
 
 

“RISK SHARING AND SUPPLIER SWITCHING CONTRACTS” 
 
 
 
 
 
 

BARDIA   KAMRAD 
 

AKHTAR   SIDDIQUE 
 
 

(This Version: May, 2001) 
 
 
 
 

Georgetown University 
 McDonough School of Business 

Washington, D.C. 20057 
 

Phone: (202) 687-4112,  
Fax: (202) 687-4031 

 
KAMRADB@MSB.EDU 
SIDDIQUA@MSB.EDU 

 
 
 
 
 
 
 

5TH ANNUAL INTERNATIONAL CONFERNCE ON REAL OPTIONS 
UCLA, Los Angeles 
July 11 – 14, 2001 

 
 
 
  
 
We gratefully acknowledge the support from the Capital Markets Research Center at the 
McDonough School of Business at Georgetown University. 

 

 

 

 

 



 1

 

 

 

 

ABSTRACT 
 
Using a real options framework, we value and analyze supply contracts characterized by 
exchange rate uncertainty, order quantity flexibility and supplier-switching options. Analogous to 
the portfolio optimization framework, our framework analyzes the incentives that the suppliers 
face in accepting order level flexibility. The resulting tradeoff (for the supplier) is a balance 
between greater volatility in the supply schedule and the prices that the producer pays. In this 
context, we explicitly model how flexibility can be beneficial to both the producer and multiple 
suppliers. In other words, how a contract with quantity flexibility can be Pareto optimal, with 
neither the producer nor the suppliers being worse off as compared to inflexible contracts. This 
implies that option to switch between suppliers is not costless, thus resulting in the producer 
having to compensate suppliers in a manner consistent with a profit maximization objective for 
all parties. 



 2

I.  INTRODUCTION 
 

Recent trends in international operations have made sourcing and purchasing decisions powerful 

elements in the competitiveness of a multinational enterprise. In a global operating environment, 

multiple sourcing and global procurement have dramatically altered the traditional views of 

manufacturing operations. Multinational enterprises have also become aware that sourcing and 

procurement decisions impact other corporate functions. At the same time, multiple sourcing 

across international borders exposes the multinational enterprise to new dimensions of risk since 

the relative operating costs can vary as a result of uncertainties in economic and political factors 

beyond the firm’s control including but not limited to exchange rates, interest rates and taxes.  

With the advent of greater volatility in the exchange rates in recent years, these uncertainties 

have taken on a greater importance. Simultaneously, multiple sourcing (or international sourcing) 

also presents new opportunities that allow the firm to introduce flexibility in its cost structure as 

well as hedge other sources of risk for the firm. For example, with sales or borrowing (requiring 

interest payments) in different countries, a multinational enterprise is exposed to currency risk 

that it could hedge with forward contracts in the financial markets. However, with multiple 

sourcing in different countries it could replace the financial hedging with operational hedging. 

Therefore, with multiple sourcing, in addition to the possibility of lower costs, designed 

flexibility in supply contracts can be an important component of the competitiveness of a 

multinational enterprise.  

 

Previous studies have developed methodologies for evaluating supply contracts under multiple 

sources of uncertainty as well as analyzed optimal operating policies under exchange rate 

uncertainty. McDonald and Siegel (1985), Dixit (1989) and Pindyck (1991) applied the financial 

option pricing methodology to real assets with discretionary decisions in the presence of 

uncertainty. Kogut and Kulatilaka (1994) applied the real option pricing methodology to value 

the flexibility induced by exchange rate movements. They showed that in the case of two plants 

in two countries, the value of the aggregate investment with an option to switch production 

between plants could be positive even though each investment by itself has negative net present 

value. Huchzermeir and Cohen (1996) also analyze the impact of exchange rate uncertainty on 

profit maximization problem for the manufacturer. Dasu and Li (1997) examined the optimal 

operating policies of a firm with costs of production that vary over time across plants in different 

countries. In a related but different context, Li and Kouvelis (1999) analyze the value of 

flexibility for a manufacturer with multiple suppliers, in light of uncertainty in the cost of raw 

materials, find that risk-sharing can be beneficial. 
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These studies have focused on the profit-maximization problem for the manufacturer in a real-

options setting. However, risk sharing in a flexible supply contract implies that the suppliers also 

make optimal decisions. Otherwise, the suppliers are simply absorbing the risk transferred by the 

manufacturer. To the best of our knowledge, the existing literature has not considered the impact 

of manufacturer’s (or producer’s) decisions on the suppliers. In this study we explicitly 

incorporate the suppliers’ optimization problems, concurrently with that of the producer, in the 

real-option based valuation framework. In other words, we analyze what induces the producer 

and the suppliers to accept flexibility in contracts.   

 

Thus, we explicitly model how flexibility can be beneficial to both the producer and multiple 

suppliers. In other words, how a contract with flexibility can be Pareto optimal, with neither the 

producer nor the suppliers being worse off as compared to inflexible contracts. This implies that 

decisions to switch between suppliers are not costless but result in the manufacturer having to 

compensate suppliers in one form or other. Finally, the exogenous sources of risk can be viewed 

as value drivers for the both producer and the suppliers, and we examine how changes in the 

value drivers affect the profit-maximization problems for the producer as well as the suppliers. 

 

Li and Kouvelis (1999) analyze risk sharing in supply contracts in the presence of uncertainty as 

well. They analyze “time” flexibility as well as “quantity” flexibility. In their setting the 

manufacturer signs a contract with its suppliers for the purchase of a certain amount of a material 

in order to satisfy its customers’ future demand. They assume that deterministic demand D at 

time T is given. Thus, the manufacturer needs to obtain D units of the material from its suppliers 

at or before time T to satisfy the demand. It is assumed that the market price of each unit follows 

a geometric Brownian motion. They specify a model wherein all the demand is met at the very 

end.  

 

Our framework differs from Li and Kouvelis (1999) in several ways. The demand schedule faced 

by the manufacturer is different and their approach is a special case of our approach. In our setup 

the manufacturer has to meet a demand every period. It can be met partly using this period’s 

production. The remainder of this period’s production is carried over as inventory. Additionally, 

inventory carried over from past periods can also satisfy this period’s demand. In this manner, 

the production/inventory policy is similar to Kamrad and Ritchken (1994). 

 

However, the most salient difference between Li and Kouvelis (1999) and previous studies of 

flexible supply contracts and our approach involves the suppliers. Previous studies, including Li 

and Kouvelis (1999) view risk sharing purely from the manufacturer’s perspectives that ignore 

the possibility that suppliers may change their prices in response to manufacturers’ decisions (or 
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market conditions). Our model introduces an approach for risk sharing which is very similar to 

the portfolio optimization problem in finance with a risk/return tradeoff. We effectively view the 

volatility of the supply schedule that an individual supplier faces as risk. The tradeoff that our 

model permits is a tradeoff between volatility of the supply schedule over time versus the prices  

(i.e. the supplier’s revenues) that the manufacturer pays. 

  

Organization of the paper is as follows. In the next section, we set out the assumptions, notation 

and the layout needed as the foundation upon which we develop the models. In section III, we 

develop the valuation models for the manufacturer and the suppliers. These models are a 

sequence of Bellman valuation equations. Since these class models typically do not yield closed 

form solutions, we need to depend upon numerical procedures for results. Section IV presents the 

numerical approach to the models’ solutions. We define a stochastic dynamic program 

superimposed on a multinomial lattice, approximating the stochastic evolution of correlated 

exchange rate processes, and obtain the value maximizing policies for both the producer and the 

suppliers. We use these optimal policies to understand the risk-sharing characteristics of the 

supply contracts. We also rely upon a stylized example to illustrate these results. In this context, 

we establish how much value risk-sharing provides. Using comparative statics, we also examine 

how changes in properties of exchange rates affect the optimal policies and risk sharing. The last 

section presents the conclusion and possible future extensions. 

 

II. ASSUMPTIONS, NOTATION AND THE MODEL 
 

Consider a manufacturing firm producing a finished good item requiring a distinct raw material 

as an input. The firm contemplates entering a contract to furnish this product to a client 

according to a predetermined rate, fixed sales price and delivery schedule. Let 

� �( ) 0,P t t T� define the time t sales price and � �( ) 0,D t t T�  the demand rate over the production 

horizon � �0,T where T depicts the contract's termination time. To meet its demand obligations the 

firm produces at rate q(t) and if needed maintains an inventory of its finished goods. Since 

production and inventory are capacitated, the producer’s production and inventory plan reflects a 

value maximizing operating policy. 

 

Various suppliers located in different countries can supply the required raw material for 

production. In that sense, the firm (producer) has an option to select from a pool of potential 

suppliers over the production horizon,[0,T] . As the medium of payments in most off-shore 

purchasing and supply agreements is typically currency, the risk of fluctuating exchange rates 

while acquiring the needed supplies, is fully borne by the producer. To capture the dynamics of 

this supplier selection process and to reflect on the resulting risk and reward implications for the 
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producer and its' suppliers, an approach analogous to a mean-variance approach to portfolio 

analysis is adopted. In particular, given the pool of potential suppliers, the producer has the 

option to (optimally) create a portfolio of suppliers by separately entering into a supply contract 

with each supplier. 

 

In this context, the portfolio weights, � �( ) , ,Mu t t 0 T� �� � identify a fraction of the total needed 

input as supplied by a particular supplier. The optimal composition of this portfolio at any time, 

given the producer's value maximizing objective, is effectively characterized by two sets of 

constraints: operational and market related. The first set reflects production and inventory 

capacity constraints. The second constraint set affects the portfolio choice as it relates to the cost 

of having the option to revise the portfolio either by switching suppliers or by adjusting the 

weights.1 Since the composition of this portfolio entails a separate contract with each supplier, 

we account for a risk sharing feature so that he upside potential from having a supplier switching 

option is not attained at the expense of downside loss to a particular supplier. Indeed, other 

related factors including sudden shifts in the size of orders also affect this particular aspect of the 

contract between the manufacturer and its suppliers and will be reflected upon contextually. 

 

Let the raw material input rate be defined by ( )I t , with ( )ju t . ( )I t depicting the fraction of the 

input supplied by supplier, j = 1,2, …, M where 0 ( ) 1.0,ju t� �  with  

1
( ) 1.0

M

j
j

u t
�

��                                                                                        (1) 

The output rate, � �� �( ), 0,q q t t T� � , which is precisely the control variable, is taken as an 

adapted positive real valued process. The rate of production is related to the input rate visa vi the 

production function,  

� �� �( )q t I t
�

�                                                                                       (2) 

with 0 1.0�� � . This provides for a convenient characterization of technology in terms of return 

to scale as depicted by � .  When producing at rate ( )q t , the manufacturer incurs a production 

cost defined by � �( )A q t . The producer optimally adjusts � �( ) 0,q t T� in a manner so as to 

maximize the net operating value while meeting its demand obligations. To that end, we assume 

that periodic adjustments to the rate of production are costly, thus resulting in a production 

switching cost which is captured by the function � �( ( ), ( ));  0,q s q t t s T� � � .  Since production is 

capacitated at the maximum feasible rate, q , when necessary the producer may opt to produce 

and stockpile to meet its delivery obligations. Let R(t) define the finished goods inventory at time 

                                                      
1   Note that the extremities of these weights imply switching. 
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� �0,t T� with R as the inventory capacity. The holding cost can be assumed negligible or may be 

charged as an incremental change to the level of inventory, dR(t). Accordingly, let H(R(t)) 

represent the inventory holding cost function.  Given that the demand schedule is known, it 

follows that:   

� �( ) ( ) ( )dR t q t D t dt� �                                                                       (3) 

The supply contract between the producers and the suppliers effectively identifies an order-

purchasing schedule for the parties involved. As remarked earlier, this contract is characterized 

by various risk sharing features so that no particular party's gain is at the expense of the other's 

demise. In this vein, as the producer adjusts its purchase quantities over time in response to 

exchange rate fluctuations,2 the suppliers in turn, impose a penalty as a protective measure 

against unanticipated shifts in purchase quantities. Such shifts are economically interruptive as 

they derail previously planned schedules and due to their inherent ineffectiveness suppliers 

require a corresponding compensation in managing order size variability. 

 

In our modeling approach, this penalty is manifest as an additional surcharge to the producer if 

the quantity change in the periodic order limits exceeds a supplier established critical amount, 

( ), 1,2,...,j t j M� � . Since the change in periodic order quantities depend on the producer's 

demand schedule, the exchange rate dynamics, and the fraction of the total raw material to be 

purchased from each supplier, for analysis purposes � �� �( ),  0,j ju u t t T� � are also taken as an 

adapted positive real valued process with 0 ( ) 1.0ju t� � , where for any � �0,t T� , condition (1) 

holds. 

 

As a preliminary to developing the model, the stochastic evolution of the exchange rates must be 

defined. Let ( ) MZ t �� represent a standard Brownian motion that is a martingale with respect to 

the probability space (�,�,�,�). The filtered probability space (�,�,�,�) is defined over 

� �0,T where the augmented filtration, � = { �t :t�[0,T]}, is right continuous and increasing. Let 

� �( ); 0jX t t � define the spot exchange rate between the producer and supplier j = 1, 2, …, M. 

The sample path of� �( ); 0jX t t �  is posited by the stochastic differential equations: 

� �( ) ( ) ( )j j j j jdX t X t dt dZ t� �� �                                                         (4) 

where 

( ) ( )k l kldZ t dZ t dt�� �                              k l�                                      (5) 

                                                      
2   This essentially implies that the portfolio weights (fraction to be purchased from a particular 
supplier), ( )ju t  are implicitly a function of the exchange rate process involved. Thus, in addition 
to the output rate, ( )q t , we also define ( )ju t as a control variable.   
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For the above processes, the constant drift terms, j�  define the local trend of the process while 

the constant and instantaneous standard deviations, j� characterize the volatility for each (real) 

exchange process. Here, ( )jdZ t  represent an increment to the standard Guass-Weiner process: as 

the exchange rates are assumed correlated, their corresponding instantaneous and constant 

correlation coefficient is given by � .3 We also assume that the constant risk-free rate of interest 

in the supplier’s market is jr , the producer’s is pr , and that there is a futures currency market 

providing an opportunity to hedge the exchange rate risks. To that end, let ( , )j jF X T t�  represent 

the current price (in supplier j’s currency) for delivery of one unit of the producer’s currency at  

 

time T with, ( ,0)j j jF X X�  as the terminal boundary condition. Using Ito’s lemma, it follows 

that4  
( )( )( , ) ( ) pj

j j j
r r T tF X T t X t e � �

� �                                                            (6) 

which is the interest rate parity (IRP) relationship. For the most part, empirical tests of this no-

arbitrage relationship have shown significance. Condition (4) will prove useful in developing the 

models as needed for evaluation of the supply contracts by relating the spot and futures exchange 

rates and the risk free rates of interest.   

 

Toward characterizing the value of the supply contract, V(.) to the producer the cash flows 

accrued must be defined. Let the net cash flow rate be defined by f ( t ) . The various components 

to this cash flow process reflect the revenue arising from meeting the demand schedule, less the 

cost of purchasing, holding, production, switching and periodic order size (change) penalties. 

This latter component to the contract’s overall cost dimension is effectively captured by the 

aforementioned protective measure which imposed by the suppliers in response to the 

manufacturer’s periodic order size changes. To minimize costs, and to ensure a smooth flow of 

the needed input material, the producer changes periodic order levels in response to exchange 

rate fluctuations, where in the most extreme cases this will result in a switch to a different (set 

of) supplier(s). While periodic order level changes are to be anticipated in light of the defined 

dynamics defined, the extent of these changes have  both operational and financial ramifications. 

                                                      
3   From a theoretical perspective, purchasing power parity (PPP) would imply mean reversion in 
the (real) exchange rate behavior. Yet, the notion of what stochastic process exactly depicts real 
exchange rates, remains an open question. Here, we can also accommodate a mean reverting 
depiction in a restricted manner by allowing 

α j =θ( j

j

X X

X

� ) 
where�  defines the mean reversion constant; a parameter (or elastic force) that pulls back the 

jX  to its long run mean value X . 
4   See Ross (1978) 
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To the supplier(s), periodic order level changes imply unnecessary demand variability, resulting 

in operating inefficiencies. To protect against their implicit costs, the suppliers tolerate periodic 

order level changes so long as the change in the level of orders from one period to the next falls 

within a supplier defined “tolerance window”; else, a penalty is charged.  In essence, supplier j , 

j � 1, …, M, requires a penalty charge of magnitude, j� (�j(t)) at time t , if for all � �0,Tt s� �  

and j = 1,…, M;    

( ) ( ) ( ) ( ) ( )j j ju t I t u s I s t�� �  

 

The “tolerance window” or critical threshold, ( )j t� , constrains the producer’s flexibility for the 

obvious reason: larger ( )j t� , j = 1, …, M, imply a smoother and more convenient ordering policy 

for the producer, albeit at the supplier’s expense.  As it will become evident, the penalty costs, 

( ( ))j j t� � help truncate this downside loss to the supplier(s) by constraining the manufacturer’s 

response to a particular realization of the exchange rate at time t. Specifically, ( )j t� are the 

suppliers’ ”physical” reaction to ( )jX t as are ( )ju t to the producer for all � �0,Tt � and 

j=1,2,…,M.  In essence, at equilibrium, the control variables, ( )ju t  and ( )j t� , define and 

account for a particular risk sharing feature of the contract between the producer and the 

supplier(s), respectively.5 Indeed, given the obligatory nature of the producer’s demand schedule 

in terms of the needed raw material and in view of the aforementioned dynamics the producer 

may opt to forgo a switch to a different supplier(s) and retain the current supplier(s) through 

placing next period’s orders, albeit at an additional cost of ( ( ))jj t� � . In so doing, the producer’s 

desired order flexibility will be realized at a corresponding large penalty. This implies that, 

( ( ))
0

( )
j j

j

d t

d t

� �

�

�                                         j = 1, 2, …, M                      (7) 

The producer’s response to the market conditions, uj(t) and the suppliers’ corresponding 

reaction, ( )j t�  define a certain aspect of the risk sharing feature of the contract.  Another risk 

sharing aspect, a more subtle feature, concerns the sales prices as established by the suppliers in 

response to the exchange rates and the manufacturer’s purchase proportions.  We assume that 

supplier established sales prices accommodate quantity discounts but not at the expense of 

nullifying the critical order level change thresholds, � j(t).  Thus, in spite of economic incentives 

                                                      
5   The term equilibrium is used rather loosely.  In the current context, it characterizes a situation 
where the resulting optimal contract value for all the parties involved cannot be improved 
without a loss to another party.  Yet, our approach to establishing such an objective does rely 
upon a game theoretic framework.  Perhaps a more appropriate terminology would be “pareto 
optimal”.  However, the object of our paper is not to define, characterize or prove its existence.  
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offered for volume purchasing, suppliers remain exposed the purchased quantity volatility since 

in reaction to exchange rate uncertainty the producer may change order quantities.  Let 

Cj � �, ,u t� �� � � define the per unit gross margin rate for supplier j at time � �0,Tt �  and 

j=1,…,M .6  With ,  u ���  as the vector of purchase weights and tolerance windows at time t .  In 

light of the aforementioned, the sales price function, ( ,.)jC t  is constrained such that: 

(.)
( )
j

j

C
u t

�

�
 � 0   and   

(.)
( )
j

j

C
t�

�

�
 �  0                  j= 1 ,….M                 (8)  

We are now in a position to define and derive a sequence of interrelated models for evaluating M 

supply contracts, characterizing the agreement between the producer and M suppliers. The 

approach taken requires the construction of a requisite dynamic trading strategy that does not 

allow for riskless opportunities.  As such, this continuous time arbitrage approach to the 

valuation problem results in M+1 Bellman equations formalizing the set of optimal policies that 

maximize the contracts’ values.  The optimal policies for the manufacturer and the suppliers, 

{u*(t), q*(t)} and {C*(t), *( )}t� , respectively, are arrived at through a numerical convergence in 

policy consensus. We proceed in the following manner.  Specifically, conditional on a supplier 

defined set of inputs, an initial optimal solution for the producer is obtained.  This solution is 

then used as an input to the suppliers’ valuation models to obtain a corresponding set of supplier 

optimal policies and contract values.  The process iterates once again in an exact manner, as 

described.  This policy-revision, value-adjustment process continues until a convergence in 

policies is attained.  At such a point, no one party’s contract value can be improved without a 

corresponding loss of value to another party’s contract. 

 

In the following section, we derive the valuation models using a contingent claims framework.  

To that end, let ( , , ; )XV R t q u �
� � � represent the value of the supply contract (to the producer) at 

time [0, ]t T� , given that the current level of exchange rate process is ( ) MX t �
� � , the finished 

goods inventory is, R( t)  and that the current policy in place is {q(t), u(t)}: reflecting the 

production rate and purchase weights, respectively.  The suppliers’ contract value is fully 

characterized by their policies in light of the available market information.  A component of the 

suppliers’ policies reflects (sales) price whose setting, due to competition among the suppliers 

effectively depends on the exchange rates among the suppliers. Given the exchange rate 

process, ( ) , [0, ]MX t t T� �
� �  let, 

( )
( )

( )
j

jk
k

X t
Y t

X t
�            _; , 1,2,...,j k k Mj� �                                           (9) 

                                                      
6    Implicit is the assumption that the suppliers’ fixed costs do not enter the analysis:                                  
 i.e. gross margin= price – variable costs. 
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The above expression (9) defines the exchange rate process between any pair of suppliers.  To 

this end, let � 1( ) M
jY t �

��  represent the time [0, ]t T� vector of exchange rates between supplier j 

and all other suppliers.  That is, 

� �( ) { ( )}j jkY t Y t�         _; , 1,2,...,j k k Mj� �                

Given expression (4), it is well established that ( )jkY t is lognormally distributed.7  Supposing the 

existence of futures currency market for all feasible currency pairs, let ( , )jkjkF Y T t� define the 

current price (in supplier j’s currency) for delivering of a single unit of supplier k’s currency at 

time T with, ( , 0) jkjk jkF Y Y� .  Analogous to equation (6) we have for all ; , 1, 2,..., ,j k j k M� �  

( )( )( , ) ( )jkjk jk
r r T tj kF Y T t Y t e � �

� �                                                        (10) 

In light of the above definitions, let �( , ; , )j j j jW Y t C � ��  represent the time [0, ]t T� value of the 

contract for supplier j given that the supplier exchange rate vector is � 1( ) M
jY t �

�� , the sales 

price is set at ( )jC t and the critical order level change threshold is set at ( ) 1,2,..., .,j t j M� �   We 

assume further that the functions (.)V and (.)jW are Ito differentiable, for all [0, ]t T� and 

1, 2,...,j M� . 

 

III. The Valuation Models 
 
In this section we derive a set of inter-rated valuation models characterizing the producer’s and 

the suppliers’ contract value together with their value maximizing policies.  The approach we 

adopt requires the construction of a dynamic trading strategy.  To avoid riskless arbitrage 

opportunities, the replicating portfolio positions signifying a particular trading strategy are 

chosen in such a way that the total expected return on the portfolio is the (local) riskless rate of 

return.  In what follows we demonstrate how a dynamic trading strategy results into the valuation 

model for the producer by appropriately selecting and adjusting the portfolio positions.  Without 

loss of generality, the same argument is then used in the follow-up subsection to develop the 

corresponding valuation models for the suppliers. 

 

III.1 The Manufacturer’s Model 
  

Let ( )p t� represent the value of a portfolio at time [0, ]t T� consisting of a long position in 

( ,.),V t  together with j�  units short in the futures contracts on supplier j’s currency 

with 1, 2,..., .j M�  Over an instant of time, dt we have after adjusting for the cash flows: 

                                                      
7   See Karlin and Taylor (1981)  
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1
( ) ( , .) { (.)} ( )

M

p j j
j

d t dV t dF f t dt� �
�

� � ��                                           (11) 

with the required condition that; 

( ( )) ( ,.)p pE d t r V t dt� �                                                                       (12) 

To avoid arbitrage opportunities we choose j� such that8, 

( , .) /
(.) /

j
j

j j

V t X
F X

�
� �

�
� �

                               1 , . . . ,j M�                    (13) 

Using equations (11), (12) and (13), we have from Ito’s lemma: 

 
2 2

2 2
2

1 11 1
( )

1( ) ( ) ( ) 0
2

M MM M

j ijp i j i pj j j j
j ij j j jij

j i

VV V V VX r r D q X X X f t r V
X XX R X t

� � � �
� �� �

�

�� � � �
� � � � � � � � �

�� � � �
��� �   (14) 

where the net cash flow rate, f(t) is given by;  

� �
1 1

( ) ( ) ( ) { ( ( )) ( ( )) , , ( ( ))}
M M

j jj
j j

f t P t D t A q t H R t C u t t�� �

� �

� � � � �� �� �                  (15) 

The above expressions (14) and (15) fully characterize the contract’s value to the producer.  To 

that end, conditional on a predetermined supplier policy, �( , ) ( ), jjC u tt� �� and a predefined 

( ( ))j j t� � the optimal value of the contract to the producer in light of a value maximizing 

policy � � � �� �* *,q t u t� is obtained from the following Bellman valuation equation for all 

, [0, ]t s T� and 1, 2,..., :j M�  

( , )q u
Max

22
2 2

1 11 1
( )

2
1( ) ( )
2

M MM M

jp ij j i j i ijj j
j i i jj j jj

j i

VV X X X
X XX

V V VX r r D q
X R t

� � � �
� �� �

�

� ���
� ����

� � �
� � � � � �

� � �
��� �  

( ) ( ) ( ( )) ( ( ( ( ))( , , )))
M M

pj jj
j 1 j 1

P t D t A q t H R t u t t r V 0C �� �

� �

�� � �
� � � � � � �� � �

	 
 �

� �� �               (16) 

s.t. 

0 ( )R t R� �                                                                                     (16a) 

0 ( ) qq t� �                                                                                      (16b) 

0 ( )u t� ��  1.0                                                                                  (16c) 

( )   ( ) ( ) ( ) (  ) ( )
( ( ))

0           otherwise
jj j

j j

h if u t I t u s I s t
t�

� �

�

���
� �
��

 >
                                         (16d) 

with 

                                                      
8    The actual derivation of j�  is straightforward, though tedious.  For brevity sake, we have 
excluded it form the paper. 
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�( , , ; , )
X

uV X R t qlim
X��

�

�

�
= 0                                                                      (16e) 

�

0

( , , ; , )
X

uV X R t qlim
X�

�
�

�

�
�                                                                      (16f) 

 

For the above optimization problem, expressions (16a-c) are self-explanatory.  In (16d), the 

supplier imposed penalty functions and penalty conditions are defined.  For the moment, the 

function, ( ( )),h t� serves as a generic characterization of the penalty incurred.  We will define h(.) 

specifically when the model is illustrated through a numerical example.  Also, conditions (16e,f) 

ensure that the valuation function is well behaved.  The above Bellman equation (16) does not 

yield a closed form solution and thereby, it must be solved numerically to obtain the optimal 

contract value *( ,.)V t .  However, in light of known functional forms that characterize the above 

Bellman equation, it is possible to derive closed form expressions for the optimal policies in 

place: that is 
* *

{ ( ), ( )}.q t u t   

 

III.2 The Suppliers’ Model 
 

By taking a similar approach, as shown in the previous subsection, we can obtain supplier 

valuation models in the form of a sequence of Bellman equation.  Recall that in the current 

context, suppliers’ policies in place are defined by their sales price and critical order change 

levels, � �, ,jC u t�� � and ( ),  1,2, ,j t j M� � � respectively.  Furthermore, in this case the cash flow 

accrued to the each supplier over an instant, dt is defined by; 

 

( ,.) ( ( ))j j jC t t� ��                                                                               (17) 

 

Given equations (9), (10) and (17) and in light of the definitions established earlier, we have, 

without loss of generality, for 1,2,..., :j M�  

� �
2

2 2

1 1,

1( ) ( 2 ) ( ( )) , , 0
2

M M j jj
j jjk j jk j jk j jjk kj k

k kjk jkj k j k j
C j

W WWMax Y r r Y t C u t r W
Y Y t

�

� � � � � � ��

� �

� �

� �� ��
� � � � � � � � �� �

� � �	 

� � � �

(18) 

s.t. 

0 ( ) 1.0ju t� �                                                                                   (18a) 

,( ; , ) 0
j

j jj j

Y
j

W Y t Clim
Y

�

��

�

�

                                                                      (18b) 
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,( ; , )
j

j jj j

Y
j

W Y t Clim  > 
Y

�

��

�

�

                                                                    (18c) 

( )   ( ) ( ) ( ) (  ) ( )
( ( ))

0           otherwise
jj j

j j

h if u t I t u s I s t
t�

� �

�

���
� �
��

 >
                                         (18d) 

 

 

IV. The Solution Procedure 
 

The Bellman Valuation equations (16) through (18) fully characterize each party’s contract 

features.  For he producer, the value maximizing policies � �* *( ), ( )jq t u t  effectively signify the 

optimal production rate and purchase weights, respectively.  For the suppliers, on the other hand, 

their operating policies � �* *( ),j jC �� maximize their respective net revenues.   In that sense, the 

price of inputs purchased by the manufacturer as well as the penalties incurred for having 

violated the supplier established “tolerance windows” defines the revenues.  The notion of net 

revenues maximized stems from our earlier assumption that the supplier’s fixed costs are not 

affected by the policies in place and in that sense remain invariant.  

We further note that equations (16) through (18) do not yield closed form solutions and must be 

solved numerically to obtain results.  To that end, a dynamic programming procedure is 

developed to numerically solve each model in light of its corresponding setting. Our ability to 

invoke this recursive procedure is a direct consequence of the Feynmann-Kac results in which 

the solution of certain partial differential equations are known to be equivalent to the solution of 

an appropriately adjusted expectation. 

 

Here this adjustment affects the drift term, j�  (the expected growth rate) of the exchange rate 

process as shown in equation (4).  As a result of the arbitrage-free valuation approach employed 

herein, this drift term maybe proxied by an equivalent martingale measure: the risk neutralized 

expected growth rate, _( ), 1, 2 ,p jr r j M� � � .  Hence, for valuation purposes equation (4) can be 

replaced by,  

� �( ) ( ) ( ) ( )j j p j j jdX t X t r r dt dZ t�� � �                                                  (19) 

To implement our recursive procedure, we adapt a multinominal lattice framework to 

approximate the stochastic evolution of the above equation (19).  Such an approximating 

framework provides the needed platform upon which a backward stochastic dynamic 

programming (SDP) algorithm can be superimposed, thus allowing for the “state” contingency of 

actions. 
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To that end, let � �n 0 1 n20 t t t t T� � �� � ��� represent an equiwidth partition of the planning 

horizon � �0,T such that the during each production period � �1,i it t t
�

� � , the exchange rate pair 

, , , ,( ( ), ( ))  1 i 2 i i 0 1 2 n 1X t X t � ��  can take on any one of the following fine jump values: 

 

Jump Event Corresponding Values Probability 

(up,up) 1 0 1 2 0 2( ) ( ) , X t w X t w  1p  

(up, down) 1 0 1 2 0 2( ) ( ) , X t w X t d  2p  

(down,down) 1 0 1 2 0 2( )  , ( )X t d X t d  3p  

(down, up) 1 0 1 2 0 2( ) ( ) , X t d X t w  4p  

(none, none) 1 0 2 0( ) , ( )X t X t  5p  

With 
5

1
1j

j
p

�

�� .  In the above table, k

tkew �� �

� defines the sign of an up jump while 
1

k
k

d
w

�  is 

the down jump size with k� and t� as defined earlier, 1, 2k � .  Furthermore, the sketch 

parameter, 1� �  ensures the opportunity for a horizontal jump (i.e: a no-change state) in each 

period.  This lattice specification is due to Kamrad and Ritchken (1991) and its computational 

accuracy in approximating the point lognormal distribution of the exchange rate pair is well 

documented.  For valuation purposes the probability terms are needed and are expressed below: 

 

1 2
1 2 2

1 2

1 1

4

t
p

� � �

� � � � �

�
� � � �

� �� �
� �� �

	 
� �
                                                 (20a) 

1 2
2 2 2

1 2

1 1

4

t
p

� � �

� � � � �

�
� � � �

� �� �
� �� �

	 
� �
                                                 (20b) 

1 2
3 2 2

1 2

1 1

4

t
p

� � �

� � � � �

� �
� � � �

� �� �
� �� �

	 
� �
                                               (20c) 

1 2
4 2 2

1 2

1 1

4

t
p

� � �

� � � � �

� �
� � � �

� �� �
� �� �

	 
� �
                                               (20d) 

5 2

1
1p

�

� �                                                                                       (20e) 

where 
2
k

k p kr r
2
�

� � � �                          ,k 1 2�                                          (21) 
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denotes the drift of the approximating process.  Given this setting we can proceed with the 

development of the solution procedure.  To that end, let 11, ; ,( )i iiV X R u q
��

� �  Represent the time it  

value of the contract to the producer given that the current exchange rate process is 

( ( ), ( ))1 i 2 iX t X t , the finished goods lend of inventory is iR  and that during production period 

� �, ,  t 1 i i 1t t q
� �

 units were produced with raw material purchase weights ( ( ), ( ))1 i 1 2 i 1u t u t
� �

.  Given 

the partition n�  consider the time epoch :nt  

� �1 1 11( , ; , ( ) ( , ))i i n n n n niV X R u q P D A q q q�
� � ��

� � �
� �                              (22) 

with 

( )nA q 0�                                                                                          (22a) 

n nR q 0� �                                                                                       (22b) 

� � � �( ) ( )  1 2n 1 n 1 n 1 n 1 n 1 n 1q I I u t I u t� �

� � � � � �

� � �                                   (22c) 

� � � � .1 2n 1 n 1u t u t 1 0
� �

� �                                                                     (22d) 

� � � �, ,n 1 n n 1q q q 0� �
� �

�                                                                      (22e) 

From the above equation (22) reflecting the termination time nt , expressions (22a,b) are self 

explanatory.  Equation (22c) relates the production quantity decision to total raw material 

purchase at time nt .  Equation (22d) identifies purchase weight’s constraint, while (22e) may be 

consider as the switch cost function at expiration: shutdown cost.  Note that the production cost 

( )n 1A q
�

is incurred at time nt .  In what follows, let ( , , ) ( )j j iC Cu t t� ���  and 

( ( )) ( )j j i j it t� �� � define the per unit gross margin and penalty induced revenue to supplier j at 

time ,  ,it j 1 2� and , , , .i 0 1 n� �  We now consider time n 1t
�

, marking the period � �,n 1 nt t
�

 where 

( , )
, ; ,( { { { ( ) ( ) ( ) ( ))

n 2 n 2

n 1 n 2n 2

2 2

n 1 n 1 n 2 n 1 j n 1 j n 1
u q j 1 j 1

V X R u q Max E P D A q H R C t t�

�
�

� �� � � � � � �

� �

� � � � �� �
�

� � �

� �  ( , )} ( , ; , )}}p n n 1
n 1 n 1

r t t
n 2 n 2 n 1e Vq q X R u q� �

� �

� �

� � �

��
� �                          (23) 

s.t. 

n 1 n 1 nR q D
� �

� �                                                                                (23a) 

� �)  )( (n 1 n 1 1 n 1 n 1 2 n 1q I u t I u t �

� � � � �

� �                                                (23b) 

� �)  )( (n 2 n 2 1 n 2 n 2 2 n 2q I u t I u t �

� � � � �

� �                                               (23c) 

.) )( (1 2n 2 n 2u u 1 0t t
� �

� �                                                                   (23d) 

for ,j 1 2�  
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� �
� � � � � �

� �� �

                 

                 /

      n 2 j n 2 n 1 j n 1 j n 1

j n 1

j n 1

0 if I u t I u t t
t

h t if o w

�

�

�

� � � � �

�

�

� �

�

��
�
��

          (23e) 

n 20 q q
�

� �                                                                                       (23f) 

n 10 q q
�

� �                                                                                      (23g) 

n 10 R R
�

� �                                                                                      (23h) 

In equation (23), � �E �
� defines the expectation operator with respect to equation (19). 

Furthermore, the total cost incurred at time n 1t
�

 is comprised of production, inventory, purchase 

switching and penalty costs.  This penalty cost is characterized by expression (23e) with � �h �  as 

the functional form for the penalty cost whenever periodic change in the purchase levels violate 

the supplier established “tolerance windows”, .� Constraint (23a) ensures that the level of 

inventory on hand plus the next period’s production quantity satisfies the demand during the next 

period.  Other constraints, (23 f, g, h) account for production and inventory capacity concerns.  In 

general for valuation purposes we have for every period � � _, , , , ,i i 1t t i 0 1 n 1
�

� �� the following 

Bellman recursion: 

( , )
, ; ,( { { { ( ) ( ) ( ) ( ))

i 2 i 2

i 1 i 2i 2

2 2

i 1 i 1 i 2 i 1 j i 1 j i 1
u q j 1 j 1

X R u q MaxV E P D A q H R C t t�

�
�

� �� � � � � � �

� �

� � � � �� �
�

� � �  

                      � �  ( , )} ( , ; , )}}p i i 1
i 1 i 1

r t t
i 2 i 2 i 1e Vq q X R u q� �

� �

� �

� � �

��
� �                                      (24)         

 

For brevity’s sake, we omit restating constraints (24b-h) as they echo previously stated 

constraints (23b-h).  The only modification needed is specializing to the appropriate time epoch 

where the time reference is it .  Given this SDP-based solution approach to the producer’s 

problem, we can now address the same for the suppliers’.  To this end, recall that the suppliers’ 

objective function reflects the net revenue accrued during each purchase period.  This revenue is 

comprised of cash flows generated through the sale of raw materials, ( , , ) ( )j j iC Cu t t� ���  in 

addition to the penalties paid by the producer, ( ( )) ( )j j i j it t� �� � .  Let ( , , )i i j jW Y C � represent 

the time it value of the contract to supplier j given that the supplier’s exchange rate is 

,
( )

,   
( )

( ) ( ) j i
jk

k i
i i j 1 2

X t
Y t Y t

X t
�� � and k j� , the raw material sales proceeds are set to be ( )j iC t and 

the “tolerance window” at time it  is established to be ( )j it� .  Consider the partition n� . The 

value of the contract to supplier j (in supplier j ’s currency) at time t  is 
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)( ; ,n j jW 0Y C � �                           ,j 1 2�                                        (25) 

For all other time epochs ,  , ,it i 0 1 n 1� �� and the corresponding Bellman recursion is given by,  

 

( )

,

( ) ( )
( ; , ) ( ; , )

( ) ( )
{ }{ }{ }

i

j i 1 ir t tj i j i
j j i 1 j j

j i j ij jc
W

C t t
Y C Max E e W Y C

X t X t�

�

� �
�

� �

�
� � �   (26) 

with  ( ) ( ( )j i j it h t� ��  

 

The above equation (22) through (26) define our numerical solution approach as a sequence of 

Bellman recursions.  To obtain results, the above equations are superimposed on an 

approximating lattice introduced earlier in this section.  Each node in this lattice, such as node, 

� �, ,i k l  represents the state of the exchange rate vector at time , , ,_ ,it i 0 1 2 n� � .  That is,  

� � � �� � � � � �� �, ,k l
1 i 2 i 1 0 1 2 0 2X t X t X t w X t w�  

With 1w  and 2w defined earlier.  Here, the set of feasible selections realizations for ( , )k l at time 

it are; � �( , ) ( ), ( )k l B i B i�� with 

� �( ) , , , ,B i i i 2 i 2 i� � � � ��  and � �( ) , , , ,B i i 1 i 3 i 3 i 1� � � � � � � ��  

In the following section, we illustrate this set up through a stylized example where the 

expectations as seen in equation (22) through (26) are computed on the lattice using the lattice 

probability terms (2a-e).   

 

V.  Illustration and Results 
 

To numerically illustrate the model, various functional forms have to be defined.  In what 

follows, the production cost function, the purchase cost functions and the penalty cost functions 

for each supplier j at time it  is characterized, respectively: 

 

� � 2
i 0 1 i 2 iA q a a q a q� � �                                                                     (27) 

� � ( ( ) ( ) ( ) ( )) ( )jij 0 j j i 1 j i j i j i itC C t C t t Iu t u t� �� �                                            (28) 

) ( ( )) ( ( ) ( ) ( ) ( ) ( ))(j
2 2 2 2 2

i j i 0 j j i 1 j i j i 0 j 1 j i j iht t C t C t t 2C C t t� � � � �� � � �                (29) 

 

Equation (27) reflects the quadratic nature of the production cost function.  In equation (28), we 

rate the quantity discount feature of the purchase cost function.  Specifically, the higher the 

purchase quantity ( )jIu from a supplier, the lower the variable cost of the purchased quantity.  In 
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equation (29), reflecting the penalty cost to the producer, violating contract terms are effectively 

penalized as a function of current purchase costs and “tolerance windows”.  In this light, at each 

node of the approximating lattice at time , , ,,  i i 0 1 2 n 1t � �� , the manufacturer is faced with 

choosing the optimal output quantity and the proportion of raw material to purchase from each 

supplier: essentially the “security weights” in a portfolio maximization context.  Given the 

manufacturer’s operating decisions * *. . ,( )ji e q u , the two suppliers use this policy as a given input 

to their corresponding optimization problem to maximize over the control variables: namely 

1 jC and ,  ,j j 1 2� � .  Implicit is the assumption that the fixed cost of purchasing, 0 jC  is not a 

controlled decision.  Here too, the problems faced by the suppliers reflects a “portfolio 

maximization” concern representing conflicting choices.  If 1 jC were to be increased, the 

revenues also increase.  However, the manufacturer can then purchase fewer units.  

Concurrently, the choice of a smaller j� results in increased penalties paid by the but here too, the 

manufacturer is likely to resort to purchasing smaller quantities.  This trade off and the optimal 

equilibrium that is rendered, is ultimately achieved by imposing the constraint that an 

improvement in a particular party’s (supplier or producer) objective function value cannot be 

attained at a great expense to the other’s.  Thus at a given node, if the supplier’s value function is 

improved by altering j�  and 1 jC such that the impact of this change would result in a reduction 

in the manufacturer’s objective function value by more than 10%, the supplier(s) cannot 

implement that policy.  Yet, if an alteration to the suppliers’ policy results in an improvement 

without a concurrent deterioration in the manufacturer’s value function, the new policy will be 

acceptable as a feasible solution.  The iteration then moves back to the manufacturer where the 

newly furnished policy is taken as an input to manufacturer’s problem, subject to the above 

mentioned “equilibrium” constraint.5  We carry out similar iterative optimizations at each node 

on the lattice. We iterate between the manufacturer and the suppliers at least 4 rounds at each 

node on the lattice. The values at time 0 for the manufacturer and the two suppliers are then the 

optimal values. 

 

We are now in a position to illustrate the sensitivity as well as the robustness of our models in a 

parametric sense.  The table shown below summarizes our base case parameter values.  

                                                      
5 We carry out our optimization in FORTRAN and search over 1200 steps of the decision 
variable at each node. 
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Table 1: Base Case Parameters and Initial Values for Variables 

Producer’s Demand Schedule 
iD  ;    ;    ;    1 2 3 AD 120 D 120 D 170 D 120� � � �  

Producer’s unit Sales Price ( )iP t  ( ) $  iP t P 80� � per unit 

Production Capacity q  ( , )iq 0 300�  

Inventory Capacity  R  ( , )iR 0 60�  

Production Cost Function ( )iA q  . ;   . ;    .0 1 2a 1 2 a 0 8 a 0 2� � �  

Elasticity �  .1 0� �  

Initial Exchange Rate 
0X�  ( ( ), ( )) ( . , . )1 0 2 0X t X t 1 0 1 0�  

Exchange Rate Volatilities and 

Correlations 
�  . ;   . ;   .1 2 1230 85 25� � �� � � (per annum)   

Local riskfree interest rates r  . ;    . ;    .p 1 2r 08 r 10 r 15� � � (per annum)   

Supplier 1 Supplier Furnished Initial Terms 

Supplier 2 

� �. ;    . ;  01 11 1C 3 0 C 15 20�� � �  

� �. ;    . ;  02 12 2C 4 0 C 20 12�� � �  

 

 

Initially, we estimate the value of the option to switch as the difference of 

� � � � � �* * *
1 2 1 2, ,V u u Max V u V u� � �� � , i.e. as the difference between the maximum objective 

function value when the manufacturer has the option to switch between the two suppliers, versus 

the maximum value reached when the manufacturer is permitted to choose only a single supplier. 

As long as this value is positive, the option to switch is valuable for the producer even if the 

suppliers react to the producer’s policies by altering their decisions. We also examine how this 

option value varies when the correlation between the two suppliers varies as well as when the 

volatility of a single supplier varies. 

 

Figure 2 presents the option value when the correlation between the two suppliers’ exchange 

rates increases. The value of the option increases when this correlation increases. Intuitively, it 

implies that even the correlation between the exchange rates is low (or negative), there is 

reduction in risk through diversification without having to switch between the suppliers. 

However, as the correlation increases, the benefits of switching between the suppliers become 

more valuable.  

 

Figure 3 presents the variation in the value of the option to switch when the volatility of the first 

supplier increases. The volatility of the second supplier is fixed at 0.85%. Here we find that the 

option to switch is much more valuable when the volatility of the first supplier is low (thus a 
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substantial difference exists between the two volatilities.) As the volatility of the first supplier 

increases, the option to switch becomes less valuable. Thus, the value of the option declines and 

approaches a plateau. This suggests that at a given correlation, if the volatilities of the two 

suppliers are similar, the ability to switch is much less valuable. 

 

We then carry out a variety of static analyses to understand how changes in parameters affect the 

risk sharing between the manufacturer and the two suppliers. We first analyze the impact of 

changing the correlation between the two sources of risk, i.e. 12� , the correlation between the 

two exchange rates. For the manufacturer’s costs, we should expect two possible effects from a 

change in 12� . The first is that with greater correlation, the gains from diversification decline. 

However, greater correlation can also reduce the penalties that the manufacturer has to pay the 

suppliers for violating the bands since if the two suppliers exchange rates move in unison, the 

weights should not change. At the same time, changes in correlation may also cause the 

manufacturer to meet more of the demands earlier, thereby increasing the value function. The 

total effect on the manufacturer’s value function would be the sum of the three effects. For the 

suppliers, the value functions should decrease if the increase in correlation causes the 

manufacturer’s costs to decrease. However, if with increasing correlation, the manufacturer 

purchases greater quantities from the suppliers, then their value functions can increase. 

 

Figure 4 presents the value functions at different correlations. We find that for the manufacturer 

the gains resulting from the reduction in the penalties and meeting the demand earlier appear to 

dominate the losses from lower diversification. Additionally, the two suppliers appear to gain as 

well.  

 

We next examine the impact of changing the volatilities of the two suppliers’ exchange rates. We 

first examine the case of changing the volatility of the second supplier in Figure 5 Here again 

higher volatility for supplier 2 implies that supplier 1 benefits unambiguously since the 

manufacturer purchases more from her. The manufacturer benefits as long as the correlation 

between the two suppliers is positive and the second supplier’s volatility is less than or equal to 

that of the first supplier.  

 
However, once the volatility of the second supplier exceeds that of the first supplier, the 

manufacturer’s value function can decrease. For the second supplier, increase in the volatility has 

two opposing effects. The first is that the greater volatility increases the revenues she gets from 

the manufacturer violating the penalty bands. However, greater volatility also results in the 

manufacturer buys smaller proportion of the total input from her. This reduces the revenue she 

gets. Figure 5 displays all these phenomena. 
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We then examine the impact of increasing the volatility of the first supplier on the value 

functions and the proportion bought from each supplier. As we expect from Figure 5, increasing 

the volatility of the first supplier benefits the second supplier, and the first supplier also benefits, 

though not as much as the second. Additionally, the manufacturer eventually is worse off as the 

volatility increases. Figure 6 presents these results. 

 

V. CONCLUSIONS 

 
Multinational enterprises have recognized that with multiple sourcing across international 

borders, uncertainty in exchange rates creates new risks as well as provides new opportunities to 

design flexibility in supply contracts. Previous studies on operating policies with exchange rate 

uncertainty have evaluated the profit maximization problem for the manufacturer while ignoring 

what would induce the suppliers to accept flexible contracts. In this paper, we provide a unified 

real-options (contingent-claims) based framework for valuing the flexibility in supply contracts. 

We jointly examine the optimization problems for the suppliers along with the manufacturer’s 

problem. We use a portfolio-optimization like framework to analyze the incentives that the 

suppliers face in accepting flexibility. The tradeoff is between greater volatility in the supply 

schedule and the prices that the manufacturer pays. Thus, we explicitly model how flexibility can 

be beneficial to both the producer and multiple suppliers. In other words, how a contract with 

flexibility can be Pareto optimal, with neither the producer nor the suppliers being worse off as 

compared to inflexible contracts. This implies that decisions to switch between suppliers are not 

costless but result in the manufacturer having to compensate suppliers in one form or other. 

Finally, the exogenous sources of risk can be viewed as value drivers for the both producer and 

the suppliers, and we examine how changes in the value drivers affect the profit-maximization 

problems for the producer as well as the suppliers.  

 

We find that the option to switch becomes more valuable with greater correlation between the 

exchange rates. Additionally, the option to switch is more valuable if the exchange rates have 

different volatilities rather than similar volatilities. Finally, we also find that increase in volatility 

for one supplier is beneficial for the other supplier whereas the impact on the producer is 

ambiguous.  
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753760.03,-3,+1

12.50.2553.40.25200.7
0.68
0.32

1703293.32,-2,0

12.50.25664.40.2549.1
0.15
0.85

165681.21,-1,-1

15.00.30622.70.30217.5
0.49
0.51

165781.00,0,0

C21W2C11W1QV(i,j,k)

First 
Path

12.50.25370.512.50.2520.8
0.05
0.95

01851515.22,2,-2
Third 
Path

12.00.20868.012.50.2525.3
0.07
0.93

0120893.81,1,-1

12.50.25653.512.50.250.8
0.02
0.98

151051552.33,3,-3

15.00.30622.715.00.30217.5
0.49
0.51

0120781.00,0,0
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0.00

902095.73,+1,+3

12.50.252.10.25430.5
0.97
0.03

1852235.62,0,+2

12.00.20662.80.25212.0
0.35
0.65

135903.01,+1,+1

15.00.30622.70.30217.5
0.49
0.51

120781.00,0,0

08413.84,-4,0

12.50.2510.30.25464.1
0.90
0.10

753760.03,-3,+1

12.50.2553.40.25200.7
0.68
0.32

1703293.32,-2,0

12.50.25664.40.2549.1
0.15
0.85

165681.21,-1,-1

15.00.30622.70.30217.5
0.49
0.51

165781.00,0,0

C21W2C11W1QV(i,j,k)

First 
Path

1 2,u u 1� 2�

Table 2:  Policies for Three Paths along the Lattice
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Figure 2: Producer's Value Function as a Switching Option
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Figure 3: Producer's Value Function as a Switching Option
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Figure 4: Value Functions as Correlation between the two suppliers changes
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Figure 5: Value Functions as Volatility of the Second Supplier Changes
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Figure 6: Value Functions as Volatility of the First Supplier Changes


