is to 

hold the option until maturity. Since the total return on the stock is reflected in the prices of both the underlying 

stock and the option, there is no opportunity cost to maintaining the option “alive”. In the case of a positive δ, 

there is an opportunity cost in holding the option instead of the stock. This opportunity cost corresponds to the 

dividends paid on the stock that are foregone by option holders. 

The expected return from owning the completed project also is given by µ.7 This market-determined 

equilibrium rate includes an appropriate risk premium. If vδ > 0, then the (capital) gains on V will be lower than 

µ, so vδ  is the opportunity cost of deferring the project. If vδ = 0, no opportunity cost exists. Thus, it is never 

optimal to invest earlier than at maturity. For high values of vδ  (for high opportunity costs associated with 

holding the option), the value of the option goes to zero. This transforms the project into a “now or never” type, 

and makes the traditional NPV a valid assessment method. 

In practice, vδ  may represent several types of opportunity costs. One such opportunity cost is the cash 

flows foregone. Some authors (e.g. Trigeorgis, 1996) argue that vδ  may also incorporate another type of 

opportunity cost. Specifically, project deferment may contribute to the early entrance of a competitor in a 

competitive environment, which, in turn, may have a negative impact on the value of the project. Herein, we 

assume that the only cost resulting from the deferment decision is the lost cash flows. Thus, the parameter vδ  is 

the rate of cash flow yielded by the project. 

                                                      
7 Remember that the expected rate of return is irrelevant given the current asset values, as in Black-Scholes (1973). 
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As noted above, vδ  can be calculated as the difference between the total expected or required return on the 

project (i.e., the cost of capital or µ), and the expected growth rate of the project’s value (α). The company 

estimated a value of µ of 10%. We calculate α using, 
( )

 1

1

0
−= 


 n

V
Vnα , where nV  is the expected value of 

the project in year n, and 
0

V  is the project’s current value if completed. The α estimates for the projects A, B 

and C are 3.52%, 3.33% and 3.24%, respectively. Using the estimates of µ and α yields vδ  estimates of 6.48%, 

6.67% and 6.76% for projects A, B and C, respectively. 

 

3.5 Dividend-Yield of D ( dδ ) 

According to the assumptions of the model, the “dividend yields” are assumed to be nonnegative 

constants. While this is true for vδ , dδ  is negative when carrying costs are associated with the project’s capital 

cost. In this model, we need to assume that such costs do not exist because dδ  cannot be negative. As pointed 

out by McDonald and Siegel (1986), the gain from deferral may increase with larger dδ . In our application, we 

assume that dδ =0 by assuming that there are no carrying costs associated with a project’s capital costs nor 

benefits (from the capital cost’s level) from deferring the project. 

 

3.6 Volatility of V and D ( vσ , dσ ) 

We assume that the volatility of the company’s stock is an adequate proxy for the volatility of V (see, 

for example, Davis, 1998; Paxson, 1999; and Amram and Kulatilaka, 1999). It also is necessary to assume that 

the volatility of V is constant during the life of the option. The vσ  is calculated based on the natural logarithm 

of the daily returns [Ln(n/(n-1)] of the company’s quotations during the period between January 4, 1993 and 

June 30, 1999. The annual vσ  corresponds to the daily vσ  multiplied by the square root of the number of 

transaction days in a year (247). The stock’s quotations are drawn from Bloomberg, and are already adjusted for 

dividends. This yields a vσ  of 0.3058. As to the volatility of D, and knowing that the investment costs are 

essentially construction costs, we assume as in Patel and Paxson (2001) that the volatility of the construction 

companies index (CCI) is an adequate proxy for representing the volatility of the investment cost. So dσ  is 

calculated from the daily returns on the CCI in the same way and over the same period as that for estimating vσ . 

The annual dσ  is equal to the daily dσ  multiplied by the square root of the number of transaction days in a 

year (247). The data is drawn from Finibanco, and the quotations are adjusted for dividends. This yields a value 

of dσ  of 0.2202. 
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3.7 Correlation between the changes in V and D [ρ(v,d)]  

We assume that the correlation between the changes in V and D can be approximated by the correlation 

between the daily returns on the company’s stocks and the daily returns on CCI during the time period referred 

to above (as in Patel and Paxson, 2001). This yields a correlation of 0.2532. 

 

4. Model Implementation: Empirical Outputs 
4.1 The Results for the Initial Input Values 

Using the methodology presented in section 2, and the input values detailed in section 3, we obtain the 

results reported in Table 3 for each of the three projects. The value of project A is 346,911 Euros,8 which is over 

90% higher than the value calculated using the traditional NPV method. More than 47% of the total value of this 

investment project is attributable to the value of the DO. Although the value obtained from the traditional NPV 

method is almost half of the project’s real value, its positive sign suggests that the project should be adopted 

immediately. On the contrary, the AEO evaluation methodology used herein indicates that the project should not 

be undertaken immediately because of the high positive value of the DO. 

 

[Please place Table 3 about here.] 

 

The valuation results for project B differ from those for project A. The deferment option has no value 

because the project is far in-the-money, and the uncertainties about V and D are not sufficiently high to induce 

value in the deferment option. As a result, it is more valuable to exercise the option to invest now than to keep 

that option alive. In other words, since the option to invest is sufficiently in-the-money to compensate for the lost 

option to defer the project, the option to invest should be exercised now. As in Kester (1984), a high traditional 

NPV value is one of the factors that justifies a project’s current implementation. 

The input characteristics of project C differ substantially from those for projects A and B. Project C has 

a lower gross project value, and a higher implementation cost. When evaluated using the traditional NPV 

methodology, this project has no value given its negative NPV. However, based on the AEO evaluation 

methodology, this investment opportunity has a positive value of 111,320 Euros due to the high value of its 

deferment option of 947,544 Euros. This changes the investment decision from not adopting the project (based 

on the traditional NPV rule) to the deferment of its implementation (based on the AEO rule). The later decision 

gives the company the flexibility of “waiting to see”, and leaves the company with the right to invest in the 

project in the future if the uncertainties are resolved in the project’s favor. Interestingly, although this IO is 

significantly out-of-the money, this investment opportunity has a large positive value. 

The values emitted by each of the two valuation methodologies and the resulting investment timing 

decisions are summarized in Table 4. The NPV rule not only significantly undervalues projects A and C but its 

implementation leads to an incorrect decision. Only for project B do the two evaluation methodologies yield the 

same value, and thus, emit the same investment timing signal. Thus, this vividly illustrates that the traditional 

NPV methodology is not adequate to value investment opportunities in an uncertain environment, particularly 

when projects can be deferred to a later adoption date. 
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[Please place Table 4 about here.] 

 

4.2 The Results Using Simulated Input Values 
In this section we perturbate some of the initial input values in order to study the impact on IO values 

calculated using the finite-lived American Exchange Option methodology. We fix the values for V, D, dδ  and 

(T-t), and vary each of the other input values in turn. We use values of 25%, 30% and 35% for vσ , of 20%, 25% 

and 30% for dσ , of 0.20, 0.25 and 0.30 for ρ, and of 5%, 7% and 9% for vδ . 

These results are presented in Tables 5, 6 and 7 for projects A, B and C, respectively. Only the shaded 

values signal that the project should be undertaken now. As for the remaining values, the correct timing decision 

is to defer implementation. Also, the value of the AEO increases with higher vσ , higher dσ , lower ρ between 

V and D, and lower vδ . 

[Please place Tables 5, 6 and 7 about here.] 
  
 
5. Some Limitations 

The model building and tests conducted herein have a number of potential limitations. First, as is also 

noted by Mcdonald and Siegel (1986), the assumption of geometric Brownian motion (GBM) is more reasonable 

for the project gross value V than it is for the investment cost D. Second, the maturity date of the deferment 

option is likely to be uncertain at the point at which an investment decision is being made. Third, the model 

assumes away the importance of carrying costs for the project’s capital cost because it assumes that “dividend 

yields” are nonnegative parameters. Fourth, the model does not account for the value of other options such as the 

option to abandon the project. And finally, the investment opportunity is assumed to be proprietary due to, for 

example, the absence of competition in the market. 

 

6. Conclusions 
In this paper we propose that many investment opportunities, which have a finite time to maturity, 

should be valued as finite-lived American exchange options. We argue that such projects have a finite temporal 

dimension with uncertain gross project values and investment costs, and flexibility in implementation up to and 

including some future calendar date. 

We correct and apply the Carr (1988) methodology, and find support for our expectation that the 

traditional NPV method significantly undervalues projects with the characteristics presented above. The use of 

the traditional NPV method may lead to incorrect investment or investment timing decisions. By evaluating 

investment opportunities using an American Exchange Options methodology, we find substantial changes 

compared to the traditional NPV method in both the value of the investment opportunities and the timing of 

when the project is undertaken. The model outputs for the corrected and uncorrected Carr (1988) models differ 

                                                                                                                                                                      
8 The value of the IO = Max (AEO, NPV). 
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substantially. As expected, the AEOs based on the corrected model are higher, and reduces type two decision 

errors (i.e., falsely rejecting an acceptable investment project). 
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APPENDIX A: The Bivariate Cumulative Normal Distribution: An Estimation Method 
Without Using Double Integrals 

 

The probability density function for the stochastic variables x and y is: 
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( )

+∞<<∞−

+∞<<∞−

−
+

−−
−

−

−
=


















































yμ
xμ

(A2),

2

yσ

yμy

yσ

yμy

xσ
xμx

2ρ

2

xσ
xμx

2ρ1

1
yx,Q

:where  

Setting: 

)3(
σ
μy

b  ,
σ
μx

a
y

y

x

x A








 −
=




 −=  

yields: 

( )

dx.dy
yσxσ

1
da.db

:where

a b
(A4)da.db2babρ22a

)2ρ2(1

1
exp

2ρ1π2

1
)ρb;(a,2N

=

∫
∞−

∫
∞−

+−
−

−
−

=








 

and N2 (a, b; ρ) is the cumulative bivariate standard normal distribution. 
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Drezner (1978)9 presents a method to calculate a reasonable approximation, of the cumulative 

probabilities of the bivariate standard normal distribution.10 For values of a, b and ρ less than or equal to zero, 

the cumulative density function is given by the following equation: 

( ) ( ) )5(
4

1ji, jB,iBfjAiA
π

2ρ1
ρb;a,2N A∑

=

−
=  

where: 

( ) [ ]

2.26266454B 1.3425378,3B 0.6243247,2B 0.1337764,1B

30.006374324A 0.1334425,3A 0.4211071,2A 0.3253030,1A

)2ρ2(1

b
b'

)2ρ2(1

a
a'

)b')(ya'(xρ2)b'(2yb')a'(2xa'expyx,f

====

====

−
=

−
=

−−+−+−=

 

 

When the multiplication of (a, b and ρ) is negative or zero, one of the following identities should be used: 

  N2 (a, b; ρ) = N1 (a) - N2 (a, -b; -ρ)    (A5a) 

  N2 (a, b; ρ) = N1 (b) - N2 (-a, b; -ρ)    (A5b) 

  N2 (a, b; ρ) = N1 (a) + N1 (b) – 1 + N2 (-a, -b; ρ)  (A5c) 

 

When the multiplication of  (a, b and ρ) is positive, the following identity should be used with the results 

previously presented: 

  N2 (a, b; ρ) = N2 (a, 0; -ρ1) + N2 (b, 0; -ρ2) - δ   (A6) 

 

In the previous equation: 

( )

( )





<−

≥+
=

−
=

+−

−
=

+−

−
=

0 if 1

0 if 1
)sgn(

4

)sgn()sgn(1

222
)sgn(

2

222
)sgn(

1

x

x
x

ba

baba

bab

baba

aba

δ

ρ

ρ
ρ

ρ

ρ
ρ

 

 

                                                      
9 The Drezner paper has been corrected by Hull (1997). 
10 The method is exact to four decimal places. 
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APPENDIX B: The Two Moments Richardson Extrapolation Formula11 
 

The objective is to estimate the value of the definite integral: 

∫
b

a

dxxf )( ,    (B1) 

hereafter denoted by I. 

Assuming that f(x) is continuous on [a,b] and an appropriate number of derivatives can be found, the 

estimate of the error has the form: 

rn n
KII ≈− ,    (B2) 

 

where In denotes the numerical integral; K is a constant that may vary with the function f(x), the interval [a,b], 

and the approximation method; and r is a real number that depends on the approximation method (e.g., r=2 for 

the Trapezoidal rule, and r=4 for Simpson’s rule). 

Let a be a positive integer. Replacing n by an in (B2), then: 

rran na
KII ≈− ,     (B3) 

 

Rewriting the expression (B3) yields: 

( ) ran
r

n
KIIa ≈− .     (B4) 

 
Note that (B4) can be compared with (B2) as follows: 

 
( )an

r IIa − ≈ nII − .     (B5) 
 

Solving (B5) for I yields: 

1−
−

≈ r
nan

r

a
IIaI .                                      (B6) 

 

 Take r=2 for the Trapezoidal rule, and let a=2 for the two moments extrapolation. Then: 

12
2

2
2

2

−
−≈ nn III .                                                  (B7) 

 

Using the paper’s notation, (B7) can be rewritten as: 

3
12

23
124 EE

E
EE

AEO
−

+=
−

≈     (B8) 

 

                                                      
11 For more details, see, for example, Hildebrand (1956) or Atkinson (1993). 
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APPENDIX C: The Value of the Finite-Lived American Exchange Option for the Carr and 
Corrected Carr Approximations 

 
 
 

The values of the finite-lived AEO for each project using the uncorrected and corrected Carr (1988) 

formula are reported in Table C1. As expected, the value estimate based on the uncorrected Carr approximation 

always undervalues the AEO.  

 

[Please place Table C1 about here.] 

 

Also, according to the Carr expression (see footnote 4 above), the value of the AEO is always lower 

than that of the PAEO. This cannot be possible because an option, which can be exercised at anytime, must have 

more value than one that can only be exercised at one of two moments in time. 
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APPENDIX D: A Brief Description of the Three Investment Opportunities 
 
 

A company, based in Portugal, is planning to invest in three independent real projects (A, B, and C). 

This company acts in several markets (telecommunications, real estate, wood, tourism, and retail markets, such 

as malls, shopping centres, and specialized retail business), and in several countries in Europe and in Latin 

America. 

The three projects being evaluated are in the “specialized retail business” category. Each project is in a 

different city. The investments consist of the acquisition of vacant land (appropriately located) as well as the 

installation of the facilities. Each project’s NPV, when calculated using standard DCF techniques, is reported in 

table D1. 

 

 

[Please place Table D1 about here.] 

 

 

 A major characteristic of these investment opportunities is that they can be delayed or deferred for up to 

four years in order to resolve the uncertainties governing each project’s value. However, if the company decides 

to postpone a project, it faces the uncertainties associated with future investment costs.  

Projects with these characteristics are similar to finite-lived American exchange options. Specifically, 

they have a finite maturity, they can be implement anytime before or at the maturity date, and both the present 

value of the projects’ cash flows and the investment costs behave stochastically. 
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Table 1. Portfolio that replicates the payoffs of a PAEO with ∆T and T maturities. 

 

At the Evaluation Date If P<= P* If P> P*

Long Position  s(V,D,T) s(V,D,T) s(V,D,T)

Long Position  s(V,P*.D,DT) 0 V-P*.D

Short Position  c(s(V,D,T),(P*-1).D,DT) 0 P*.D-D-s(V,D,T)
s(V,D,T) V-D

At moment DT

 
 

 

Table 2. Input values for the valuation of each of the three investment projects 

 

 Project A Project B Project C 

V 1,844,575 2,419,106 1,785,776 

D 1,662,000 1,662,000 2,622,000 

(T-t) 4 years 4 years 4 years 

vδ  0.0648 0.0667 0.0676 

dδ  0 0 0 

vσ  0.3058 0.3058 0.3058 

dσ  0.2202 0.2202 0.2202 

ρ(v,d) 0.2532 0.2532 0.2532 
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Table 3. The NPV, AEO, DO and IO values (in Euros) and the respective contributions of the NPV and DO to 
the IO value and the impact of the DO for each of the three investment projects 

 

Project Measure 

A B C 

Net Present Value  182,575 757,106 - 836,224 

Value of the European Exchange Option (EEO) 288,459 553,673 100,713 

Value of the pseudo-American Exchange Option 332,298 658,851 108,668 

Value of the Finite-Lived American Exchange Option 
(AEO) 

346,911 693,910 111,320 

Value of the Deferment Option (DO) 164,336 0 947,544 

Total Value of the Investment Opportunity 346.911 757,106 111.320 

% NPV 52.6% 100,0% (751,1%) 

% Value of the Deferment Option 47.4% 0% 851.1% 

Increase in Value when Considering the DO 90.0% 0% ------ 
 

 

Table 4. The value and timing of the IO based on the traditional NPV and AEO methodologies 

                                    Value                                                      Timing 

Project AEO methodology Traditional NPV AEO methodology Traditional NPV 

A 364,911   182,575 Defer the Project Invest Now 

B 757,106   757,106 Invest Now Invest Now 

C 111,320 - 836,224 Defer the Project Abandon the Project 

 

 

Table 5. Value of a Finite-Lived American Exchange Option for Project A when S = 1,844,575; D = 1,662,000; 
δd = 0; T = 4 years; and NPV = 182,575. All values in Euros. 

 

ρρρρ = 0.20 ρρρρ = 0.25 ρρρρ = 0.30

σσσσV σσσσD δδδδv = 5% δδδδv = 7% δδδδv = 9% δδδδv = 5% δδδδv = 7% δδδδv = 9% δδδδv = 5% δδδδv = 7% δδδδv = 9%

25% 20% 333.338 289.293 248.819 322.702 278.784 239.199 311.781 268.065 229.285

25% 367.946 321.236 280.581 355.948 309.762 269.536 343.535 299.629 258.174

30% 408.198 359.802 318.508 395.246 347.382 306.107 381.844 334.540 293.491

30% 20% 379.106 331.918 290.935 367.946 321.236 280.581 356.436 310.228 269.938

25% 408.198 359.802 318.508 395.246 347.382 306.107 381.844 334.540 293.491

30% 443.143 393.366 349.550 428.922 379.659 336.390 414.098 365.464 324.242

35% 20% 428.073 378.882 335.646 416.600 367.866 326.631 404.786 356.529 315.218

25% 452.385 402.254 358.089 438.838 389.227 345.575 424.829 375.767 332.655
30% 482.517 431.265 385.992 467.349 416.655 371.934 451.622 401.520 357.384
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Table 6. Value of a Finite-Lived American Exchange Option for Project B when S = 2,419,106; D = 1,662,000; 
δd = 0; T = 4 years; and NPV = 757,106. All values in Euros. 
  

 

 

Table 7. Value of a Finite-Lived American Exchange Option for Project C when S = 1,785,776; D = 2,662,000; 
δd = 0; T = 4 years; and NPV = -836,224. All values in Euros. 

 

 

 
Table C1. The Value of the Finite-Lived American Exchange Option using the Uncorrected and Corrected Carr 

(1988) Approximations 
 

Project Corrected Formula The Carr Formula Pseudo-AEO 

A 346,911 303,072 332,298 

B 663,910 588,733 658,851 

C 111,320 103,385 108,668 

 
 
 
Table D1. The Financial Characteristics of the Projects. Cost of Capital = 10%. All values in €. 
 

Project Investment Cost PV of the Cash-Flows NPV 
A 1,662,000 1,844,575 182,575 
B 1,662,000 2,419,106 757,106 
C 2,622,000 1,785,776 (836,224) 

 

ρρρρ = 0.20 ρρρρ = 0.25 ρρρρ = 0.30

σσσσV σσσσD δδδδv = 5% δδδδv = 7% δδδδv = 9% δδδδv = 5% δδδδv = 7% δδδδv = 9% δδδδv = 5% δδδδv = 7% δδδδv = 9%

25% 20% 706.767 638.348 576.690 696.446 629.010 567.558 686.269 619.641 558.296

25% 736.008 670.830 607.792 724.136 659.272 596.812 713.916 647.662 585.699

30% 776.183 707.673 646.355 763.157 695.206 633.678 749.785 684.592 620.817

30% 20% 747.064 681.851 618.225 736.008 670.830 607.792 724.619 659.736 597.254

25% 776.183 707.673 646.355 763.157 695.206 633.678 749.785 684.592 620.817

30% 811.874 742.006 678.440 797.214 727.881 664.668 782.154 713.402 652.200

35% 20% 796.388 727.086 663.893 784.693 715.840 654.690 772.741 704.374 642.994

25% 821.438 751.233 687.433 807.435 737.727 674.269 793.072 723.895 662.925
30% 852.942 781.680 717.089 837.025 766.289 702.100 820.647 750.470 686.689

ρρρρ = 0.20 ρρρρ = 0.25 ρρρρ = 0.30

σσσσV σσσσD δδδδv = 5% δδδδv = 7% δδδδv = 9% δδδδv = 5% δδδδv = 7% δδδδv = 9% δδδδv = 5% δδδδv = 7% δδδδv = 9%

25% 20% 93.490 72.139 55.423 85.251 65.054 49.398 77.013 58.033 43.487

25% 122.106 97.151 77.079 111.944 88.205 69.273 101.712 79.266 61.537

30% 157.912 129.110 105.396 146.125 118.524 95.951 134.186 107.863 86.502

30% 20% 131.781 105.724 84.615 122.106 97.151 77.079 112.352 88.563 69.584

25% 157.912 129.110 105.396 146.125 118.524 95.951 134.186 107.863 86.502

30% 190.800 158.926 132.275 177.198 146.550 121.073 163.357 134.021 109.797

35% 20% 176.435 145.858 120.449 165.681 136.119 111.680 154.784 126.295 103.879

25% 199.735 167.087 139.692 186.669 155.162 128.862 173.377 143.085 117.948
30% 228.480 194.395 164.669 214.394 180.520 151.951 198.994 166.409 139.076


