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Abstract

Reversible, Flow Options.
In this paper we produce a formula for a Þnitely lived, perfectly reversible

option on a ßow. For this real option that allows frequent and costless switch-
ing between the maximum of two asset ßows, we Þrst examine the perpetual
and then the Þnite cases in terms of switching thresholds and values. The
Þnite option value is inferred from the perpetual using an annuity argu-
ment. Applications include energy and commodity consumption costs where
switching between ßows can occur frequently and costlessly.
Key words: Reversible options, real options, options on ßows.
JEL: G12, G13.



1 Introduction

In this paper we examine the reversibility of the standard real option frame-
work as a function of the fraction of the exercise proceeds (if any) that can
be recovered on reverse exercise. This is important because real investment
projects allow a fraction of the investment assets to be recovered in some
states of the world whereas many real options models (for perpetual Amer-
ican options see Merton (1973) [1] and Dixit & Pindyck (1994) [2]) assume
that the investment decision is completely irreversible and that the salvage
value is zero. Real option exceptions to this oversight include Brennan and
Schwartz (1985) [3] and Dixit (1989) [4] where investment/divestment hys-
teresis is generated by activation and deactivation costs.
For the partially reversible case which generates hysteresis, we reduce the

four equations that determine the asset pricing system to one explicit non�
linear equation whose solution can be easily determined numerically. We
show that an arbitrarily small recovery fraction is shown to correspond to
the Merton (1973) [1] perpetual model and exercise threshold while a new
threshold corresponding to full recovery or complete reversibility is derived
and shown to conform to a simple (volatility independent) yield argument
for the exercise condition.
Hence we show that even when perfectly reversible, real option values,

if not thresholds, still depend on the level of uncertainty. Thus perfectly
reversible real option values and thresholds represent the other extreme case
compared to most real options applications. Actual practical investment
cases will have real option values and thresholds that are bounded by the
two special cases of fully reversible investment considered here and perfectly
irreversible investment most widely considered in the literature.
Having valued these so called perpetual reversible options (a problem

raised by McDonald and Siegel (1985) [5]), we go on to value Þnite reversible
options in closed form, a task which is possible only because of the known
form of the reversible boundary. Comparative statics are presented.
The Þnite and inÞnite solutions we present are applicable to real option

situations where a maximum or minimum ßow can be continually chosen
without penalty and the equivalence between these ßow options and a con-
tinuum of Black Scholes (1973) [6] options is formalised.
Categorizing general reversible options by their time to maturity and

recovery fraction allows Section 2 to put these new fully reversible options
on a grid which also contains standard (Þnite) American options as well as
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Dixit�s perpetual hysteresis investment. Section 3 extends Dixit�s (1989) [4]
analysis of investment hysteresis to recover the single non�linear equation
that determines the system and prices perpetual real options under perfect
recovery or full reversibility. Section 4 uses the single threshold and its time
invariant property established in Section 3 to value Þnite reversible options
in closed form. Comparative statics are discussed as well as comparison of
a ßow option to continuum of inÞnitesimal Black Scholes options. Section 5
concludes.

2 Reversible options

In this section we categorize the types of reversible options discussed in this
paper. We also reformulate investment, divestment hysteresis and extend the
analysis to recover the single explicit equation that determines the trigger
thresholds. When thresholds are close, it is this equation that Dixit (1991)
[7] approximated, but did not state.

2.1 The underlying process

For an underlying project value price process V that follows a geometric
Brownian motion 1

dV

V
= (µ− δ) dt+ σdW

1

2
σ2V 2 ∂

2R

∂V 2
+ (r − δ) V ∂R

∂V
− rR− ∂R

∂T
= 0 (1)

no arbitrage or risk�neutral valuation implies that the price of any option
claim R must satisfy the Hamilton�Bellmann�Jacobi differential Equation
(1). This reversible option R (T,α) is a function of the current value of V,
time T and a measure of the degree of reversibility α which will deÞned
presently by the boundary conditions. Notational dependence on the current
value V will generally be suppressed, as will time subscripts.

1This process has expected capital gain g = µ− δ and dividend yield δ under the real
world process dW. Under the risk neutral process, its drift and yield are r−δ, δ.We assume
that both r and δ are positive.
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2.2 Value matching and smooth pasting

We label the option to activate or open O (T,α) and the option to de�activate
or shut the project S (T,α) . Both are a function of investment amount and
dis�investment proceeds X,X through their ratio α < 1 and a function of
remaining time to maturity T. Dixit considered these investment and divest-
ment premia k and discounts l as �transaction costs� in switching to and
from a base level of investment X

α =
X

X
=
X − l
X + k

At the opening threshold V (T,α) , the investment proceeds X along with
the opening option O can be exchanged for the project value at that level
V (T,α) along with the shutting option S. At the shutting threshold V (T,α) ,
the project value and shutting option can be exchanged for the divestment
proceeds X and the option to open again O.

X +O (T,α) → V (T,α) + S (T,α)

X +O (T,α) ← V (T,α) + S (T,α)

It is therefore useful to deÞne a local ratio γ of the investment and divestment
thresholds V (T,α) , V (T,α) . In this Section only, this ratio depends on time
T but in the perpetual or fully reversible cases later, γ will is constant.

γ (T,α) =
V (T,α)

V (T,α)

This notation allows the general reversible option R (T,α) to be deÞned as
the asset V plus shutting option S (if currently open) or investment proceeds
X (either X or X) plus opening option O (if currently closed)

R (T,α) =

½
V + S (T,α) : V > V (T,α)
X +O (T,α) : V < V (T,α)

(2)

where V (T,α) is the upper and V (T,α) the lower threshold of conversion
and reconversion (both a function of remaining time to maturity and the
(dis)investment ratio). It is understood that for intermediate values of V
V (T,α) < V < V (T,α) the open/shut status is determined by the last
boundary encountered through hysteresis. Each option value R (T,α) must
solve the HBJ Equation (1) along with the boundary conditions.
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Reversible option R (T,α) Recovery fraction α
1 1

2
1
4

1
8

0
Time ∞ R (∞, 1) R

¡∞, 1
2

¢
R
¡∞, 1

4

¢
R
¡∞, 1

8

¢
R (∞, 0)

to 4 R (4, 1) R
¡
4, 1

2

¢
R
¡
4, 1

4

¢
R
¡
4, 1

8

¢
R (4, 0)

final 2 R (2, 1) R
¡
2, 1

2

¢
R
¡
2, 1

4

¢
R
¡
2, 1

8

¢
R (2, 0)

maturity 1 R (1, 1) R
¡
1, 1

2

¢
R
¡
1, 1

4

¢
R
¡
1, 1

8

¢
R (1, 0)

T 0 R (0, 1) R
¡
0, 1

2

¢
R
¡
0, 1

4

¢
R
¡
0, 1

8

¢
R (0, 0)

Table 1: General reversible options R(T,α) as a function of time to matu-
rity T and recovery fraction α. Limiting cases include standard (irreversible)
Þnite American options (right hand column), Dixit�s perpetual costly hys-
teresis (top row) and Þnally the Þnite Reversible Options valued in this paper
(left hand column). Perpetual Merton (irreversible) options reside at the top
right hand corner, perpetual reversibles at the top left hand corner while the
bottom row contains Þnal option payoffs.

Most generally the activation costs and deactivation proceeds (forward
and reverse exercise) are not equal

¡
X < X

¢
2 so forward and reverse exercise

may be separated in underlying project value V and therefore in time. This
investment hysteresis is similar to Brennan and Schwartz (1985) [3] and Dixit
(1991) [7] when the continuous operating costs are also rolled up with the
investment cost.
Table 1 shows the reversible option R (T,α) as a function of T,α includ-

ing certain special cases. The right hand column contains irreversible (zero
recovery) American options R (T, 0) of Þnite maturity with the perpetual
American solution R (∞, 0) (Merton (1973) [1]) that is used in many real
options models at the top.
The top row contains the perpetual investment/dis�investment hysteresis

R (∞,α) described by Dixit (1989) [4] as a function of the recovery fraction α.
If the recovery fraction is zero, the problem reverts to the perpetual Merton
solution while as the recovery fractions tends to one, the option tends to the
perpetual fully reversible case described in Section 3 this paper.

2if costs k, l > 0. Note that we require l < X i.e. X > 0
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Moreover the left hand column contains fully reversible options of Þnite
maturity R (T,α) that are treated in this paper. These can be valued in
closed form because the boundary of action is time and volatility indepen-
dent. The bottom row contains option payoffs while the interior contains the
general cases.
The next Section examines the perpetual investment hysteresis (top row)

and shows how the four boundary conditions that determine the problem
can be reduced to one non�linear equation. It also examines the perpetual
reversible case (top left) and present solution forms. Finally Section 4 solves
for the Þnite reversible options (left column) in closed form, as task which is
only possible because the boundary is exogenous.

3 Infinite reversible options

We proceed to examine option values under the perfectly reversible case
when the two threshold collapse to one common switching level. These per-
fectly reversible options have similar value form to Merton�s (1973) perpetual
American options although they have a very different threshold. Their appli-
cations include situations where reversion can occur costlessly and arbitrarily
often.
Treating the perpetual hysteresis case, the time partial in Equation (1)

can be set to zero and a general solution of the form R (∞,α) = AV a+BV b
can be used (constants A,B are determined using boundary conditions, a, b
(a > 1, b < 0) solve the fundamental equation3).
Two boundary conditions are immediately determined because the option

to open O goes to zero as V tends to zero and the option to shut S goes to
zero as V becomes large. Therefore these open and shut options conform to
the two general solutions AV a, BV b respectively. The remaining boundary
conditions must be determined endogenously through optimality conditions.
The optimal policy is determined by two value matching and two smooth

3

0 =
1

2
σ2β (β − 1) + (r − δ)β − r

a, b =
1

2
− (r − δ)

σ2
±
sµ

(r − δ)
σ2

− 1

2

¶2

+
2r

σ2
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pasting conditions (see Dumas (1991) [8] for a treatment of these conditions
and Dumas and Luciano (1991) [9] for another two sided transaction cost
control problem) at two time independent thresholds, one an upper V =
V (∞,α) and one a lower threshold V = V (∞,α) . From this point on the
thresholds will always be time invariant and so will simply be labelled V , V ,
they still depend on α.

3.1 Hysteresis solution in four equations

This yields a system of four equations in four variables
¡
A,B,V , V

¢
repre-

senting the remaining boundary conditions. The four equations co�determine
the intervention points V ,V and the option constants A,B. All four are a
function of the inputs to the system, the (de)activation amounts

¡
X,X

¢
,

although we will see that it is actually easier to evaluate
¡
A,B,X,X

¢
as

a function of
¡
V , V

¢
. Writing the two value matching conditions and the

smooth pasting conditions (made homogenous by a V , V multiplication) out
in matrix form allows inversion for

¡
A,B,X,X

¢
AV

a
+X = BV

b
+ V

AV a +X = BV b + V

AaV
a

= BbV
b
+ V

AaV a = BbV b + V

⇐⇒


1 0 V

a −V b
0 1 V a −V b
0 0 aV

a −bV b
0 0 aV a −bV b



X
X
A
B

 =

V
V
V
V


(3)

Inverting the matrix (see the Appendix) to recover
¡
A,B,X,X

¢
as a function

of
¡
V ,V

¢
, the matrix product is most easily evaluated as a function of the

fraction γ (α) ≡ V /V (a time independent ratio of the lower to the upper
intervention thresholds)

X
X
A
B

 = V

ab (γb − γa)


ab
¡
γb − γa¢− bγb + aγa − (a− b) γ

(ab− a) γb+1 + (b− ab) γa+1 + (a− b) γa+b

b
¡
γb − γ¢V −a

a (γa − γ)V −b


3.2 Hysteresis solution in one equation

Thus if V , V were known a priori instead of X,X it would be a simple matter
to determine

¡
A,B,X,X

¢
. Since V 6= 0 and γb 6= γa, the variable α = X/X
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(the ratio of the deactivation and activation amounts) can be expressed as a
function of γ by dividing the Þrst two lines.

α (γ) =
(ab− a) γb+1 + (b− ab) γa+1 + (a− b) γa+b

(ab− b) γb + (a− ab) γa − (a− b) γ (4)

This is the one equation that determines the entire system.
It would be preferable to determine the optimal intervention threshold

ratio that solves Equation (4) γ (α) as a function of the ratio α of the amounts
X,X as oppose to determining the ratio of the amounts as a function of
the thresholds α (γ) but a numerical solution for the inverse is always easy
to obtain for any particular values. This polynomial that represents α as
a function of γ is monotonic and increasing in γ and therefore there is a
unique α for every γ and vice versa. For each α, the optimal γ can be
retrieved numerically from Equation (4) and then the thresholds and option
constants recovered.·

V
V

¸
= ab

¡
γb − γa¢

 X

ab(γb−γa)−bγb+aγa−(a−b)γ
X

ab(γb−γa)+bγa−aγb+(a−b)γa+b−1


·
A
B

¸
=

V

ab (γb − γa)

"
b
¡
γb − γ¢V −a

a (γa − γ) V −b
#

3.3 The reversible limit

We now examine the properties of Equation (4) for the special cases at the
corners of Table (1). The function that determines the (dis)investment costs
as a function of thresholds α (γ) has asymptotes which correspond to degen-
erate cases when the matrix determinant is zero. For values of γ that are
small or close to one, the limiting behaviour of α/γ is given respectively by

lim
γ→0

α

γ
=

a (b− 1)
b (a− 1)

lim
γ→1

α

γ
= 1

The Þrst corresponds to the Merton perpetual American irreversible calls
and puts that are widely used in the real options literature. This can be seen
by evaluating the intervention thresholds for small α and γ corresponding to
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small X4. For small γ, taking the lowest powers of γ in denominator and
numerator yields a form for the other threshold V as a function of X (or V
as a function of X)

Critical thresholds

·
V
V

¸
=

·
a
a−1
X

b
b−1
X

¸
call
put

For extremely low α and γ the two variable reversible problem is reduced
to a one way problem since one threshold becomes unattainable as it goes to
zero. This conforms to the Merton perpetual American options that are not
reversible.
However the other asymptote γ = 1 preserves the ability to reverse and

is indeed perfectly reversible in the sense that forward and reverse exercise
consumes no value. As γ,α → 1 both the critical thresholds collapse to a
common value as the exercise proceeds become equal. In this case there is
no longer any hysteresis and switching occurs inÞnitely often at the common
activation and deactivation threshold. Using l�Hopital�s rule to evaluate this
limiting case and labelling this common threshold K

¡
= V = V

¢
and the

common (de)activation amount X
¡
= X = X

¢
this implies

V , V → K =
ab

ab− (a+ b) + 1X =
rX

δ

This means that the optimal exercise strategy is now to activate the
project when the opportunity cost on the project δV exceeds the opportunity
cost on the required investment rX and to deactivate it when rX > δV. The
change happens at V = K when the so called Jorgenson (1963) [10] user
costs of capital are equal. Thus a current yield criteria δV ≶ rX is employed,
not a naive or myopic present value condition V ≶ X. Because there is no
penalty for early exercise, waiting does not have to be deferred to the Merton
threshold. Although not obvious at the outset, this yield argument is not
surprising.

3.4 Costless reversion

For this fully reversible case we can specialise the opening and shutting op-
tions with α = 1 to produce a fully reversible opening option O (T, 1) which

4i.e. for a fixed exercise amount, the reverse exercise amount could be arbitrarily small
corresponding to the irreversible Merton case.

8



on exercise yields a fully reversible shutting option S (T, 1) . In this Section
we treat the inÞnite cases O (T,∞) , S (T,∞) and in the next Section we will
treat the Þnite cases. The equation for the option thresholds and constants
shows how to evaluate the perpetual reversibles where opening and shutting
occurs at the new joint level of K = rX/δ as the limit as α, γ → 1 and
hysteresis collapses5.

O (∞, 1) = K b− 1
a (b− a)

µ
V

K

¶a
(5)

S (∞, 1) = K a− 1
b (b− a)

µ
V

K

¶b
These are proportional to the irreversible Merton option call O (∞, 0) (open
with no reverse option) and put (shut with no reverse option) values S (∞, 0)
(both functions of V , V )

O (∞, 0) = X

a− 1
µ
V (a− 1)
Xa

¶a
=
¡
V −X¢µV

V

¶a
S (∞, 0) = X

1− b
µ
V (1− b)
Xb

¶b
= (X − V )

µ
V

V

¶b
The perpetual reversible options are always worth a constant multiple more
than their Merton counterparts and they include the set of investment strate-
gies of the irreversibles

O (∞, 1)
O (∞, 0) =

r

δ

(a− 1) (b− 1)
a (b− a)

µ
a

a− 1
¶a
> 1

S (∞, 1)
S (∞, 0) =

r

δ

(a− 1) (b− 1)
b (b− a)

µ
b

1− b
¶b
> 1

and their thresholds are always encountered sooner, i.e. they are lower for
the opening option and higher for the shutting option. Since the opening

5The option constants are given by·
A
B

¸
= lim

γ→1

1

ab (γb − γa)

"
b
¡
γb − γ¢V 1−a

a
¡
γa+b−1 − γb¢V 1−b

#
=

1

ab (b− a)

"
b (b− 1)

¡
rX
δ

¢1−a

a (a− 1)
¡
rX
δ

¢1−b

#
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(closing) boundary is only ever activated from below (above) it can be said
that the reversible opening and shutting options are always activated earlier
in time than the irreversible.

V (∞, 1)
V (∞, 0) =

K (a− 1)
Xa

=
r (a− 1)
δa

< 1

V (∞, 1)
V (∞, 0) =

K (b− 1)
Xb

=
r (b− 1)
δb

> 1

4 Finite reversible options

In this Section we value Þnite reversible options, a task which is only possible
due to the known and constant exercise boundary K.
Although the inÞnite asymptotes for the thresholds are available as the

solution to a non�linear equation, for any partially reversible, Þnite horizon
problem T (non time homogeneous) the true boundaries can only be found
using numerical techniques.
However, for costless reversion, the boundaries are ßat at K = rX

δ
for

all time because there is no penalty for early exercise and the problem is
again time homogeneous even for a Þnite maturity T . This means that the
boundaries are known a priori for the reversible case and that the problem
solution can be formulated in closed form.

4.1 Black Scholes flow representation

For a Þnite horizon T, the Þnite reversible real option R (T, 1) has a time
homogeneous optimal policy that is to open the project V if it is priced
more than rX/δ or shut it if not. This can be written as a risk�neutral
expectation of the integral of the discounted maximum ßow max (rX, δVt)
over time until T which (by carrying expectations under the integral) can be
written as an integral of a continuum of Black Scholes (1973) [6] European
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option formulae6

R (T, 1) = EQ0

·Z T

0

e−rtmax (rX, δVt) dt
¸

(6)

=

(
X
¡
1− e−rT ¢+ δ

R T
0

£
V e−δtN (+dK1)−Xe−rtN (+dK0)

¤
dt : V < K

V
¡
1− e−δT¢+ r

R T
0

£
Xe−rtN (−dK0)− V e−δtN (−dK1)

¤
dt : V > K

dK1, dK0 are like Black Scholes parameters (see later deÞnition and corre-
spondence to d1, d2) for options but with a strike K. If V < K the perfectly
reversible option is interpreted as the investment amount X plus a dividend
yield δ on a continuum of intermediate life (0, T ) Black Scholes call options
struck at K. If however V > K the perfectly reversible real option is inter-
preted as the project value itself V plus a risk free yield r on a continuum of
Black Scholes puts struck at K.
Thus a reversible option gives the excess maximum yield or ßow δVt or rX

i.e. optimal investment in V or X, while allowing for expected capital gains
associated with all future optionality associated with the continuum of Black
Scholes puts or calls. The integral of a continuum of Black Scholes options
(Equation (6)) is difficult to evaluate directly, moreover the integral limit as
T → 0 is different for differing moneyness V ≷ K. However once the result
is derived by another means, it is relatively easy to show by differentiation
that the reversible ßow option does indeed conform to a continuum of Black
Scholes options.

4.2 Risk—neutral valuation

Thinking of the Þnite ßow option as an annuity, it can be valued by sub-
tracting (the risk�neutral expectation of) a forward start perpetuity from a
current start perpetuity. As T →∞ this expression will converge toward the
known inÞnite horizon solution. The current start perpetual ßow option is
given as a function of one of the two perpetual opening and shutting values

6

max (rX, δS) = rX + δmax
³
V − r

δ
X, 0

´
= δV + rmax

µ
X − δ

r
V, 0

¶
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in Equation (5) conditional on V ≷ K

R (∞, 1) =
½
V + S (∞, 1) : V > K
X +O (∞, 1) : V < K

(7)

The finite reversible real option is equal to the inÞnite reversible less the (dis-
counted) risk�neutral expectation of the forward start perpetual EQ0 [RT (∞, 1)]
(RT , VT etc are unknown time T values)

R (T, 1) = R (∞, 1)− e−rTEQ0
½
VT + ST (∞, 1) : VT > K
X +OT (∞, 1) : VT < K

The risk�neutral expectation elements can be calculated because each of the
value elements (X,OT , VT , ST ) has a special elasticity (0, a, 1, b) with respect
to V. Moreover the discount rates associated with those instruments with no
cashßows (S,O) cancel with the risk free and those that have ßows (V,X)
(δ, r) respectively reduce to e−δT , e−rT . Thus the Þnite case can be shown to
be

R (T, 1) =


X

O (∞, 1)
V

S (∞, 1)

 .

1V <K − e−rTN (−dK0)
1V <K − N (−dKa)
1V >K − e−δTN (dK1)
1V >K − N (dKb)

 (8)

where the Black Scholes like Normal parameters dKβ are speciÞc to each of
the (elasticities of the) four assets given by

β : dKβ =
lnV − lnK + ¡r − δ + σ2

¡
β − 1

2

¢¢
T

σ
√
T

β = 0 (X)
β = a (O)
β = 1 (V )
β = b (S)

:


dK0

dKa
dK1

dKb

 = ln V − lnK + ¡r − δ − 1
2
σ2
¢
T

σ
√
T

+ σ
√
T


0
a
1
b



R (∞, 1)
−

e−rTEQ0 [RT (∞, 1)]
=


AN (X, V < K) − AN (X, VT < K)
AN (O, V < K) − AN (OT , VT < K)
AN (V,V > K) − AN (VT , VT > K)
AN (S, V > K) − AN (ST , VT > K)

 (9)
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Each of the four elements has a representation as an asset or nothing op-
tion which pay if an upper or lower condition is satisÞed, AN (YT , VT ≷ K) .
These are instruments which at time T pay the underlying asset YT ∈
(X,OT , VT , ST ) only when the condition VT > K, or VT < K is met, other-
wise they pay nothing. Since one or the other will be exercised for sure, they
satisfy a summation parity condition

AN (YT , VT > K) +AN (YT , VT < K) = e
−rTEQ0 [YT ] = Y

The zero maturity asset or nothing option represents the current reversible
option position

AN (Y, V > K) = Y : V > K

AN (Y, V < K) = Y : V < K

Thus the asset or nothing option prices play the role of annuity factors that
convert the current perpetuity into an annuity. The Þnite maturity reversible
option is represented by its current perpetual value less the annuity discount
factors associated with its termination at time T.
Differentiation of Equation (8) w.r.t. to time yields the integrand of

Equation (6) although care needs to be taken to treat the two moneyness
cases differently. Equation (8) also satisÞes Equation (1).

4.3 Example

For (r, δ, σ) = (10%, 5%, 20%) and for V values from 100 to 300 and times T
from 0 to 10 years (and beyond to the perpetual solution via 20 and 50 years)
the Þnite reversible option is plotted by maturity and moneyness. Naturally
the reversible ßow call increases with V & T.

4.4 Comparative statics

Comparative statics w.r.t. T, V, (and X) are relatively easy to evaluate and
correspond to the elements of the HBJ partial differential Equation (1). Sen-
sitivities w.r.t. to σ, r, δ are more difficult because of the complex dependency
of a, b on these variables.
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Figure 1: Reversible option values for V from 100 to 300 and T from 0 to 10
years (and 20, 50 and ∞), all for (r, δ, σ) equal to (10%, 5%, 20%) .

5 Conclusions

This paper produces a formula for the present value of the continuous max-
imum of two ßows over a Þnite horizon. If the stochastic dividend ßow
from a project ft = δVt or the constant ßow from some investment proceeds
k = rX = δK can be costlessly and continuously selected, a reversible ßow
option can be used as a valuation basis. This is because the exercise and
re�exercise threshold is constant in time. Furthermore a Þnite reversible
option can be valued using the difference between a current start and the
expectation of a forward start perpetual ßow option.
This Þnite call option (which satisÞes the HBJ asset pricing equation and

all relevant boundary conditions) also has a representation as an integral
of a continuum of inÞnitesimal Black Scholes call options. Taking the time
derivative of the formula presented in this paper yields the Black Scholes
integrand.
As expected the ßow call option increases in value with the underlying

stochastic ßow and also with the time to expiry of the option.
Applications include commodity costs where the ßow consumption deci-

sion can be costlessly and arbitrarily frequently chosen from the max (or min)
of two input costs max [ft, k]. This allows pricing of the ßexibility generated
by industrial plant which could run either on a variable price commodity

14



input such as oil or a Þxed energy price input.
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6 Appendix

.1 Inverting the system matrix


X
X
A
B

 =

1 0 V

a −V b
0 1 V a −V b
0 0 aV

a −bV b
0 0 aV a −bV b


−1 

V
V

V
V



=



1 0 −V abV b+V baV a
ab
³
V
a
V b−V bV a

´ −V aV b −b+a
ab
³
V
a
V b−V bV a

´
0 1 V aV b −b+a

ab
³
V
a
V b−V bV a

´ − −V abV b+V baV a

ab
³
V
a
V b−V bV a

´
0 0 V b

a
³
V
a
V b−V bV a

´ − V
b

a
³
V
a
V b−V bV a

´
0 0 V a

b
³
V
a
V b−V bV a

´ − V
a

b
³
V
a
V b−V bV a

´




V
V
V
V



.2 Evaluating the risk—neutral expected value of the
forward perpetuity

We need to calculate the risk neutral expectation of a claim V βT which has
general elasticity β. For a normally distributed variable v = lnVT with mean
µ and sd Σ

v = lnVT

v ∼ n (µ,Σ)

the expectation is evaluated by integrating over states

EQ0

h
V βT

i
=

Z B

A

V βn (ln V ) d ln V

=

Z B

A

eβvn (v) dv

=

Z B

A

exp

Ã
−(v − µ)

2

2Σ2
+ βv

!
dv
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Firstly complete the square within the normal density7

(v − µ)2 − 2βvΣ2

2Σ2
=
(v − µ− βΣ2)

2

2Σ2
− 2µβΣ

2 + β2Σ4

2Σ2

so that the expectation becomes

EQ0

h
V βT

i
=

Z B

A

exp

µ
µβ +

1

2
β2Σ2

¶
exp

Ã
−(v − µ− βΣ

2)
2

2Σ2

!
dv

= exp β

µ
µ+

1

2
βΣ2

¶µ
N

µ
B − (µ + βΣ2)

Σ

¶
−N

µ
A− (µ+ βΣ2)

Σ

¶¶
Now for a lognormal stock price process under the risk neutral density, µ =
ln V +

¡
r − δ − 1

2
σ2
¢
T and Σ = σ

√
T so that

µ+
1

2
βΣ2 = lnV +

µ
r − δ − 1

2
σ2

¶
T +

1

2
βσ2T

expβ

µ
µ +

1

2
βΣ2

¶
= V β exp

µµ
r − δ + 1

2
σ2 (β − 1)

¶
T

¶

EQ0

h
V βT

i
V βe(r−δ+

1
2
σ2(β−1))βT

=
N

µ
B−(ln V β+(r−δ+σ2(β− 1

2 ))T)
σ
√
T

¶
−N

µ
A−(lnV β+(r−δ+σ2(β− 1

2))T)
σ
√
T

¶ (10)

This veriÞes the Black Scholes result with A = lnX and B =∞Z ∞

lnX

(V −X) n (lnV ) d lnV =
Z ∞

lnX

V n (lnV ) d ln V −
Z ∞

lnX

Xn (lnV ) d ln V

7

(v − µ)
2 − 2βvσ2 = v2 − 2vµ+ µ2 − 2vβσ2

¡
v − µ− βσ2

¢2
= v2 − 2vµ− 2vβσ2 + µ2 + 2µβσ2 + β2σ4

17



since the Þrst part of the integral corresponds to β = 1Z ∞

lnX

V n (lnV ) d ln V = V βe(r−δ)TN

Ã
lnV β − lnX + ¡r − δ + 1

2
σ2
¢
T

σ
√
T

!

and the second part of the integral corresponds to β = 0Z ∞

lnX

Xn (lnV ) d lnV = N

Ã
lnV β − lnX + ¡r − δ − 1

2
σ2
¢
T

σ
√
T

!

Discounting by e−rT yields the Black Scholes components.
Now to return to the Þnite reversible case. The current value of the

perpetual reversible is given by, R (∞, 1)

R (∞, 1) =

½
V + S V > K
X +O V < K

O = K
b− 1
a (b− a)

µ
V

K

¶a
S = K

a− 1
b (b− a)

µ
V

K

¶b
where a, b are the positive and negative solution to the fundamental

a, b =
1

2
− r − δ

σ2
±
Ãµ

r − δ
σ2

− 1
2

¶2

+
2r

σ2

!1
2

We can value the Þnite reversible by taking present value expectations of a
forward perpetual and subtracting it from the current perpetual

R (T, 1) = R (∞, 1)− e−rTEQ0 [RT (∞, 1)]

Taking risk neutral expectations of the forward start perpetual involves in-
tegrals to and from K the critical threshold (again v = lnVT )

EQ0 [RT (∞, 1)] =
Z lnK

−∞
(X +OT ) n (v) dv +

Z ∞

lnK

(VT + ST ) n (v) dv
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When discounted at the risk free rate, this has the interpretation of four asset
or nothing calls, which pay conditional on VT ≷ K. The Þrst two pay X,O
if VT < K and the second two pay VT , S if VT > K.
Using the general integral result (Equation 10) for each of the four asset

or nothing parts can be evaluated

X : β = 0, A = −∞, B = lnKZ lnK

−∞
Xn (v) dv = X

Ã
1−N

Ã
ln V − lnK + ¡r − δ − 1

2
σ2
¢
T

σ
√
T

!!
= X (1−N (dK0))

O : β = a,A = −∞, B = lnKZ lnK

−∞
On (v) dv =

Z lnK

−∞
K

b− 1
a (b− a)

µ
V

K

¶a
n (v) dv

= K
b− 1
a (b− a)

µ
V

K

¶a
e(r−δ+

1
2
σ2(a−1))aT

Ã
1−N

Ã
lnV − lnK + ¡r − δ + σ2

¡
a

σ
√
T

= Oe(r−δ+
1
2
σ2(a−1))aT (1−N (dKa))

V : β = 1, A = lnK,B =∞Z ∞

lnK

V n (v) dv = V e(r−δ)TN

Ã
ln V − lnK + ¡r − δ + 1

2
σ2
¢
T

σ
√
T

!
= V e(r−δ)TN (dK1)

S : β = b,A = lnK,B =∞Z ∞

lnK

Sn (v) dv =

Z ∞

lnK

K
a− 1
b (b− a)

µ
V

K

¶b
n (v) dv

= K
a− 1
b (b− a)

µ
V

K

¶b
e(r−δ+

1
2
σ2(b−1))bTN

Ã
lnV − lnK + ¡r − δ + σ2

¡
b− 1

2

¢¢
T

σ
√
T

= Se(r−δ+
1
2
σ2(b−1))bTN (dKb)

This representation uses Black Scholes like parameters all evaluated at a
strike price of K but with different elasticities (a > 1 > 0 > b) that corre-
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spond to the four cases of β

β : dKβ =
lnV − lnK + ¡r − δ + σ2

¡
β − 1

2

¢¢
T

σ
√
T

O (β = a) : dKa =
lnV − lnK + ¡r − δ + σ2

¡
a− 1

2

¢¢
T

σ
√
T

V (β = 1) : dK1 =
lnV − lnK +

¡
r − δ + 1

2
σ2
¢
T

σ
√
T

X (β = 0) : dK0 =
lnV − lnK +

¡
r − δ − 1

2
σ2
¢
T

σ
√
T

S (β = b) : dKb =
ln V − lnK + ¡r − δ + σ2

¡
b− 1

2

¢¢
T

σ
√
T

Finally the parameters a, b are special in that they cancel with the risk free
rate when discounting is applied, i.e.µ

r − δ + 1
2
σ2 (a− 1)

¶
a = r =

µ
r − δ + 1

2
σ2 (b− 1)

¶
b

e−rTEQ0 [R (VT ,∞)] =


Xe−rT (1−N (dK0))
O (1−N (dKa))
V e−δTN (dK1)
SN (dKb)

 =

Xe−rTN (−dK0)
ON (−dKa)
V e−δTN (dK1)
SN (dKb)



R (V,∞) =


1V <KX
1V <KO
1V >KV
1V >KS



R (V,∞)− e−rTEQ0 [R (VT ,∞)] =


X
O
V
S

 .

1V <K − e−rTN (−dK0)
1V <K −N (−dKa)
1V >K − e−δTN (dK1)
1V >K −N (dKb)


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.3 Comparative statics

Now redeÞne the speciÞc dKβ as a function of dK0 plus a term in β

dKβ =
lnV − lnK + ¡r − δ + σ2

¡
β − 1

2

¢¢
T

σ
√
T

=
lnV − lnK + ¡r − δ − 1

2
σ2
¢
T

σ
√
T

+ βσ
√
T = dK0 + βσ

√
T

and similarly for the time derivative

∂dKβ
∂T

=
∂dK0

∂T
+

1

2
√
T
βσ

The deÞnition of the normal density n (dKβ) can be expressed as a function
of n (dK0)

n (dKβ) =
1√
2π
exp−1

2
d2
Kβ

=
1√
2π
exp−1

2

³
d2
K0 + 2βσ

√
TdK0 + β

2σ2T
´

= n (dK0) exp−1
2

³
2βσ

√
TdK0 + β

2σ2T
´

= n (dK0) exp−βσ
√
T

µ
dK0 +

1

2
βσ
√
T

¶
= n (dK0) exp−β (lnV − lnK)− β

µ
r − δ + 1

2
(β − 1)σ2

¶
T

= n (dK0)

µ
V

K

¶−β
exp−β

µ
r − δ + 1

2
(β − 1) σ2

¶
T

β = 0 n (dKβ) = n (dK0)

β = a n (dKβ) = n (dK0)
¡
V
K

¢−a
e−rT

β = 1 n (dKβ) = n (dK0)
¡
V
K

¢−1
e−(r−δ)T

β = b n (dKβ) = n (dK0)
¡
V
K

¢−b
e−rT

r =
1

2
σ2β (β − 1) + (r − δ)β
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.4 Time partial Θ

For the expected value of the forward start perpetual reversible

e−rTEQ0 [R (VT ,∞)] =


Xe−rT (1−N (dK0))
O (1−N (dKa))
V e−δTN (dK1)
SN (dKb)

 =

Xe−rTN (−dK0)
ON (−dKa)
V e−δTN (dK1)
SN (dKb)


∂e−rTEQ0 [R (VT ,∞)]

∂T
=


Xe−rT

¡
n (−dK0)

∂−dK0

∂T
− rN (−dK0)

¢
On (−dKa) ∂−dKa∂T

V e−δT
¡
n (dK1)

∂dK1

∂T
− δN (dK1)

¢
Sn (dKb)

∂dKb
∂T



= Kn (dK0) e
−rT


−X
K
∂dK0

∂T

− b−1
a(b−a)

³
∂dK0

∂T
+ aσ

2
√
T

´
∂dK0

∂T
+ σ

2
√
T

a−1
b(b−a)

³
∂dK0

∂T
+ bσ

2
√
T

´
− rN (−dK0)Xe

−rT − δN (dK1)V e
−δT

= Kn (dK0) e
−rT

µ
∂dK0

∂T

µ
−X
K
− b− 1
a (b− a) + 1 +

a− 1
b (b− a)

¶
− b− 1
a (b− a)

aσ

2
√
T
+

bσ

2
√
T

a− 1
b (b− a

−rN (−dK0)Xe
−rT − δN (dK1)V e

−δT

δ

r
=
1 + ab− a− b

ab

since8

8

dK0 +
1

2
βσ
√
T =

lnV0 − lnK +
¡
r − δ − 1

2
σ2
¢
T

σ
√
T

+
1

2
βσ
√
T

=
lnV0 − lnK +

¡
r − δ + 1

2 (β − 1)σ2
¢
T

σ
√
T

βσ
√
T

µ
dK0 +

1

2
βσ
√
T

¶
= βσ

√
T

Ã
lnV0 − lnK +

¡
r − δ + 1

2
(β − 1)σ2

¢
T

σ
√
T

!

= β (lnV0 − lnK) + β

µ
r − δ +

1

2
(β − 1)σ2

¶
T
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dKβ =
lnV − lnK +

¡
r − δ + σ2

¡
β − 1

2

¢¢
T

σ
√
T

∂dKβ
∂V

=
1

V σ
√
T

∂dKβ
∂K

=
1

Kσ
√
T

∂dKβ
∂T

= − lnV − lnK
2σT

3
2

+

¡
r − δ + σ2

¡
β − 1

2

¢¢
2σ
√
T

=
− lnV + lnK + ¡r − δ + σ2

¡
β − 1

2

¢¢
T

2σT
3
2

Furthermore

∂N (dKβ)

∂V
=

∂dKβ
∂V

n (dKβ)

=
n (dK0)

V σ
√
T

µ
V

K

¶−β
e−β(r−δ+

1
2

(β−1)σ2)T

=
1

V σ
√
T

µ
V

K

¶−β
exp−

µ
β

µ
r − δ + 1

2
(β − 1)σ2

¶
T +

1

2
d2
K0

¶
Now for V < K we can attack the time partial of the Þnite reversible,

immediately subtracting the time partial of the Black Scholes

∂Call (V,K, T )

∂T
= δV e−δTN (dK1)− rXe−rTN (dK0)
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∂ (R (T )−X)
∂T

− ∂Call (V,K,T )
∂T

= 10.


−Xe−rTn (−dK0)

∂−dK0

∂T

−O (∞)n (−dKa) ∂−dKa∂T

S (∞)n (dKb) ∂dKb∂T

V e−δTn (dK1)
∂dK1

∂T



= n (dK0) e
−rT


−K δ

r

−K b−1
a(b−a)

K a−1
b(b−a)

K

 .


∂dK0

∂T
∂dK0

∂T
+ 1

2
√
T
aσ

∂dK0

∂T
+ 1

2
√
T
bσ

∂dK0

∂T
+ 1

2
√
T
σ


= n (dK0) e

−rT ∂dK0

∂T
K

·
−δ
r
− b− 1
a (b− a) +

a− 1
b (b− a) + 1 = 0

¸
+

1

2
√
T
σn (dK0) e

−rTK
·−b+ 1 + a− 1 + b− a

b− a = 0

¸
= 0!

so the formula for the reversible is indeed the integral of the Black Scholes
continuum of options!

1 +
a− 1
b (b− a) =

δ

r
+

b− 1
a (b− a)

δ

r
= 1 +

a− 1
b (b− a) −

b− 1
a (b− a)

=
ab (b− a) + a (a− 1)− b (b− 1)

ab (b− a)
δ

r
=

1 + ab− a− b
ab
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.5 Junk

suspend

.6 Costly reversion

If we wish to value an option which allows us to enjoy the higher of a variable
or Þxed asset return the situation can be represented either in current value
or ßow terms.

.6.1 Value representation

Suppose the project with stochastic value V and stochastic current cashßow
δV can be activated or opened at any time and subsequently de�activated
or closed at any time. Opening the project is done by investing X (i.e. V
can be called for X), gaining further rights to de�activate or shut the project
later at any time retrieving X (i.e. V can be put back for X < X and
similarly shutting gains a right to subsequently re�open). When the former
happens, the activation option together with the activation exercise amount
are exchanged for the project value plus the de�activation option, when the
latter happens the deactivation option and the current project value are
exchanged for the deactivation proceeds plus the activation option.

.6.2 Flow representation

Alternatively the situation can be thought of in terms of ßows. The reversible
option gives its holder the right to enjoy the maximum of two ßows; one
stochastic δV and the other Þxed rX subject to positive activation and de�
activation costs.
Equivalently, using Dixit�s notation (Dixit (1989) [4]), the opening and

closing costs can be thought of as a premium k and discount l to a capitalised
perpetuity cost rate rX on the base investmentX where the risk free rate r is
used as the opportunity cost of capital (Dixit uses ω

ρ
for X; a perpetual ßow

of ω capitalised at a rate of ρ). This is equivalent to saying that the maximum
of cashßows rX (on the base investment X) or δV (on the stochastic value
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V ) can be enjoyed subject to non�negative switching costs k, l9.

X = X + k ≥ X
X = X − l ≤ X

α ≡ X/X = X−l
X+k

≤ 1

The ratio α of the two exercise amounts will be used to determine the bound-
ary conditions.
suspend

a > 1, b < 0

ab =
−r
1
2
σ2
,

a+ b = −r − δ −
1
2
σ2

1
2
σ2

a+ b− ab− 1 =
δ

1
2
σ2

9Note that we also require that X ≥ 0 or that l ≤ X.
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