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Abstract 

We analyze multi-period harvest problems for a renewable resource under biological uncertainty 

when harvesting is size-dependant. First, we show that the decision to harvest can be modeled as 

a real option and we derive analytical expressions for the value of the resource stock and the 

mean time between harvests, with and without uncertainty. We then illustrate numerically how 

uncertainty affects the decision to harvest: when uncertainty increases from zero, the amount 

harvested and the stock biomass at harvest first increase, and then decrease because of the risk of 

extinction when uncertainty is high enough. This paper is a first step towards defining sustainable 

harvesting rules under uncertainty.  



 

 1 

I. Introduction 

In the analysis of harvesting decisions under uncertainty for renewable resources, it is important 

to distinguish between the case where a resource is harvested at fixed time intervals, and the case 

where it is harvested when it reaches a certain size. This distinction can be linked to the 

difference between age-dependent and size dependent stochastic growth. As emphasized by 

Clarke and Reed (1989) and Reed and Clark (1990), age-dependent growth models are more 

appropriate for husbanded biological assets (such as livestock or cultivated trees), because of the 

more limited impact of environmental factors. By contrast, for more wild resources, such as 

undisturbed forests, wildlife, and natural fish or shellfish populations, the size of a resource (its 

biomass) is likely to be better represented by density–dependent growth models.  

While the analysis of density–dependent growth models in continuous time has received 

some attention (e.g., see Reed and Clark 1990; Reed 1993; Li 1998), the focus in the literature 

has mostly been on the single harvest case, probably because of the complexity of analyzing on-

going harvests. An exception is Reed and Clark (1990), who derive optimal harvest rules for 

biological assets with stochastic growth when the price of the resource follows a geometric 

Brownian motion (GBM). Their work is an important step towards making stopping-rule 

methods more useful for practical resource issues. Their formulation, however, ignores harvest 

costs and assumes that the totality of the resource is harvested; it is thus inappropriate for wildlife 

or fisheries. In addition, Reed and Clark’s assumption that the price of the resource follows a 

GBM independent from the stochastic evolution of the “size” of the resource is questionable; we 

may in fact expect resource prices to be mean-reverting when there is a possibility of entry by 

other producers or when substitutes are available (in the context of commodities, see for example 

Schwartz, 1997). 
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More recently, Li (1998) analyzes fishery harvesting in the context of a cooperative 

profit-maximizing fleet when the fish stock follows a GBM. His analysis, which relies on real 

options, makes a good case for the need to take into account uncertainty and irreversibility. His 

assumption that fish stock follows a GBM is, however, unrealistic, because it ignores 

environmental carrying capacity. In addition, Li does not explicitly take into account the impact 

of one harvest on future harvests. 

In this paper, we revisit the problem of developing harvest rules for biological assets with 

size-dependent stochastic growth. We focus explicitly on the multi harvest problem and consider 

continuous time models where harvest takes place instantaneously.  This is more realistic than 

assuming a continuous harvest when the harvesting period is small compared to the growing 

season. Continuous time models also permit the analysis of the impact on harvesting of 

biological and economic uncertainty using tools from the theory of real options (Dixit and 

Pindyck 1994). In addition, they typically offer more possibilities of obtaining analytical results 

compared with discrete time models.  

We generalize Li (1998) by considering a more realistic class of diffusion processes for 

the resource biomass and by analyzing the impact of one harvest on all subsequent harvests. We 

also expand Reed and Clarke’s results (1990) by allowing for partial harvest and by taking into 

account harvest costs (both fixed and variable costs). We do not, however, consider stochastic 

resource prices because of the difficulty of analyzing multi-dimensional stopping problems.  

First, we draw a parallel between the management of a fishery and the Faustmann 

problem in forestry. The former is more complicated than the later because we need to choose 

both the stock level at which harvest takes place and the amount harvested. Second, we derive 

and interpret first order necessary conditions. Third, we show that the decision to harvest can be 
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modeled as a real option, with and without uncertainty. We derive analytical expressions for the 

value of the resource stock and the mean time between harvests. We then illustrate numerically 

the complex impact of uncertainty on the harvesting decision: when uncertainty increases from 

zero, the amount harvested and the stock biomass at harvest first increase, and then decrease 

because of the risk of extinction when uncertainty is high enough. 

 This paper is organized as follows. In Section 2, we present a general model of multi-

period harvesting with size-dependent stochastic growth. In Section 3, we analyze the 

deterministic case to obtain a benchmark for the impact of uncertainty. Section 4 deals with the 

case where the deterministic part of the process for the biomass stock follows Gompertz’s law. 

Dimensionless parameters are identified and we illustrate our analytical results with a numerical 

application. Section 5 summarizes our main results and presents the implication of our analysis. 

 

II. A Model of Multi-Period Harvesting Under Uncertainty 

Consider a renewable natural resource whose biomass X varies stochastically due to 

natural factors (e.g., predators or availability of food). The manager of this resource needs to 

decide when harvest should take place and how much should be harvested. We assume that X 

varies randomly according to the diffusion process: 

 ( )dX Xg X dt Xdzσ= +  (1) 

In the above, dz is an increment of a standard Wiener process (Dixit and Pindyck); and g(z) is 

differentiable, decreasing, and g(0)>0. We thus have compensatory density-dependent growth. 

This class of processes has been widely used in population biology (for fisheries, see Clark 

1990), and it includes popular models such as the logistic and Gompertz laws. As mentioned in 

the introduction, this formulation where age does not intervene specifically in modeling the 
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biological growth process should be useful for developing harvesting rules for natural 

populations of fish or for untended forest stands (Reed and Clarke, 1990). 

 We assume that the harvest of X can take place instantly. We also suppose that the 

resource manager is risk neutral and wants to maximize the expected value of the stream of 

discounted rents from successive harvests: 

 
1

0 0
{ , } 1

( ; ) ( , ) | , 1, (0) ,n

i i i

T
n n n n n

H X n
V X Max H X e X X H n X Xρρ ε π

− +∞
=

+∞
−− + −

=

 
= = − ≥ =   

∑  (2) 

subject to Equation (1) for the evolution of X. In the above, ε is the expectation operator; nX −  and 

nX +  are respectively the stocks of biomass just before and just after harvest n; for n>1, Tn is the 

random stopping time at which X reaches nX −  for the first time since harvest n-1; T1 is the 

random stopping time at which X reaches 1X −  for the first time given that X(0)=X0; finally, Hn, 

n≥1, is the amount of biomass harvested during harvest n. V(X0;ρ) designates the value of the 

resource when its biomass is X0 and when the resource manager’s discount rate is ρ.i 

 As emphasized in Li (1998), it is fruitful to emphasize the parallel between harvesting 

and investment decisions. First, each is (at least partly) irreversible: the harvested stock cannot 

usually be returned to its habitat, nor can much of a bad investment usually be recovered. 

Second, each of these decisions has to be made under uncertainty; for harvesting decisions, 

uncertainty can be due to in or out migrations, random encroachment from outsiders, or more 

generally to unforeseen or unpredictable environmental changes. Finally, both the decision to 

invest and the decision to harvest can be delayed if the conditions are not right. The manager of a 

renewable natural resource can thus be seen as holding an option to harvest, which can be 

exercised if the conditions are right. Using concepts from the theory of real options, we thus 
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know that, between two successive harvests, V(X;ρ) verifies the Bellman equation (Dixit and 

Pindyck): 

 
2 2

( ; ) ( ) ( ; ) ( ; ).
2X XX
XV X Xg X V X V Xσρ ρ ρ ρ= +  (3) 

In financial terms, this equation equalizes the return on the resource asset (left side) with its 

expected capital gains (right side) during the time where it is optimal to wait for the stock of 

renewable resources to be replenished. Given our assumptions on the process followed by X, we 

should have V(0)=0 and V’(0)>0. V(X0) can thus also be interpreted as the net value of the option 

to harvest the resource when the resource stock is X0. Moreover, when this option is exercised 

and only part of the biomass is harvested, the resource manager gets a similar option for the new 

value of the biomass.ii 

For H given, we need the continuity and smooth-pasting conditions (Dixit and Pindyck) 

to solve for X*, the biomass value at which the next harvest (of size H) should take place. These 

conditions can be written:iii 

 

* * *

* * *

( ; ) ( ; ) ( , )
( ; ) ( ; ) ( , )

V X V X H H X
dV X dV X H d H X

dX dX dX

ρ ρ π
ρ ρ π

 = − +

 −= +

 (4) 

These conditions are usually interpreted separately, but when we regroup the option terms on the 

left hand-side and take the ratio of the second to the first equation in (4), we obtain an important 

necessary condition verified by X*: 

 

* * *

* * *

( ; ) ( ; ) ( , )

( ; ) ( ; ) ( , )

dV X dV X H d H X
dX dX dX

V X V X H H X

ρ ρ π

ρ ρ π

−−
=

− −
 (5) 
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Equation (5) states that, at the optimum biomass for harvesting H, the rate of change per unit of 

biomass of the net harvest (the right side of (5)) equals the rate of change per unit of biomass of 

the difference in value (before – after harvest) of the renewable resource asset (the left side of 

Equation (5)). It thus balances income from the current harvest with expected discounted income 

from future harvests. 

The resource manager chooses the harvest size H that maximizes expected discounted 

profits, taking into account not only revenues from the next harvest but also the impact of the 

next harvest on all future harvests. Using dynamic programming, we can rewrite (2) as: 

 ( )( )1( )( ; ) ( , *) ( * ; )T X
H

V X Max e H X V X Hρρ ε π ρ−= + −  (6) 

We can see clear similarities with the Faustmann problem in forestry (also see Reed and Clarke, 

1990), although our problem here is more complex because not all the biomass is harvested and 

we allow for biological uncertainty. Harvest will thus be constant, but it will occur at random 

times determined by the first time that X reaches X* after a harvest.iv Hence, the resource 

manager’s objective can be simplified to: 

 ( ) ( )1 0( )* *
0

1
( ; ) ( , ) 1T X n T

H n
V X Max H X e eρ ρρ π ε ε

+∞
− −

=

  
= +      

∑  (7) 

We use the Markov property of X (Karlin and Taylor) to separate the expected value of 1 0( )T Xe ρ−  

and the expected value of *n Te ρ−  in (7). Figure 1 illustrates the biomass stock dynamics and the 

harvest decisions. 

Let us now show that ( )
*

*
*

( ; )
( ; )

n T V X H ne
V X n

ρ ρε
ρ

− −= . Let ( )( ) abn T
n sG X e ρε −= , where Tab 

is the minimum time at which the biomass stock reaches either a>0 or b>a, starting from Xs with 
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a < Xs < b. From Karlin and Taylor (pages 202-203), Gn verifies the following equation and 

boundary conditions: 

 

2 2

''( ) ( ) '( ) ( ) 0
2

( ) 1,  ( ) 1

X G X Xh X G X n G X

G a G b

σ ρ


+ − =

 = =

 ( 8) 

This is just our Bellman Equation (3) with nρ instead of ρ. Let F1(X) be a solution of ( 8) such that 

F1(0)=0 and F1
’(0)>0. We know (see Appendix A) that there exists another solution of ( 8), 

denoted F2(X), such that 20
lim ( )

X
F X

→ +
= ∞ . F1(X) is thus proportional to V(X,ρ). Since F2(X) is 

clearly independent from F1(X), we have: 

 
1 1 2 2

2 2 1 1
1 2

1 2 1 2 1 2 1 2

( ) ( ) ( )
,( ) ( *) ( *) ( ),

( *) ( ) ( ) ( *) ( *) ( ) ( ) ( *)

G X A F X A F X
F a F X F X F aA A

F X F a F a F X F X F a F a F X

= +
 − − = = − −

 ( 9) 

where we have substituted X* for b. Let us now decrease a towards 0 so that T* becomes the first 

time that X reaches X*. Indeed, it can be shown that X cannot reach 0 starting from X(0)>0 if σ is 

small enough (if 2 2 ln( )Kσ κ≤ ; see Cox, Ingersoll, and Ross 1985). Since F1(a)=0 and 

20
lim ( )

X
F X

→ +
= ∞ , we get that: 1 20 0

1

1lim ,  lim 0.
( *)a a

A A
F X→ + → +

= =  Hence, 
( ; )

( )
( *; )

s
n s

V X nG X
V X n

ρ
ρ

=  and:  

 ( ) ( )1 0
*

( ) *0
* *

( ; ) ( ; ), ,
( ; ) ( ; )

T X n TV X V X H ne e
V X V X n

ρ ρρ ρε ε
ρ ρ

− − −= =  ( 10) 

since the biomass value just after harvest is X*-H. From ( 10) we see that, when harvest depends 

on biological size, the discount factor for future harvest “n” can be interpreted as the ratio of the 

value of the discounted net present value of the biomass just after harvest divided by the 

discounted net present value of the biomass just before harvest, both with an interest rate equal to 

n times the resource manager ‘s interest rate. 
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The resource manager’s objective can thus be rewritten: 

 * 0
0

1

( ; ) ( * ; )( ; ) ( , ) 1
( *; ) ( *; )H n

V X V X H nV X Max H X
V X V X n

ρ ρρ π
ρ ρ

+∞

=

  −= +      
∑  (11) 

 The corresponding necessary first conditions for H such that 0<H<X* are: 

 
1 1

1 ( * ; ) 1 ( * ; )1 1 0.
( *; ) ( *; ) ( *; ) ( *; )n n

d V X H n d V X H n
dH V X V X n dH V X V X n

π ρ ρπ
ρ ρ ρ ρ

+∞ +∞

= =

    − −+ + + =            
∑ ∑ ( 12) 

Equation ( 12) balances the present value of a marginal change in harvest size (1st term on the left 

hand-side), and the present value of a change in the interval between consecutive harvests (2nd 

term on the left hand-side), for all future harvests.  

 

III. The Deterministic Case 

It is useful to analyze the deterministic case if only to get a benchmark for the impact of 

uncertainty. In this case, in addition to finding the biomass level (X*) at which harvest should 

take place, the resource manager must also decide how much should be harvested (H in our 

notation). Here, we allow for a more general growth function than in the stochastic case. We 

assume that the biomass changes according to: 

  ( ) ,dX f X dt=  (13) 

We require f to be strictly concave, with f(0)=0, f’(0)>0 and f(K)=0, where K is the 

environmental carrying capacity.  

As in the Faustmann problem, the resource manager faces a similar problem harvest after 

harvest. Hence, if X0 designates the initial biomass, the objective of the resource manager is to 

find H and X* that maximize V(X0;ρ): 
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 1 *
0

, * 0
( ; ) ( , ) ,T nT

H X n
V X Max e H X eρ ρρ π

+∞
− −

=

 
=    

∑  (14) 

subject to (13), with 0<H<X*. In the above, T1 is the time needed for the biomass to increase 

from X0 to X (T1=0 if X0>X*) and T is the time between successive harvests. After simplification, 

the summation in (14) can be replaced with 1
1 Te ρ−−

. Moreover, integrating (13), we find: 

 
0

*

1

*

 and .
( ) ( )

X X

X X H

dy dyT T
f y f y

−

= =∫ ∫  ( 15) 

Since the approach described in the previous section is valid for all levels of uncertainty, 

it is also valid at the limit when uncertainty goes to zero. Let us prove, however, that the option 

approach is similar to the conventional approach. 

In the conventional approach, the first order necessary condition with respect to X is 

given by: 

 1 .
( ) ( )1

T

T

eX
f X f X He

ρ

ρ

π
ρ

π

∂
 ∂ = − −−  

 ( 16) 

We also know that V(.) verifies the Bellman equation: 

 ( ; ) ( ) '( ; ),V X f X V Xρ ρ ρ=  ( 17) 

so that: 

 ( ; ) exp
( )

X
dyV X

f y
ρ ρ

 
 =
  

∫  ( 18) 

A multiplicative constant is needed to fully determine ( 18).v As in the stochastic case, the 

discount term nTe ρ− , n>0 integer, can be expressed as: 
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exp
( ) ( ; )exp .

( ) ( ; )
exp

( )

X

X
n T

X H
X H

dyn
f ydy V X ne n

f y V X H ndyn
f y

ρ

ρ
ρρ

ρ
ρ

−
−

−

 
 −
     = − = =

  −    −
  

∫
∫

∫
 ( 19) 

From ( 18) and ( 15), we derive: 

 ( ; ) ( ; ) exp 1 ,
( )

X H
TdyV X V X H e

f y
ρρ ρ ρ

− 
   − − = − −   

∫  ( 20) 

and after some algebra: 

 ( ; ) ( ; ) 1exp .
( ) ( ) ( )

X H TV X V X H dy e
X X f y f X f X H

ρρ ρ ρ ρ
−   ∂ ∂ −  − = −  ∂ ∂ −  
∫  ( 21) 

Taking the ratio of ( 21) and ( 20), we see that the right hand-side of ( 16) equals the right hand-side 

of (5), so the first order condition with respect to X is equivalent to ( 16). We could then view X* 

as a function of H as in the stochastic case. Writing the first order condition with respect to H 

would give ( 12) again.  

This completes the parallel between the deterministic and the stochastic cases. It shows 

that we can define an option term under certainty. The deterministic option term can be seen as a 

degenerate case of the stochastic option term. Its value is equal to the net present revenues 

obtained from harvesting the resource. 
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IV. A Special Case 

Additional assumptions 

To obtain further results, we need to be more specific about the evolution of stock of biomass 

and the profit function. In this section, we assume that the deterministic part of the biomass 

process follows Gompertz’s law, i.e. that: 

 ,KdX rXLn dt Xdz
X

σ = +  
 ( 22) 

where σ=0 in the deterministic case. This is a convenient formulation because r, K, and σ can be 

estimated by maximum likelihood. In addition, it can be shown that X(t) given X(0)=X0 is 

lognormally distributed with parameters 
2 2

0

2 2
rtX

Ln e LnK
K r r

σ σ−   + + −    
 and 

2
21

2

rte
r

σ
−− , 

which are respectively the mean and the variance of the normal distribution followed by LnX(t) 

conditional on LnX0. 

To keep out formulation as simple as possible, we also suppose that: 

• As in the Schaefer model, harvest H is proportional to both the stock of biomass X and 

harvest effort E: 

 .HE
qX

=  (23) 

In the above, q is a positive constant.  

• All of the harvested biomass can be sold at a fixed price p. 

• Variable harvest costs are proportional to harvest effort, E, and there are non-zero fixed 

harvest costs, cF. Net profits π = p H - cV E - cF from harvesting a quantity H when the resource 

biomass has size X can thus be written: 
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 1( , ) .V
F

cH X pH HX c
q

π −= − −  (24) 

In (24), cV is the per unit effort cost. 

It is convenient to introduce the dimensionless variables: 

 *  and ,X Hz h
K K

= =  ( 25) 

and the dimensionless parameters: 

 
2

, ,  ,  and .V Fc cd f
r r qpK pK
ρ σν η= = = =  ( 26) 

In the above, ν is the ratio of the discount rate to a measure of how fast X reverts to K; η 

characterizes the magnitude of uncertainty; d represents dimensionless variable costs; and f is 

dimensionless fixed costs. 

The profit function then becomes: 

 1( , ) ,h z h dhz fπ −= − −  ( 27) 

if we assume, without loss of generality, that pK=1.  

 

Deterministic case 

With these assumptions, the deterministic option term (Equation ( 18)) is: 

 0( ; ) ,KV X c Ln
X

ν

ρ
−  =     

 ( 28) 

where c0>0 is a constant.vi From this expression, we see that the option term is well defined only 

for X≥K. When X≥K, the biomass is decreasing so it is best to never harvest, if costs are too high, 

or to harvest immediately. In the later case: 

 ( ; ) ( * ; ) ( * , ).V X V X H X X H Xρ ρ π= − + − +  ( 29) 
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The time interval between consecutive harvests is: 

 1 ( )* .
( )

Ln z hT Ln
r Ln z

 −=  
 

 ( 30) 

Moreover, the two necessary first order conditions ((5) and ( 12)) become: 

 

1 1

1

( )( ( )) ( ( ))
( )( ( )) ( ( ))

( ( )) ( )
( )( ( )) ( ( ))

z h Ln z z Ln z h hd
z h h z d fzLn z Ln z h

h Ln z h h z d
z h h z d fzLn z Ln z h

ν ν

ν ν

ν

ν ν

ν

ν

− − − −

− −

− −

− −

 − − − − − = − − −− − − −


− − − = − − −− − − −

 ( 31) 

The dimensionless deterministic problem is thus completely determined by three dimensionless 

parameters: ν, d, and f. 

 

Stochastic case 

The stochastic case is slightly more complex. To solve (3), we perform the change of variables 

22

2 2
r KY Ln

r X
σ

σ
  = −    

 and obtain Kummer’s equation (see Slater 1960). Since we want 

V(0;ρ)=0 and V’(0;ρ)>0, the solution is:  

 
22

0 2

1( ; ) , , ,
2 2 2

r KV X V Ln
r X r

ρ σρ ψ
σ

    = −      
 ( 32) 

where ψ is the confluent hypergeometric function of the second kind and V0 is a positive 

constant.vii It disappears in (5) so it is not needed to calculate X* and H, which have to be 

obtained numerically. Equation (5) becomes: 

 
( ) ( )
( ) ( )
' , , ' , , 1 ,

, , , , ( )
U z U z h hd
U z U z h z h z d fz

ν η ν η
ν η ν η

− −
=

− − − −
 ( 33) 
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where 
21 1( , , ) , , ( )

2 2 2
U z Ln zν ην η ψ

η

  =  +     
,  and ( , , )'( , , ) dU zU z

dz
ν ην η = . Using results in 

Slater (1960), it is easy to show that: 
2( ) 3 12' 1, , ( )

2 2 2

Ln zdUU Ln z
dz z

η
ν ν ηψ
η η

+   = = −  + +     
. 

With this notation, the resource manager’s objective becomes: 

 0

1

( , , ) ( , , )1 ,
( , , ) ( , , )h n

U zd U n z hMax h h f
z U z U n z

ν η ν η
ν η ν η

+∞

=

  −  − − +         
∑  ( 34) 

where z is an implicit function of h based on ( 33). 

Since the time between successive harvests if stochastic, it is useful to obtain an 

expression for its expected time. From Karlin and Taylor (1981), we know that if Y follows a 

diffusion process with infinitesimal mean µ(y) and infinitesimal variance σ2(y), then for a<y0<b, 

the expected time (denoted by v(y0)) for Y to reach either bL or bU> bL starting from y0 (bL < y0 < 

bU) verifies: 

 

2 ( ) ''( ) ( ) '( ) 1 0
2

( ) ( ) 0L U

y v y y v y

v b v b

σ µ
+ + =


 = =

 ( 35) 

We solve this equation for σ(y)=σy and µ(y)=ry(Ln(K)-Ln(y)), as in ( 22), with 0<bL<bU. We 

then take the limit of v(y), y given, as bL goes to zero, and replace bU with X*. We find that the 

expected time for X to reach X* starting from X*-H is: 

 
2

2

1

21 3( *) 2 (1, , ) ,
2

z
z

z

E T z z e dz
r

φ π = +  ∫  ( 36) 
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where ( ) ( )1
1 1 and 22 2

z Ln z h z Ln zη η
η η

   = − + = +      
.viii Details of the calculations are 

provided in Appendix B. 

 

Numerical illustration. 

For the numerical application, we consider the following values: d=0.2, f=0.2, ν=0.1, and η=0.1. 

Using Mathcad on a personal computer, we solve the system of equations ( 31) for the 

deterministic problem. For the stochastic problem, we solve equation ( 33) to get z as a value of h, 

and then maximize ( 34) using 20 terms in the summation. Results obtained to-date are 

preliminary and incomplete.ix They are shown in Table 1. 

 We see that as uncertainty increases (i.e., as η increases), the optimal harvest increases 

and then decreases. The same holds for the optimal biomass at which harvest should take place. 

In addition, as uncertainty increases, the time between consecutive harvests decreases, so harvest 

takes place more frequently. The explanation is that when uncertainty increases from zero, it 

allows the stock of biomass to move back more quickly to K, the biomass’ environmental 

carrying capacity, initially without a risk of extinction.x When uncertainty is large enough, 

however, the stock of biomass can fall to zero thus depriving the resource manager from the 

revenues of all future harvests. The resource manager thus reduces harvest size H, but to 

compensate, (s)he also reduces X*, the stock of biomass at which harvest takes place. Since X* 

is reduced more than H, T* decreases. 

These result differs from Li (1998) who found that an increase in uncertainty lead to a 

decrease in harvest because he assumed that the stock of biomass follows a GBM and ignored the 

impact of one harvest on all future harvests.  
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V. Conclusions 

In this paper, we have focused on multi-period harvest problems for a renewable resource 

under biological uncertainty when harvesting is size-dependant and thus does not take place at 

fixed dates. Although this class of problem has attracted the attention of researchers because of 

its very important policy implications, much remains to be done in order to incorporate more real 

world features in harvesting decisions. This paper is a first step towards designing more realistic, 

sustainable harvest rules. 

This paper makes several contributions and generalizes the existing literature. First, it 

shows how to incorporate biological uncertainty in a manageable harvesting rule. We simplify 

the objective function of the resource manager and derive first order necessary conditions. 

Second, we make a link with real options theory and show how the decision to harvest can be 

seen as a real option. For Gompertz’s law, we obtain analytical expressions for the value of the 

stock of resource and the mean time between harvests. Third, our numerical application 

(incomplete) illustrates the complex impact of uncertainty on the decision to harvest. 

Planned additions to this paper include analyzing how low levels of uncertainty affect the 

harvest decision, using perturbation techniques (e.g., see Nayfeh 1981) as recommended by 

Ludwig (1979), and performing a sensitivity analysis of the results with respect to the resource 

growth rate and the level of biological uncertainty. 

Future research will consider uncertainty in the parameters describing the evolution of the 

stock of biomass as well as rules where the decision to harvest has to be taken well before 

harvest (as in fisheries with quota systems for example). 
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Equation Section  1Appendix A 

In this appendix, we prove the following result:  

Lemma. If Equation (3) has a solution F1(X) such that F1(X)=0 and '(0) 0F > , then Equation (3) 

has another solution F2(X) such that 
0

lim ( )
X

F X
→ +

= ∞ . 

To find another solution of (3), we consider F2(x)=f(x).F1(x)+c.F1(x), where c is a convenient 

constant introduced to simplify the expression of F2(x). Since 1 '(0) 0F >  and 1 'F  is continuous, 

and since h is strictly decreasing with h(0)>0, we can find x0>0 such that 

0 1 0(0, ),  ( ) 0 and ( ) 0x x F x h x∀ ∈ > > . We solve for f(x) using the Bellman equation (3). After 

simplifications, we obtain: 

 

0

0 2

2 2 1 2
1

2 ( )exp
( ) ( ) ,

( )

x

x
z

x

h y dy
y

F x c F x dz
F z

σ
 
   =

∫
∫  (A1) 

where c2 is a positive constant. We know that, since h is decreasing and h(x0)>0, 

0 0(0, ),  ( ) ( )y x h y h x∀ ∈ ≥ , so 0(0, ) :z x∀ ∈  

 
0 0 0 0

2 2
2 ( ) 2 ( )

0
02 2

2 ( )2 ( )exp exp
x x h x h x

z z

h xh y dydy x z
y y

σ σ

σ σ
−   

   ≥ =
      

∫ ∫  (A2) 

Moreover, a Taylor expansion with Lagrange remainder (e.g., see Sprecher 1970) of F1 in the 

neighborhood of 0+ gives (we use that F1(0)=0): 

 
''

' 2 1
0 1 1

( )
(0, ), (0, ), ( ) (0)

2
Fz x z F z zF z ζξ∀ ∈ ∃ ∈ = +  (A3) 

Since ''
1F  is continuous on [0,x0], it is bounded: ''

0 10, (0, ), ( )B x F Bξ ζ∃ > ∀ ∈ < . Then: 

 
2

2 2 ' 2 ' 2 2
0 1 1 1 0 0 3(0, ), ( ) (0) (0) .

4
Bz x F z z F F Bx x z c

 
∀ ∈ < + + ≡ 

 
 (A4) 
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Using (A2) and (A4) into (A1), we find: 

 
00 0 0 0

2 2 2 2
2 ( ) 2 ( ) 2 ( ) 2 ( )

2 1 1
2

2 0 1 4 0 1
3

( ) ( ) ( )
xh x h x h x h x

x

cF x x F x z dz c x x F x
c

σ σ σ σ
− − − − − − 

≥ = −   ∫  (A5) 

In the above, c4>0 is just a constant. Since F1(x)=O(x) in the neighborhood of 0: 

 
0 0

2 2
2 ( ) 2 ( )

1 1

4 0 10
lim ( )

h x h x

x
c x x F xσ σ

− − − −

→ +

 
− = +∞   

 (A6) 

and thus 20
lim ( )
x

F x
→ +

= +∞ , which proves our lemma. 

 

Equation Section  2Appendix B 

In this appendix, we derive the expression of the expected time between consecutive harvests. 

Combining Equations ( 22) and ( 35), we have to solve: 

 

2 2

''( ) '( ) 1 0
2

( ) ( ) 0

x Kv x rxLn v x
x

v a v b

σ  + + =   
 = =

 (B1) 

First, we change variables. Let 
2

,  ( ) ( ).
2

y Lnx LnK f y v x
r

σ= − + =  Then the equation in (B1) 

becomes: 

 
2

''( ) '( ) 1 0
2

f y ryf xσ − + =  (B2) 

To find a particular solution, we try a series expansion 
0

( ) n
P nf y a y

+∞

= ∑  and get: 
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2

2 2
2

1 0

1

1 1 1 3( ) 2 (1, , ) ,
3 2( 1)
2

r y
p

P
p

p

rf y y z z dz
r rp

σ

φ
σ

+∞

=

−

− − = =    −  

∑ ∫  (B3) 

where φ(a,c,z) is the confluent hypergeometric function of the first kind (Slater 1960). A general 

solution of the homogeneous equation associated with (B2) is: 

 
2

2

2

0 1

2

( ) ,
y r z

H

aLn
K r

f y C e dz Cσ

σ  +  

= +∫  (B4) 

where C0 and C1 are two constants. The sum of fH and fP gives a general solution of (B2) and thus 

also of (B1) by reverting to v(x).  

 
2

2

2
0

2
1 0 2

32 (1, , )
21 3 12 (1, , ) ,  ,

2

B

A
B r z

A

A

z z dz
rC z z dz C

r r
e dzσ

φ

φ
σ

−= =
∫

∫
∫

 (B5) 

where 
2 2

2 2,  
2 2

r a r bA Ln B Ln
K r K r

σ σ
σ σ

      = + = +            
. Taking the limit when a goes to 0+ 

and using that ( ) 1( , , ) 1 ( ) ,  as ,
( )

z a cca c z e z O z
a z

φ −Γ  = + → +∞ Γ  
 we obtain Equation ( 36). 
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Table 1: Preliminary numerical results 

ηηηη H z rT* 

0.00 0.760 0.820 2.66 

0.12 0.786 0.935 2.66 

0.14 0.802 0.932 2.65 

0.16 0.807 0.923 2.64 

0.18 0.800 0.912 2.58 

0.20 0.779 0.904 2.48 

 

Note: These results were generated with MathCad on a PC. Parameter values are d=0.2, f=0.2, 

ν=0.1, and η=0.1.
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Figure 1: Illustration of the optimal stopping rule for the ongoing-rotation problem. 

 

Note: Three harvests are shown. As soon as the stock of biomass reaches X*, harvest takes place 

and the stock of biomass goes down to X*-H. The stock of biomass evolves stochastically 

between 0 and X*. On Figure 1, the stock of biomass and the harvest are both normalized by K, 

which is the environmental carrying capacity of the renewable resource. 
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i The notation V(X0;r) emphasizes the value of the discount rate for a reason that will be made clear shortly. 

ii Unless the resource cannot regenerate itself when it is harvested completely (e.g., the case of fisheries). 

iii We omit writing X*(H) for simplicity but here X* depends on H. 

iv The first harvest may differ from all the others if the initial stock of biomass X0 is greater than X* in which case 

T1=0; for simplicity, we assume that X0 ≤ X*. 

v We find it by jointly solving for it and X* using (4). 

vi It can be determined jointly with X* by solving (4). 

vii From Slater (1960, Ψ(a,b,z)= 1(1 ) ( 1)
( , , ) ( , , ) (1 , 2 , )

(1 ) ( )
bb ba b z a b z x a b b z

a b a
−Γ − Γ −

Ψ = Φ + Φ + − −
Γ + − Γ

, where 

0

( )
( , , ) ,  ( ) ( 1)...( 1)

( ) !

n
n

n
nn

a z
a b z c c c c n

b n

+∞

=

Φ = = + + −∑  is the confluent hypergeometric function of the first kind and Γ is 

the Gamma function. 

viii φ(a,c,y) is the confluent hypergeometric function of the first kind. See Slater, 1960. 

ix The results shown are preliminary because ratios of discount terms are made up of two terms that increase with n. 

For n large enough, we should use asymptotic equivalents. However, I believe that N=20 gives a qualitatively correct 

indication of the impact of uncertainty on h, z, and T*. 

x Feller, cited in Cox, Ingersoll, and Ross (1985) shows that X cannot reach the origin if 2κ ln(K)≥σ2. 


