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Abstract

The Valuation of Options on Multiple Operating Cash Flows

This paper establishes a risk neutral valuation relationship (RNVR) for the pricing of options

on multiple operating cash flows assuming that there is a representative agent who has an extended

power utility function. Aggregate consumption and the underlying operating cash flows are multi-

variate displaced lognormal distributed. This RNVR is applied to obtain closed-form expressions

for the value of a new class of investment options, the event-contingent options. The formulae

maintain the risk neutrality characteristic of the Black-Scholes model, and depend on the threshold

parameters of the underlying cash-flows. The threshold parameter is the lower bound of the un-

derlying stochastic variable. A negative threshold parameter assigns a positive probability to both

inflow and outflow events. The paper also offers examples of event-contingent options in a global

context.

JEL classification: G13; G31

Keywords: Event-contingent options; extended power utility function; operating cash flows; risk

neutral valuation relationship; displaced lognormal



1. Introduction

Operating cash flows (OCF) may have negative, zero or positive values. It appears inade-

quate to assume that operating cash flows have a standard lognormal distribution1. The standard

lognormal distribution is a special case of the displaced lognormal distribution when the threshold

parameter or lower limit of this density is zero. If the threshold parameter is negative, then there is

a positive probability for both inflows and outflows to occur. In this case, the underlying variable

is a cash flow rather than an asset value2, and the origin of the density function of the underlying

is displaced from zero to its lower bound at the left of zero. The actual displaced lognormal density

function of an operating cash flow is given by the following equation:

f(S) =
1√

2πσ(S − β)
exp

{
− 1

2σ2
[ln(S − β)− µ]2

}
,

where S > β3. That is S ∼ ΛP (β, µ, σ2), where P denotes the actual probability measure. Figure

1 displays two (actual) lognormal densities with µ = 0 and σ = 0.5. The densities, which have

exactly the same form, have different lower limits.

Option prices obtained in this paper have implicit a multivariate displaced lognormal risk

neutral density. The literature has discussed three main methods for the risk neutral pricing of

derivative assets. The first method is due to Black and Scholes (1973) and Merton (1973). They

assume that it is possible to construct and to maintain a riskless hedge, that implies a partial

differential equation (PDE). The second method uses the martingale approach and was initiated by

Cox and Ross (1976), Harrison and Kreps (1979), and Harrison and Pliska (1981). These authors

show that a risk neutral measure exists in an economy where there are no arbitrage opportunities
1See also Dixit and Pindyck (1994, p.137), who criticize the assumption of a standard lognormal distribution for

project values that can become negative.

2See Shimizu and Crow (1988) for a characterization of the displaced or three-parameter lognormal.
3In this notation, β is a threshold parameter (i.e. the lower limit), µ is a scale parameter, and σ is a shape or

volatility parameter.
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and investors are non satiated. The first two methods, when the state-space is continuous, assume

that markets are dynamically completed by continuous trading. The third method, initiated by

Rubinstein (1976), Brennan (1979), and Stapleton and Subrahmanyam (1984) uses the first order

conditions of a representative agent to obtain a risk neutral formula. A discrete-time economy with

a continuous state-space is assumed, which means that markets are dynamically incomplete. These

authors assume either constant proportional risk aversion (CPRA) coupled with a multivariate

standard lognormal distribution or constant absolute risk aversion coupled with a multivariate

normal distribution. This is the approach explored by our research.

This paper derives a multivariate risk neutral valuation relation (RNVR) assuming decreasing

absolute risk aversion (DARA) preferences4, and that aggregate consumption and the underlying

operating cash flows are multivariate displaced lognormal distributed. This extends previous work

both for broader preferences and broader distributions. Such economic setting appears more rea-

sonable than an economy that assumes dynamic trading, when the objective is to price contingent

claims on multiple operating cash flows. The preference-based assumptions are different from the

standard hedged-based assumptions, but the option pricing results might be identical. In particular,

the principle of the relative valuation of contingent claims is preserved5. The displaced lognormal

RNVR also preserves the risk neutral property of the Black-Scholes (1973) model6, which avoids

estimating the rates of discount for the claims, the expected values of the operating cash flows

(OCF) under the true probability measure, and the parameters of the utility function.
4Elton and Gruber (1995, p.218) argue that “there is a general agreement that most investors exhibit decreasing

absolute risk aversion [which characterizes the extended power utility function]”.
5For example, the Black-Scholes valuation equation might be obtained using the original partial differential equa-

tion (PDE) approach of Black and Scholes (1973) and Merton (1973), the martingale approach of Harrison and Kreps

(1979) and Harrison and Pliska (1981), and the preference-based approach of Rubinstein (1976), Brennan (1979) and

Stapleton and Subrahmanyam (1984) which assumes constant proportional risk aversion (CPRA) for the preferences

of the representative agent and a bivariate standard lognormal for the distribution of consumption and stock price.

6Brennan and Schwartz (1985) also stress the advantages of the risk neutral property in the real options area.
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The paper also defines a new type of investment options, the event-contingent options. Then

the RNVR is applied to derive closed-form solutions for the price of these event-contingent options.

Examples to motivate the event-contingent options are offered in a global context.

The paper is organized as follows. Section 2 defines and motivates the event-contingent options.

Section 3 establishes the multivariate displaced lognormal RNVR. Section 4 applies the RNVR to

derive analytical expressions for the event-contingent options. Section 5 concludes.

2. Investment options

Investment options include the option to defer investment, the option to default during staged

construction, the option to expand operations, the option to contract operations, and the option

to abandon for salvage value. (See Trigeorgis (1996) for a comprehensive review of the literature).

In general, previous work on investment options assume either a PDE approach (e.g. Dixit and

Pindyck (1994)) or a no-arbitrage approach (e.g. Berk, Green, and Naik (1999)) to obtain analytical

valuation equations. The exception is the paper by Childs, Ott and Triantis (1998) who apply the

RNVR derived by Brennan (1979) to obtain closed-form solutions. Our paper is different from their

work on two respects, however. First, our paper applies the displaced lognormal RNVR which we

will establish in the next section. Second, in our paper the payoffs of the options and the closed-

form solutions are both new. These options are the event-contingent options. Childs, Ott and

Triantis (1998) derive analytical expressions for the value of a sequential exchange option and the

value of an option on the maximum of two assets.

An event-contingent investment option is a contingent claim whose value depend on the net

present value (NPV) of interacting projects of investment. We define and provide closed-form

expressions for the value of four categories of event-contingent real options: (i) option to invest

contingent on investment; (ii) option to invest contingent on divestment; (iii) option to divest

contingent on divestment; and (iv) option to divest contingent on investment.
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The reasoning underlying the event-contingent options is as follows: an option to invest in a

project might be seen as a call option, whose exercise depends on several other factors besides the

NPV of the project; an option to divest in a project might be seen as a put option, whose exercise

depends on several other factors besides the net present value (NPV) of the project. Those factors

might, in the real world, be very complex. To simplify things, we focus our attention in two sorts

of events, which we define as investment and divestment in a related project. Such structure is

already sufficient to show that there are very subtle interactions in strategic real options, that were

not previously considered in the literature. Interactions in strategic real options were previously

considered by Trigeorgis (1993) and Kulatilaka (1995).

Consider two projects, project 1 and project 2. Consider also, at the maturity date of the

options, that NPV1 = OCF1 − I1 and that NPV2 = OCF2 − I2 are the differences between the

operating cash flows and the investment values, respectively, of project 1 and project 2.

The payoff of an option to invest (in project 2) contingent on investment (in project 1) is

defined by:

CII =


NPV2 if NPV2 > 0 and NPV1 > 0

0 if otherwise.

The payoff of the option to invest contingent on investment is positive (i.e. CII = NPV2),

reflecting the fact that the option will be exercised (i.e. a firm invests in project 2), if both

OCF2 > I2 and OCF1 > I1. If at least one of these two conditions is not satisfied, then the option

is not exercised (i.e. the firm does not invest in project 2), and the payoff of the option to invest

contingent on investment is zero.

The following is an example observed in practice, when the investment project of a firm is

related with projects of other firms. An option to invest contingent on investment yields a given

payoff for the investing firm if and only if the project is attractive for the firm itself and a related

project is attractive for another company. “Nike and Reebok have prospered by concentrating
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on their strengths: designing and marketing high-tech, fashionable footwear for sports and fitness.

Nike owns one small factory that makes some sneaker parts. Reebok owns no plants. The two rivals

contract virtually all footwear production to suppliers in Taiwan, South Korea, and other Asian

countries”7. The projects of the suppliers are highly dependent on the main projects carried out by

Nike and Reebok. In this and other cases of outsourcing, the dependent or supply companies may

have an option to invest (e.g. increase capacity) which they exercise if and only if the investment is

profitable to them and the main investment project of the contracting company presents a reliable

source of income.

The payoff of an option to invest (in project 2) contingent on divestment (project 1) is defined

by:

CID =


NPV2 if NPV2 > 0 and NPV1 < 0

0 if otherwise.

The payoff of the option to invest contingent on divestment is positive (i.e. CID = NPV2),

reflecting the fact that the option will be exercised (i.e. the firm invests in project 2), if both

OCF2 > I2 and OCF1 < I1. If at least one of these two conditions is not satisfied, then the option

is not exercised (i.e. the firm does not invest in project 2), and the payoff of the option to invest

contingent on divestment is zero.

A realistic business situation of an option to invest contingent on divestment seems to exist

in the Spanish tourism industry. The largest of the Balearic Islands is Mallorca, whose best known

resort is probably Magaluf. Its climate is ideal for beach tourism. The development of the tourism

industry in this region has been supported by the Spanish government during the last 40 years. Dur-

ing the 1960’s planning controls and building restrictions were relaxed and many operators began to

build accommodation en masse.8 This, and other factors, transformed Magaluf in a working-class

7See Stern, El-Ansary, and Coughlan (1996, p. 234).

8See Hunter-Jones, Hughes, Eastwood, and Morrison (1997).
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resort. At the beginning of the 1990’s as the demand for this type of tourism started to decrease,

some big hotels began to register losses. Recently, the government introduced a structured and

controlled land policy for the area, giving incentives to quality tourism or sustainable tourism. In

particular, restrictions were introduced on the location and height of new hotel developments. From

a point of view of interacting investment options, the tourism operators have an option to invest

(in small hotels with enviromental improvements and accommodation upgradings) conditional on

divest (in the existing large hotels of low quality). The popular press in some European countries

has reported that in Magaluf, some tourism operators started to exercise this option.

The payoff of an option to divest (project 2) contingent on divestment (project 1) is defined

by:

CDD =


−NPV2 if NPV2 < 0 and NPV1 < 0

0 if otherwise.

The payoff of the option to divest contingent on divestment is positive (i.e. CDD = −NPV2),

reflecting the fact that the option will be exercised (i.e. the firm divests project 2), if both OCF2 <

I2 and OCF1 < I1. If at least one of these two conditions is not satisfied, then the option is not

exercised (i.e. the firm does not divest project 2), and the payoff of the option to divest contingent

on divestment is zero.

This option pricing model might be helpful to describe certain behaviour of a follower. Firms,

from a strategic point of view, might be classified as leaders or followers. Hence the option to sell

(e.g. a property) of a follower might be considered an option to divest (the property) contingent

on divestment by the leader (of another property)9.

The payoff of an option to divest (project 2) contingent on investment (in project 1) is defined
9Quigg (1995) argues that “building cycles occur because property in a given urban area have highly correlated

prices processes...When it is optimal to abandon one property, others in the neighborhood often experience the same

pressures, leading to urban decay”.

6



by:

CDI =


−NPV2 if NPV2 < 0 and NPV1 > 0

0 if otherwise.

The payoff of the option to divest contingent on investment is positive (i.e. CDI = −NPV2),

reflecting the fact that the option will be exercised (i.e. the firm divests project 2), if both OCF2 <

I2 and OCF1 > I1. If at least one of these two conditions is not satisfied, then the option is not

exercised (i.e. the firm does not divest project 2), and the payoff of the option to divest contingent

on investment is zero.

Realistic examples of the option to divest contingent on investment seem to exist in the US

pharmaceutical industry, which invests annually in R&D worldwide more than USD 55 billion10.

The US pharmaceutical research companies has alone more than 1000 new medicines (investment

projects) in development. Since, normally, it takes between 12 and 15 years to discover and develop

a new medicine (project), some non viable projects are abandoned before their initially antecipated

end. Some of these research projects use living organisms, which have to be kept alive after the

abandon of a project. Otherwise, such living matter would perish and it would be extremely

expensive or almost impossible to replace it later. In such situation, a research project can only be

abandoned if another research project is developed using such perishable resources.

We conclude this section with some parity relations, which we state in the first proposition of

the paper.

Proposition 1. (Event-contingent parity relations) Suppose that there are no arbitrage

opportunities in the economy. Assume that the options mature at the same time, are written on the

same underlying OCF2, have the same strike price I2, and the additional contingency is on NPV1.

Then the following relations hold:

I. Pc = PII + PID

10See PhRMA-Pharmaceutical Research and Manufacturers of America Annual Survey (1998) to obtain these and

other data about the industry.
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II. Pp = PDD + PDI

where the symbol P stands for price or current value, c and p stand for call and put, and the other

symbols have the meaning given before.

Proof: The payoff of a call option on project 2 is Cc = NPV2 if NPV2 > 0. The payoff of

a put option on project 2 is Cp = −NPV2 if NPV2 < 0. Constructing tables of payoffs at the

maturity of the options and using arbitrage arguments leads to results I and II.2

The first parity states that a call option is a portfolio of one option to invest contingent on

investment and one option to invest contingent on divestment. The second parity states that a

put option is a portfolio of one option to divest contingent on divestment and one option to divest

contingent on investment.

This section defined the event-contingent investment options. Latter in the paper we will

derive analytical expressions for the value of these options.

3. The discrete-time option pricing model

This section establishes the multivariate displaced lognormal RNVR.

3.1. Economic assumptions

The analysis starts by assuming that there is a representative agent with a time-additive sep-

arable utility function of consumption. The representative individual optimizes her utility function

of consumption both at the beginning and the end of the economy:

max
C0,C

EP {U(C0, C)},

where:

C = (W0 − C0)rf + v
′
[C(S)− Prf ];
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U(C0) is her utility function for initial consumption;

U(C) is her utility function for end-of-period consumption;

EP (.) is the expectations operator under the true probability measure;

C is her end-of-period consumption;

W0 is her initial wealth;

C0 is her beginning-of-period consumption;

rf is 1 plus the risk free rate of return.

v is the column vector of demands for units of claims, j = 1, 2, ..., N ;

C(S) is the column vector of end-of-period payoffs associated with the contingent claims as a

function of the underlying variables, S
′
= [S1, S2, ..., Sn], and

P is the column vector of the current market values of the claims C(S).

Assuming that the representative agent is nonsatiated and risk averse, the vector of the current

market values of the contingent claims can be written as follows:

P = r−1
f EP [C(S)Z(S)],

where:

Z(S) =
EP [U

′
(C) | S]

EP [U ′(C)]
(1)

defines the pricing kernel. The current value of an individual contingent claim can be written in

terms of its end-of-period payoff C(S) as follows:

P = r−1
f EP [C(S)Z(S)]. (2)

The underlying operating cash flows can themselves be valued, by applying the general formula,

yielding:

V = r−1
f EP [SZ(S)], (3)

where V is the vector of values of the underlying operating cash flows.
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The general valuation formulae (1), (2) and (3) will be used to establish a RNVR in an

economy where the representative agent has an extended power utility function of the HARA

family of utility functions. Aggregate consumption and the underlying operating cash flows are

multivariate displaced lognormal distributed.

Definition 1. (The marginal extended power utility function) The marginal extended

power utility function of end-of-period consumption is:

U
′
(C) = (C − βc)ϕ, (4)

where both C > βc and ϕ < 0 denote decreasing absolute risk aversion (DARA). The utility function

displays increasing proportional risk aversion (IPRA) if βc < 0, constant proportional risk aversion

(CPRA) if βc = 0, and decreasing proportional risk aversion (DPRA) if βc > 0.

The joint distribution of consumption and underlying operating cash flows is defined next:

Definition 2. (The multivariate displaced lognormal) Let the 1+N -dimensional random

variable (C,S) have the joint probability density function (PDF): C

S

 ∼ ΛP


 βc

β

 ,

 µc

µ

 ,

 σ2
c

∑
cs∑

sc

∑
s


 ,

where βc < C < ∞, β < S < ∞, βc > 0, −∞ < β < ∞, −∞ < µc < ∞, −∞ < µ < ∞, σc > 0,∑
s > 0, and −∞ <

∑
cs < ∞. Then the random variable (C,S) is defined to have a multivariate

displaced lognormal distribution.

The matrix
∑

cs represents the covariances between the normal variates underlying consump-

tion and the operating cash flows, while
∑

s is the matrix variances-covariances of the normal

variates underlying the operating cash flows.

Basic assumption. The representative agent has an extended power utility function of con-

sumption and, in particular, a marginal utility function of consumption given by equation (4), and

aggregate consumption and the underlying operating cash-flows are multivariate displaced lognormal

distributed and, in particular, have a joint density given by definition 2.

10



3.2. Pricing results

The next lemma links preferences and distributions to evaluate the pricing kernel. The lemma

will play a fundamental role in the proof of the RNVR.

Lemma 1. (The pricing kernel) Suppose that the basic assumption holds. Then the pricing

kernel is given by the following equation:

Z(S) = exp

{
ϕ

∑
cs

∑−1

s
[ln(S − β)− µ]− 1

2
ϕ2

∑
cs

∑−1

s

∑
sc

}
. (5)

Proof: See appendix.

As one can see the pricing kernel Z(S) is a scalar that depends on the preference parameter

ϕ and on the random payoff of multiple underlying cash flows S. The pricing kernel is a positive

stochastic variable and, hence, rules out arbitrage opportunities from the economy.

The next proposition evaluates the basic valuation formulae of the economy considering the

extended power utility function and the multivariate displaced lognormal distribution, and derives

the RNVR. This RNVR will be later applied to derive closed-form valuation equations for the

event-contingent options.

Proposition 2. (The RNVR for the multivariate displaced lognormal) Suppose that

the basic assumption holds. Then a risk neutral valuation relationship (RNVR) exists for operating

cash flows displaced lognormally distributed. That is:

EP [C(S)Z(S)] = EQ[C(S)],

where EQ(.) is the expectations operator under the risk neutral probability measure.

Proof: All the marginal distributions of the underlying cash flows are displaced lognormal.

In particular, the marginal distribution of the vector S is a multivariate displaced lognormal as

given by:
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f(S) =
1

(2π)n/2 |
∑

s |1/2
∏n

j=1(Sj − βj)

exp

{
−1

2
[ln(S − β)− µ]

′ ∑−1

s
[ln(S − β)− µ]

}
, (6)

where S > β and |
∑

s | is the determinant of the matrix
∑

s.

The equilibrium value of the underlying stochastic cash flows (3) can be rewritten as:

V rf = EP [SZ(S)] (7)

=
∫ ∞

βn

∫ ∞
βn−1

...

∫ ∞
β1

SZ(S1, S2, ..., Sn)f(S1, S2, ..., Sn)dS1dS2...dSn,

where f(S) is the multivariate density of the underlying cash flows as given by equation (6).

Substituting both the pricing kernel Z(S) from equation (5) and the multivariate density of the

underlying cash flows from equation (6) into equation (7) yields, after simplification, the following

relation:

V rf =
∫ ∞

βn

∫ ∞
βn−1

...

∫ ∞
β1

S

(2π)n/2 |
∑

s |1/2
∏n

j=1(Sj − βj)

exp

{
−1

2

[
ln(S − β)− (µ + ϕ

∑
sc

)
]′ ∑−1

s
[ln(S

− β)− (µ + ϕ
∑

sc
)
]}

dS1dS2...dSn. (8)

The market equilibrium relation is obtained when this expression is evaluated. Since the underlying

cash flows are multivariate displaced lognormal distributed, the underlying equilibrium is given by:

ln(V rf − β)− 1
2
X = µ + ϕ

∑
sc

, (9)

where X
′
= [σ2

1, σ
2
2, ..., σ

2
n].

Equation (9) is the equilibrium relation of this economy, and is defined as the multivariate

displaced lognormal extension of the capital asset pricing model (CAPM). The equilibrium value

of a contingent claim is given from equation (2) by:
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Prf = EP [C(S)Z(S)] (10)

=
∫ ∞

βn

∫ ∞
βn−1

...

∫ ∞
β1

C(S1, S2, ..., Sn)Z(S1, S2, ..., Sn)f(S1, S2, ..., Sn)dS1dS2...dSn.

To evaluate this expression, the pricing kernel (5) and the joint density of the underlying cash flows

(6) are both substituted into equation (10), yielding after simplification the following result:

Prf =
∫ ∞

βn

∫ ∞
βn−1

...

∫ ∞
β1

C(S)
(2π)n/2 |

∑
s |1/2

∏n
j=1(Sj − βj)

exp

{
−1

2

[
ln(S − β)− (µ + ϕ

∑
sc

)
]′ ∑−1

s
[ln(S

− β)− (µ + ϕ
∑

sc
)
]}

dS1dS2...dSn. (11)

Substituting the multivariate displaced lognormal extension of the CAPM (9) into the equilibrium

value of the claim (11) yields the following relation:

Prf =
∫ ∞

βn

∫ ∞
βn−1

...

∫ ∞
β1

C(S)
(2π)n/2 |

∑
s |1/2

∏n
j=1(Sj − βj)

(12)

exp

{
−1

2

[
ln(S − β)− (ln(V rf − β)− 1

2
X)

]′ ∑−1

s
[ln(S

− β)− (ln(V rf − β)− 1
2
X)

]}
dS1dS2...dSn.

Equation (12) is the multivariate RNVR. 2

The RNVR shows that the value of options on operating cash flows, in our economy, does not

depend on preference parameters. This extends the Black-Scholes valuation equation.

4. Event-contingent options

This section applies the multivariate RNVR (12) to obtain analytic expressions for a new

class of real options: the event-contingent (interacting) investment options. It will be assumed that

the basic assumption holds.
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Corollary 1. (Option to invest contingent on investment) The payoff function of an

option to invest contingent on investment is, by definition, equal to either S2 −K2 if S2 > K2 and

S1 > K1 or zero if otherwise. The value of the option to invest contingent on investment is given

by the following equation:

PI,I = (V2 − β2r
−1
f )N [d1 + σ2, d2 + ρσ2, ρ]− (K2 − β2)r−1

f N [d1, d2, ρ], (13)

where N [., ., .] is the cumulative bivariate standard normal random variable, and

d1 =
ln(V2rf−β2

K2−β2
)− 1

2σ2
2

σ2
,

d2 =
ln(V1rf−β1

K1−β1
)− 1

2σ2
1

σ1
.

Proof: See appendix.

Some details of equation (13) are better analyzed by its simulation. The simulations of this

section assume that EQ(S1) = EQ(S1) = 110, V arQ(S1) = V arQ(S1) = 493.81, V1 = V2 = 100,

rf = 1.1, β1 = β2 = β, σ1 = σ2 = σ, K1 = K2 = K, where EQ(S) = V rf and V arQ(S) =

(V rf − β)2(exp(σ2) − 1). We say that an option to invest (divest) is in-the-money if V2rf > K2

(V2rf < K2). Equation (13) is simulated for several combinations of β and σ. There are three

main conclusions from the analysis of the results of the simulations presented in table 1. First, the

value of an option to invest contingent on investment increases with the coefficient of correlation.

Second, when the correlation is positive, the value of an in-the-money option to invest contingent

on investment decreases when the shape and threshold parameters increase. Third, if ρ = −1 then

the value of an out-of-the-money option to invest contingent on investment is zero. This point will

be later analyzed in detail.

Corollary 2. (Option to invest contingent on divestment) The payoff function of an

option to invest contingent on divestment is, by definition, equal to either S2 −K2 if S2 > K2 and

S1 < K1 or zero if otherwise. The value of the option to invest contingent on divestment is given

14



by the following equation:

PI,D = (V2 − β2r
−1
f )N [d1 + σ2,−d2 − ρσ2,−ρ]− (K2 − β2)r−1

f N [d1,−d2,−ρ]. (14)

Proof: See appendix.

Equation (14) is simulated for several combinations of β and σ. There are two main con-

clusions from the analysis of the results of the simulations presented in table 2. First, the value

of an option to invest contingent on divestment decreases when the correlation between projects

increases. Second, when the correlation is positive, the value of an out-of-the-money option to

invest contingent on divestment increases when the shape and threshold parameters increase.

Corollary 3. (Call option) The payoff function of a call option is, by definition, equal to

S2 −K2 if S2 > K2 or zero if otherwise. The value of the call option11 is given by the following

equation:

Pc = (V2 − β2r
−1
f )N(d1 + σ2)− (K2 − β2)r−1

f N(d1), (15)

where N(.) is the cumulative univariate standard normal random variable.

Proof: See appendix.

Equation (15) is simulated for several combinations of β and σ, and its results are presented

in the panel A of table 3. The panel shows that the value of an in-the-money (out-of-the-money)

call option decreases (increases) when the shape and threshold parameters increase. We can also

see that the call option is related with the investment-contingent options in several ways:

(ia) Pc = PII + PID, which is the parity condition I. In our numerical simulation, this relation is

showed, for example, in the Panel A of table 3 and tables 1 and 2.

(iia) Pc = PII if ρ = 1 and d1 ≤ d2. Our numerical simulation, when d1 = d2, is shown in the Panel

A of the table 3. Hence tables 1 and 2 do not display option values when ρ = 1.
11This equation is similar to the valuation model derived by Rubinstein (1983) in a different context. Rubinstein

(1983) in a no-arbitrage economy derives a closed-form expression for the value of a firm which has both risky and

riskless assets.
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(iiia) Pc = PID if ρ = −1 and d1 + d2 ≤ 0. Tables 1, 2, and 3 (Panel A) show that a sufficient

condition for this to hold in our numerical case is that K ≥ V rf
12.

Corollary 4. (Option to divest contingent on divestment) The payoff function of an

option to divest contingent on divestment is, by definition, equal to either K2 − S2 if S2 < K2 and

S1 < K1 or zero if otherwise. The value of the option to divest contingent on divestment is given

by the following equation:

PD,D = (K2 − β2)r−1
f N [−d1,−d2, ρ]− (V2 − β2r

−1
f )N [−d1 − σ2,−d2 − ρσ2, ρ]. (16)

Proof: See appendix.

Equation (16) is simulated for several combinations of β and σ. There are three main conclu-

sions from the analysis of the results of the simulations presented in table 4. First, the value of an

option to divest contingent on divestment increases when the correlation between projects increases.

Second, when the correlation is positive, the value of an out-of-the-money (in-the-money) option

to divest contingent on divestment decreases (increases) when the shape and threshold parameters

increase. Third, the value of an out-of-the-money option to divest contingent on divestment is zero

when ρ = −1.

Corollary 5. (Option to divest contingent on investment) The payoff function of an

option to divest contingent on investment is, by definition, equal to either K2 − S2 if S2 < K2 and

S1 > K1 or zero if otherwise. The value of the option to divest contingent on investment is given

by the following equation:

PD,I = (K2 − β2)r−1
f N [−d1, d2,−ρ]− (V2 − β2r

−1
f )N [−d1 − σ2, d2 + ρσ2,−ρ]. (17)

Proof: See appendix.

Equation (17) is simulated for several combinations of β and σ. There are two main conclusions

from the analysis of the results of the simulations presented in table 5. First, the value of an

12Technical results (iia) and (iiia) are stated formally and proved in the appendix.
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option to divest contingent on investment decreases when the correlation between projects increases.

Second, the value of an out-of-the-money option to divest contingent on investment decreases when

the shape and threshold parameters increase.

Corollary 6. (Put option) The payoff function of a put option is, by definition, equal to

K2 − S2 if S2 < K2 or zero if otherwise. The value of the put option is given by the following

equation:

Pp = (K2 − β2)r−1
f N(−d1)− (V2 − β2r

−1
f )N(−d1 − σ2). (18)

Proof: See appendix.

Equation (18) is simulated for several combinations of β and σ, and its results are presented

in the panel B of table 3. The panel shows that the value of an in-the-money (out-of-the-money)

put option increases (decreases) when the shape and threshold parameters increase. We can also

see that the put option is related with the divestment-contingent options in several ways:

(ib) Pp = PDD + PDI , which is the parity condition II. In our numerical simulation, this relation

is showed, for example, in the Panel B of table 3 and tables 4 and 5.

(iib) Pp = PDD if ρ = 1 and d1 ≥ d2. Our numerical example, when d1 = d2, is shown in the Panel

B of the table 3. Hence tables 4 and 5 do not display option values when ρ = 1.

(iiib) Pp = PDI if ρ = −1 and d1 + d2 ≥ 0. Tables 3 (Panel B), 4, and 5 show that a sufficient

condition for this to hold in our numerical case is that K ≤ V 13.

The valuation equations derived in this section show that the interaction between projects has

value. The formulae also show that an investment option will be probably misvalued when such

interaction is not considered in the analysis.

13Technical results (iib) and (iiib) are stated formally and proved in the appendix.
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5. Conclusions

This paper uses an equilibrium approach to derive a multivariate risk neutral valuation relation

assuming that there is a representative individual who has an extended power utility function of the

HARA family of utility functions. Aggregate consumption and underlying operating cash-flows are

multivariate displaced lognormal distributed. The multivariate displaced lognormal distribution

depends on a vector of threshold parameters or lower bounds of the operating cash flows. Negative

threshold parameters assign positive probabilities to both inflows and outflows. The risk neutral

valuation relationship is presented as a model for the valuation of strategic options on multiple

operating cash flows, since these underlyings may have both negative and positive values.

The multivariate displaced lognormal risk neutral valuation relation is used to investigate a

new class of investment options, the event-contingent investment options. An event-contingent

option is a multivariate contingent claim which depends on a contingency that affects the exercise

of the option, but which does not appear in the random payoff of the option. We define and provide

closed-form expressions for the value of four categories of event-contingent investment options: (i)

option to invest contingent on investment; (ii) option to invest contingent on divestment; (iii) option

to divest contingent on divestment; and (iv) option to divest contingent on investment. The value

of these options converges, under certain conditions, to put and call prices. The paper investigates

these conditions. The simulations show that the correlation between projects has value.
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Appendix

Proof of lemma 1: Suppose that the representative agent has a marginal extended power

utility function of consumption given by equation (4) and that the joint distribution of aggregate

consumption and underlying cash flows is multivariate displaced lognormal. That is: C

S

 ∼ ΛP


 βc

β

 ,

 µc

µ

 ,

 σ2
c

∑
cs∑

sc

∑
s


 ,

for C > βc and S > β.

The marginal distribution of C is a univariate displaced lognormal. That is C ∼ ΛP (βc, µc, σ
2
c ):

f(C) =
1√

2πσc(C − βc)
exp

{
− 1

2σ2
c

[ln(C − βc)− µc]2
}

.

The expected value of the marginal utility function, considering the definition of the ϕ moment

around βc of a univariate displaced lognormal random variable, is given by:

EP [U
′
(C)]

= EP [(C − βc)ϕ]

= exp[ϕµc +
1
2
ϕ2σ2

c ]. (19)

The conditional distribution of consumption given the underlying cash flows, since consumption

and the underlying cash flows are multivariate displaced lognormal distributed, is a univariate

displaced lognormal distribution:

C | S ∼ ΛP
{
βc, µc +

∑
cs

∑−1

s
[ln(S − β)− µ], σ2

c −
∑

cs

∑−1

s

∑
sc

}
.

The expected value of the conditional marginal utility function, considering the definition of the ϕ

moment around βc of a univariate displaced lognormal random variable, is given by:
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EP [U
′
(C) | S]

= EP [(C − βc)ϕ | S]

= exp

{
ϕµc + ϕ

∑
cs

∑−1

s
[ln(S − β)− µ] + ϕ2 σ2

c

2
− 1

2
ϕ2

∑
cs

∑−1

s

∑
sc

}
. (20)

The pricing kernel (1), using equations (19) and (20), can be rewritten as:

Z(S) =
EP [U

′
(C) | S]

EP [U ′(C)]

= exp{ϕ
∑

cs

∑−1

s
[ln(S − β)− µ]− 1

2
ϕ2

∑
cs

∑−1

s

∑
sc
}, (21)

which concludes the proof. 2

Proof of corollary 1: The value of the option, using the RNVR (12), is given by:

PI,Irf =
∫ ∞

K1

∫ ∞
K2

(S2 −K2)g(S1, S2)dS1dS2,

where g(S1, S2) is a bivariate displaced lognormal risk neutral density with correlation coefficient

ρ. Then S1 ∼ ΛQ(β1, ln(V1rf − β1) − 1
2σ2

1, σ
2
1) and S2 ∼ ΛQ(β2, ln(V2rf − β2) − 1

2σ2
2, σ

2
2). Let

v = ln(S2 − β2) and x = ln(S1 − β1). Then:

PI,Irf =
∫ ∞

ln(K1−β1)

∫ ∞
ln(K2−β2)

evg(v, x)dxdv

− (K2 − β2)
∫ ∞

ln(K1−β1)

∫ ∞
ln(K2−β2)

g(v, x)dxdv.

Then using both:

∫ ∞
a

∫ ∞
b

evg(v, x)dxdv = exp(µv +
1
2
σ2

v)N [
µv − a

σv
+ σv,

µx − b

σx
+ ρσv, ρ]

and ∫ ∞
a

∫ ∞
b

g(v, x)dxdv = N [
µv − a

σv
,
µx − b

σx
, ρ]

yields the desired result.2
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Proof of corollary 2: The value of the option, using the RNVR (12), is given by:

PI,Drf =
∫ K1

β1

∫ ∞
K2

(S2 −K2)g(S1, S2)dS1dS2,

where g(S1, S2) is a bivariate displaced lognormal risk neutral density with correlation coefficient

ρ. Then S1 ∼ ΛQ(β1, ln(V1rf − β1) − 1
2σ2

1, σ
2
1) and S2 ∼ ΛQ(β2, ln(V2rf − β2) − 1

2σ2
2, σ

2
2). Let

v = ln(S2 − β2) and x = ln(S1 − β1). Then:

PI,Drf =
∫ ln(K1−β1)

−∞

∫ ∞
ln(K2−β2)

evg(v, x)dxdv

− (K2 − β2)
∫ ln(K1−β1)

−∞

∫ ∞
ln(K2−β2)

g(v, x)dxdv.

Then using both:

∫ ∞
a

∫ b

−∞
evg(v, x)dxdv = exp(µv +

1
2
σ2

v)N [
µv − a

σv
+ σv,

b− µx

σx
− ρσv,−ρ]

and ∫ ∞
a

∫ b

−∞
g(v, x)dxdv = N [

µv − a

σv
,
b− µx

σx
,−ρ]

yields the desired result.2

Proof of corollary 3: The value of the option, using the RNVR (12), is given by:

Pcrf =
∫ ∞

K2

(S2 −K2)g(S2)dS2,

where g(S2) is a univariate displaced lognormal risk neutral density. Then S2 ∼ ΛQ(β2, ln(V2rf −

β2)− 1
2σ2

2, σ
2
2). Let v = ln(S2 − β2). Then:

Pcrf =
∫ ∞

ln(K2−β2)
evg(v)dv − (K2 − β2)

∫ ∞
ln(K2−β2)

g(v)dv.

Then using both: ∫ ∞
a

evg(v)dv = exp(µv +
σ2

v

2
)N(

µv − a

σv
+ σv)

and ∫ ∞
a

g(v)dv = N(
µv − a

σv
)
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yields the desired result.2

Result (iia). The event-contingent option value depends on the cumulative bivariate standard

normal random variable N(., ., .), and both d1 and d2. If ρ = 1 and d1 ≤ d2 then the value of an

option to invest contingent on divestment is zero (i.e. PID = 0), and the value of an option to

invest contingent on investment is equal to the value of the call option (i.e. Pc = PII).

Proof of result (iia): In general for N(., ., .) we have N(d1, d2, 1) = N [min(d1, d2)]. If d1 ≤

d2 then N(d1, d2, 1) = N(d1). By the same property N(d1+σ2, d2+σ2, 1) = N [min(d1+σ2, d2+σ2)].

If d1 + σ2 ≤ d2 + σ2 i.e. d1 ≤ d2 then N(d1 + σ2, d2 + σ2, 1) = N(d1 + σ2).2

Result (iiia). The event-contingent option value depends on the cumulative bivariate stan-

dard normal random variable N(., ., .), and both d1 and d2. Let ρ = −1. Let also EQ[S1] = EQ[S2],

V arQ[S1] = V arQ[S2], K1 = K2 = K, σ2 = σ1 = σ, and β2 = β1 = β. In our numerical case, if

K ≥ V rf then the value of an option to invest contingent on investment is zero (i.e. PII = 0), and

the value of an option to invest contingent on divestment is equal to the value of the call option

(i.e. Pc = PID). This result holds, in general, when d1 + d2 ≤ 0.

Proof of result (iiia): By a general property of N(., ., .) we have N(d1, d2,−1) = 0 and

N(d1 + σ2, d2− σ2,−1) = 0 if d1 + d2 ≤ 0. An application of this to our problem implies the result

when ln(V rf − β) ≤ ln(K − β) + σ2

2 . A sufficient condition for this to hold in our numerical case

is that V rf ≤ K.2

Proof of corollary 4: The value of the option, using the RNVR (12), is given by:

PD,Drf =
∫ K1

β1

∫ K2

β2

(K2 − S2)g(S1, S2)dS1dS2,

where g(S1, S2) is a bivariate displaced lognormal risk neutral density with correlation coefficient

ρ. Then S1 ∼ ΛQ(β1, ln(V1rf − β1) − 1
2σ2

1, σ
2
1) and S2 ∼ ΛQ(β2, ln(V2rf − β2) − 1

2σ2
2, σ

2
2). Let
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v = ln(S2 − β2) and x = ln(S1 − β1). Then:

PD,Drf = (K2 − β2)
∫ ln(K1−β1)

−∞

∫ ln(K2−β2)

−∞
g(v, x)dxdv

−
∫ ln(K1−β1)

−∞

∫ ln(K2−β2)

−∞
evg(v, x)dxdv.

Then using both:

∫ a

−∞

∫ b

−∞
evg(v, x)dxdv = exp(µv +

1
2
σ2

v)N [
a− µv

σv
− σv,

b− µx

σx
− ρσv,+ρ]

and ∫ a

−∞

∫ b

−∞
g(v, x)dxdv = N [

a− µv

σv
,
b− µx

σx
,+ρ]

yields the desired result.2

Proof of corollary 5: The value of the option, using the RNVR (12), is given by:

PD,Irf =
∫ ∞

K1

∫ K2

β2

(K2 − S2)g(S1, S2)dS1dS2,

where g(S1, S2) is a bivariate displaced lognormal risk neutral density with correlation coefficient

ρ. Then S1 ∼ ΛQ(β1, ln(V1rf − β1) − 1
2σ2

1, σ
2
1) and S2 ∼ ΛQ(β2, ln(V2rf − β2) − 1

2σ2
2, σ

2
2). Let

v = ln(S2 − β2) and x = ln(S1 − β1). Then:

PD,Irf = (K2 − β2)
∫ ∞

ln(K1−β1)

∫ ln(K2−β2)

−∞
g(v, x)dxdv

−
∫ ∞

ln(K1−β1)

∫ ln(K2−β2)

−∞
evg(v, x)dxdv.

Then using both:

∫ a

−∞

∫ ∞
b

evg(v, x)dxdv = exp(µv +
1
2
σ2

v)N [
a− µv

σv
− σv,

µx − b

σx
+ ρσv,−ρ]

and ∫ a

−∞

∫ ∞
b

g(v, x)dxdv = N [
a− µv

σv
,
µx − b

σx
,−ρ]

yields the desired result.2
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Proof of corollary 6: The value of the option, using the RNVR (12), is given by:

Pprf =
∫ K2

β2

(K2 − S2)g(S2)dS2,

where g(S2) is a univariate displaced lognormal risk neutral density. Then S2 ∼ ΛQ(β2, ln(V2rf −

β2)− 1
2σ2

2, σ
2
2). Let v = ln(S2 − β2). Then:

Pprf = (K2 − β2)
∫ ln(K2−β2)

−∞
g(v)dv −

∫ ln(K2−β2)

−∞
evg(v)dv.

Then using both: ∫ a

−∞
evg(v)dv = exp(µv +

σ2
v

2
)N(

a− µv

σv
− σv),

and ∫ a

−∞
g(v)dv = N(

a− µv

σv
)

yields the desired result.2

Result (iib). The event-contingent option value depends on the cumulative bivariate standard

normal random variable N(., ., .), and both d1 and d2. If ρ = 1 and d1 ≥ d2 then the value of an

option to divest contingent on investment is zero (i.e. PDI = 0), and the value of an option to

divest contingent on divestment is equal to the value of the put option (i.e. Pp = PDD).

Proof of result (iib): In general for N(., ., .) we have N(−d1,−d2, 1) = N [min(−d1,−d2)].

If d1 ≥ d2 then N(−d1,−d2, 1) = N(−d1). By the same property N(−d1 − σ2,−d2 − σ2, 1) =

N [min(−d1 − σ2,−d2 − σ2)]. If −d1 − σ2 ≤ −d2 − σ2 i.e. d1 ≥ d2 then N(−d1 − σ2,−d2 − σ2, 1) =

N(−d1 − σ2).2

Result (iiib). The event-contingent option value depends on the cumulative bivariate stan-

dard normal random variable N(., ., .), and both d1 and d2. Let ρ = −1. Let also EQ[S1] = EQ[S2],

V arQ[S1] = V arQ[S2], K1 = K2 = K, σ2 = σ1 = σ, and β2 = β1 = β. In our numerical case, if

K ≤ V then the value of an option to divest contingent on divestment is zero (i.e. PDD = 0), and

the value of an option to divest contingent on investment is equal to the value of the put option

(i.e. Pp = PDI). This result holds, in general, when d1 + d2 ≥ 0.
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Proof of result (iiib): By a general property of N(., ., .) we have N(−d1,−d2,−1) = 0 and

N(−d1 − σ2,−d2 + σ2,−1) = 0 if −d1 − d2 ≤ 0 i.e d1 + d2 ≥ 0. An application of this to our

problem implies the result when ln(V rf − β) ≥ ln(K − β) + σ2

2 . A sufficient condition for this to

hold in our numerical case is that K ≤ V .2
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Table 1a

Options to invest contingent on investment

Panel A: Perfect negative correlation (ρ = −1)
K 80 90 100 110 120 130 140

β σ

-60 0.130 22.543 10.830 2.446 0 0 0 0
-40 0.147 22.590 10.759 2.361 0 0 0 0
-20 0.170 22.665 10.673 2.253 0 0 0 0
0 0.200 22.794 10.569 2.114 0 0 0 0

Panel B: Partial negative correlation (ρ = −0.5)
K 80 90 100 110 120 130 140

β σ

-60 0.130 24.201 13.708 5.844 1.743 0.349 0.047 0.004
-40 0.147 24.243 13.662 5.772 1.708 0.342 0.046 0.004
-20 0.170 24.308 13.606 5.679 1.662 0.333 0.046 0.005
0 0.200 24.414 13.539 5.554 1.600 0.321 0.046 0.005

Panel C: No correlation (ρ = 0)
K 80 90 100 110 120 130 140

β σ

-60 0.130 25.679 16.196 8.627 3.802 1.379 0.414 0.104
-40 0.147 25.703 16.163 8.572 3.769 1.373 0.418 0.108
-20 0.170 25.739 16.122 8.500 3.726 1.364 0.423 0.113
0 0.200 25.798 16.071 8.403 3.666 1.350 0.428 0.119

Panel D: Partial positive correlation (ρ = 0.5)
K 80 90 100 110 120 130 140

β σ

-60 0.130 26.910 18.265 11.069 5.925 2.796 1.169 0.437
-40 0.147 26.906 18.232 11.029 5.904 2.800 1.185 0.452
-20 0.170 26.903 18.189 10.976 5.877 2.804 1.205 0.472
0 0.200 26.904 18.132 10.901 5.837 2.808 1.230 0.498

aIt is assumed that EQ(S1) = EQ(S2) = 110, V arQ(S1) = V arQ(S2) = 493.81, V1 = V2 = 100,
rf = 1.1, β1 = β2 = β, σ1 = σ2 = σ, and K1 = K2 = K, where EQ(S) = V rf and V arQ(S) =
(V rf − β)2(exp(σ2)− 1).
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Table 2a

Options to invest contingent on divestment

Panel A: Perfect negative correlation (ρ = −1)
K 80 90 100 110 120 130 140

β σ

-60 0.130 5.274 9.042 10.711 8.020 4.492 2.317 1.105
-40 0.147 5.191 9.066 10.758 8.008 4.510 2.351 1.141
-20 0.170 5.070 9.088 10.813 7.992 4.530 2.393 1.186
0 0.200 4.881 9.105 10.879 7.966 4.555 2.448 1.247

Panel B: Partial negative correlation (ρ = −0.5)
K 80 90 100 110 120 130 140

β σ

-60 0.130 3.616 6.165 7.313 6.276 4.143 2.270 1.101
-40 0.147 3.538 6.163 7.346 6.301 4.167 2.304 1.137
-20 0.170 3.427 6.155 7.388 6.330 4.197 2.347 1.182
0 0.200 3.261 6.135 7.439 6.366 4.234 2.402 1.242

Panel C: No correlation (ρ = 0)
K 80 90 100 110 120 130 140

β σ

-60 0.130 2.138 3.676 4.530 4.218 3.113 1.902 1.001
-40 0.147 2.079 3.662 4.547 4.239 3.137 1.932 1.033
-20 0.170 1.997 3.640 4.566 4.266 3.167 1.970 1.073
0 0.200 1.877 3.604 4.590 4.300 3.205 2.020 1.127

Panel D: Partial positive correlation (ρ = 0.5)
K 80 90 100 110 120 130 140

β σ

-60 0.130 0.907 1.607 2.087 2.095 1.696 1.148 0.669
-40 0.147 0.875 1.593 2.089 2.104 1.709 1.166 0.689
-20 0.170 0.832 1.573 2.091 2.115 1.726 1.188 0.715
0 0.200 0.771 1.543 2.092 2.129 1.747 1.218 0.749

aIt is assumed that EQ(S1) = EQ(S2) = 110, V arQ(S1) = V arQ(S2) = 493.81, V1 = V2 = 100,
rf = 1.1, β1 = β2 = β, σ1 = σ2 = σ, and K1 = K2 = K, where EQ(S) = V rf and V arQ(S) =
(V rf − β)2(exp(σ2)− 1).
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Table 3a

Event-contingent options with perfect positive correlation

Panel A: Call options or options to invest contingent
on investment with perfect positive correlation (ρ = 1)

K 80 90 100 110 120 130 140

β σ

-60 0.130 27.817 19.872 13.157 8.020 4.492 2.317 1.105
-40 0.147 27.781 19.825 13.118 8.008 4.510 2.351 1.141
-20 0.170 27.735 19.762 13.066 7.992 4.530 2.393 1.186
0b 0.200 27.675 19.675 12.993 7.966 4.555 2.448 1.247

Panel B: Put options or options to divest contingent
on divestment with perfect positive correlation (ρ = 1)

K 80 90 100 110 120 130 140

β σ

-60 0.130 0.544 1.691 4.066 8.020 13.583 20.499 28.378
-40 0.147 0.509 1.643 4.028 8.008 13.600 20.532 28.414
-20 0.170 0.463 1.580 3.976 7.992 13.621 20.575 28.459
0b 0.200 0.402 1.493 3.902 7.966 13.646 20.629 28.519

aIt is assumed that EQ(S2) = 110,V arQ(S2) = 493.81, V2 = 100, rf = 1.1, β2 = β, σ2 = σ, and
K2 = K.
bThe row presents Black-Scholes (1973) option values.
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Table 4a

Options to divest contingent on divestment

Panel A: Perfect negative correlation (ρ = −1)
K 80 90 100 110 120 130 140

β σ

-60 0.130 0 0 0 0.068 3.970 12.304 22.697
-40 0.147 0 0 0 0.086 4.083 12.420 22.750
-20 0.170 0 0 0 0.114 4.232 12.572 22.823
0 0.200 0 0 0 0.157 4.437 12.782 22.931

Panel B: Partial negative correlation (ρ = −0.5)
K 80 90 100 110 120 130 140

β σ

-60 0.130 0.001 0.038 0.433 2.283 6.969 14.649 24.176
-40 0.147 0.001 0.037 0.437 2.318 7.043 14.722 24.205
-20 0.170 0.001 0.036 0.441 2.363 7.140 14.818 24.246
0 0.200 0.001 0.033 0.446 2.423 7.271 14.950 24.310

Panel C: No correlation (ρ = 0)
K 80 90 100 110 120 130 140

β σ

-60 0.130 0.042 0.313 1.400 4.218 9.412 16.832 25.697
-40 0.147 0.038 0.303 1.396 4.239 9.460 16.878 25.717
-20 0.170 0.033 0.291 1.389 4.266 9.521 16.940 25.745
0 0.200 0.027 0.273 1.378 4.300 9.602 17.023 25.787

Panel D: Partial positive correlation (ρ = 0.5)
K 80 90 100 110 120 130 140

β σ

-60 0.130 0.195 0.850 2.610 6.105 11.586 18.785 27.131
-40 0.147 0.180 0.825 2.590 6.108 11.613 18.818 27.153
-20 0.170 0.162 0.791 2.562 6.111 11.647 18.860 27.182
0 0.200 0.137 0.745 2.521 6.112 11.690 18.917 27.222

aIt is assumed that EQ(S1) = EQ(S2) = 110, V arQ(S1) = V arQ(S2) = 493.81, V1 = V2 = 100,
rf = 1.1, β1 = β2 = β, σ1 = σ2 = σ, and K1 = K2 = K, where EQ(S) = V rf and V arQ(S) =
(V rf − β)2(exp(σ2)− 1).
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Table 5a

Options to divest contingent on investment

Panel A: Perfect negative correlation (ρ = −1)
K 80 90 100 110 120 130 140

β σ

-60 0.130 0.544 1.691 4.066 7.952 9.613 8.195 5.681
-40 0.147 0.509 1.643 4.028 7.922 9.517 8.113 5.664
-20 0.170 0.463 1.580 3.976 7.878 9.389 8.003 5.636
0 0.200 0.402 1.493 3.902 7.808 9.209 7.848 5.588

Panel B: Partial negative correlation (ρ = −0.5)
K 80 90 100 110 120 130 140

β σ

-60 0.130 0.543 1.652 3.633 5.736 6.614 5.849 4.203
-40 0.147 0.507 1.606 3.591 5.690 6.557 5.810 4.209
-20 0.170 0.462 1.544 3.534 5.629 6.481 5.757 4.213
0 0.200 0.402 1.460 3.456 5.543 6.375 5.680 4.210

Panel C: No correlation (ρ = 0)
K 80 90 100 110 120 130 140

β σ

-60 0.130 0.503 1.378 2.666 3.802 4.171 3.667 2.681
-40 0.147 0.471 1.339 2.632 3.769 4.140 3.654 2.697
-20 0.170 0.429 1.289 2.586 3.726 4.100 3.635 2.714
0 0.200 0.375 1.219 2.524 3.666 4.043 3.607 2.732

Panel D: Partial positive correlation (ρ = 0.5)
K 80 90 100 110 120 130 140

β σ

-60 0.130 0.349 0.841 1.456 1.915 1.997 1.714 1.247
-40 0.147 0.328 0.818 1.438 1.900 1.988 1.715 1.261
-20 0.170 0.301 0.789 1.414 1.881 1.975 1.715 1.277
0 0.200 0.265 0.748 1.380 1.854 1.956 1.713 1.297

aIt is assumed that EQ(S1) = EQ(S2) = 110, V arQ(S1) = V arQ(S2) = 493.81, V1 = V2 = 100,
rf = 1.1, β1 = β2 = β, σ1 = σ2 = σ, and K1 = K2 = K, where EQ(S) = V rf and V arQ(S) =
(V rf − β)2(exp(σ2)− 1).
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