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Abstract

Pricing Electricity Calls

In this paper we develop a general model of spot electricity price that encom-
passes the stylized features of many of the emerging deregulated electricity
pools around the world. We incorporate seasonality on an annual basis and
a daily basis around a mean-reverting de-seasonalized intrinsic price.

A unique feature of this paper is the treatment of jumps in the spot
price as arising from supply shocks as large generators in the system come
off-line and go on-line in a partially predictable manner. We model the
number of large generators on line as a discrete Markov process. This feature
is motivated by the Alberta electricity pool, which has 14 large base-load
generators and very little excess capacity.

We show how to estimate the diffusion process with a Kalman filter tech-
nique and the discrete Markov model with maximum likelihood model.

The motivation for pricing calls on this price process is two-fold. First
many electricity customers purchase call options to manage their risk. Sec-
ond, generators are called into the system or turned off according to whether
their marginal price is less than or greater than the system marginal price
(spot price). The revenue stream to a company that builds a new generator
that is not part of base load will be a strip of call options. Thus, this is a
real option valuation model.



1 Market Structure

This paper models the Alberta electricity pool as an example of a deregulat-
ing supply and demand model. The Alberta market is supplied by 3 large
utilities that have some very efficient base load coal generators (using low-
sulphur strip mines adjacent to the power plants), plus an array of natural
gas plants. There are also some hydro-electric plants and alternative energy
plants, but the bulk of the excess demand is supplied by limited-capacity
links to adjacent jurisdictions. British Columbia, to the west, has hydro
power and Saskatchewan, to the east, has thermal coal power. There is very
little peaking capacity in Alberta itself.

For example, the March 11, 2000 Power Pool Report identifies 917 Mega-
watts of reserve capacity for the Alberta Interconnected Electric System
(AIES):

SUMMARY
INTERCHANGE -63
AIES NET GEN 5534
AIES TOTAL LOAD 5605
REQUIRED RESERVE 455
GENERATION RESERVE 904
OPERATING RESERVE 917

Of this reserve, most is from hydro (MCR is the Maximum Capacity
Rating):

GENERATION
GROUP MCR NET RES
COAL 5621 4883 135
GAS 946 285 116
HYDRO 789 50 653
IPP N/A 316 N/A
TOTAL 7356 5534 904

The interchange is not allowed to count as reserve. In this case it was
supplying a small amount of electricity becasue it has a negative quantity:
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INTERCHANGE
LINE ACTUAL
BC HYDRO 41
SASKPOWER -24
MEDICINE HAT -80
TOTAL -63

The interchange can provide up to 800 MW of power.
The generation capacity included thermal (primarily coal) generation ca-

pacity from three large generation companies (Transalta, Atco and Epcor)
plus some indendent power producers (IPP):

TRANSALTA THERMAL
UNIT MCR NET RES
KH1 381 370 0
KH2 381 1 0
SD1 279 293 0
SD2 279 275 0
SD3 353 367 0
SD4 353 358 0
SD5 353 349 0
SD6 364 359 0
WB1 64 0 0
WB2 64 52 0
WB3 140 0 0
WB4 279 250 0

ATCO ELEC THERMAL
UNIT MCR NET RES
SH1 378 324 56
SH2 378 343 36
BR3 148 135 15
BR4 148 141 13
BR5 368 380 0
HRM 143 125 15
ST1 10 0 0
ST2 8 0 0
RB1 26 0 0
RB2 40 42 0
RB3 21 20 0
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EPCOR THERMAL
UNIT MCR NET RES
GN1 384 376 0
GN2 384 385 0
CB1 158 40 24
CB2 158 60 24
CB3 158 40 24
CB4 158 61 24
RD8 67 0 0
RD9 71 0 0
R10 71 22 20

NEW IPP
UNIT MCR NET RES
PRM 85 89 0
PH1 47 44 0
RL1 47 0 0
FNG 47 0 0

Peaking power comes from the hydro plants of Transalta plus the British
Columbia interconnect, which has a maximum capacity of 800 Megawatts.

TRANSALTA HYDRO
UNIT MCR NET RES
CAS 34 -2 17
THS 2 0 0
SPR 100 0 100
RUN 47 0 47
INT 5 0 0
POC 14 0 0
BAR 12 0 10
KAN 19 7 0
HSH 15 7 0
GHO 55 1 46
BPW 16 6 0
BOW 319 19 220
BIG 120 37 79
BRA 350 -6 354

3



The spot price of electricity is set hourly and applies as a pool price
throughout the province. There are no differential transmission charges for
location. Generators are switched on and off by a System Controller who
matches supply and demand by ranking the generators by their bid price into
a merit order (supply curve) and setting the spot price or system marginal
price (SMP) to the bid price of the last generator needed to meet the de-
mand.1 Demand is not very price sensitive, but follows seasonal patterns
throughout the year, the week, the day and has random weather effects, as
well. Supply and demand are summarized on the Power Pool website in
real time as shown in Figure 1. Note the inelastic demand curve and the
step-function Merit Order for the supply curve. The price scale is logarith-
mic, so prices can jump sharply, and supply becomes quite inelastic at high
quantities. Thus, removing one of the large base-load generators from the
bottom of the Merit Order causes the supply curve to shift to the left. If the
demand is high, price is determined by the intersection of inelastic supply
and demand curves, so a price spike arises.

This suggests that a good model for prices will involve seasonal and ran-
dom influences on demand coupled with discrete changes in supply. The
major supply changes will involve the 14 large baseload generators that can
supply over 250 Megawatts of power.

2 Price Process

The spot price S = {St, t ≥ 0} of electricity will be modelled as a one-factor
diffusion with jumps in the price described by a finite state Markov chain.
The process is defined on a probability space (Ω,J , P ).

The continuous time parameter t ≥ 0 will represent days. An annual
periodic factor in the price will be modelled by

ft := exp γ

∫ t

0

sin

(
2π

365
s + φ

)
ds. (1)

1It is possible for the consumers to actually bid to supply electricity. In this case,
they offer to shed load when the price rises above a given point. In this case, the last
offer (needed to generate electricity to meet demand) that sets the SMP might be from a
consumer rather than a producer.
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Figure 1: The Alberta Pool Merit Order graph, late March 11, 2000. Source:
Power Pool of Alberta [3].
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A daily periodic factor in the price is modelled by

gt := exp β

∫ t

0

sin(2πs + ψ)ds. (2)

Suppose Z = {Zt, t ≥ 0} represents the number of large generating plants
on line at time t. Here, Zt takes values in the set {0, 1, . . . , N − 1} and
we suppose Z evolves as a homogeneous Markov chain. Without loss of
generality we can consider the related Markov chain Z = {Zt, t ≥ 0} whose
state space is the set of unit vectors

{e1, e2, . . . , en} , ei = (0, . . . , 1, . . . , 0)′ ∈ RN .

If N is the vector (0, 1, . . . , N − 1)′ ∈ RN then Z is the inner product

Zt = 〈Zt,N〉 . (3)

Suppose A is the transition rate matrix of Z (or Z). Then (see Elliott,
Aggoun and Moore [1])

Zt = Z0 +

∫ t

0

AZsds + Mt (4)

where M = {Mt, t ≥ 0} is a (vector) martingale with respect to the filtration
generated by Z.

Suppose there is also a (scalar) diffusion factor for the de-seasonalized
logarithm of the price process X = {Xt, t ≥ 0} where

dXt = −κ(Xt − µ)dt + σdωt . (5)

Here ω = {ωt, t ≥ 0} is a standard Brownnian motion on (Ω,J , P ), so Xt

follows a mean-reverting process with long-run mean µ and strength of mean
reversion κ. The half life of a deviation from the long-run mean is log 2/κ.

When there are k large generators on line we suppose the spot price is
weighted by a factor αk.

Write α = (α0, α1, . . . , αN−1)
′ ∈ RN .

The spot price of electricity is then modelled as

St = ftgt exp Xt · 〈α, Zt〉 . (6)

Here, the inner product 〈α, Zt〉 allows for a different price level according to
the number of large generators that are on line.
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3 Calibration

The calibration of the Markov chain Z is first discussed. Clearly Z, (and
therefore, Z) is observed and known.

The jump in the price when Zt jumps is also observed, so the values
α0, α1, . . . , αk−1 can be estimated.

Adapting arguments in [2] we can also see that for i 
= j the matrix
A = [aji] matrix is estimated as

aji =

{
nij

t /mi
t, if i 
= j

−
∑

k �=i,k=1,... ,N aki if i = j.
(7)

where

nij
t = the number of jumps of Z from state i to j up to time t

mi
t = the length of time Z has spent in state i up to time t

The sample Markov probability transition matrix up to time t is

Π := I + A (8)

The parameters γ, φ, β, ψ, σ, K and µ must be estimated. We can use
the EM (Expectation Maximization) algorithm in a filtered form.

Suppose the spot price S is observed over time periods of length h. Then

log
St+h

St

=γ

∫ t+h

t

sin

(
2π

365
s + φ

)
ds

+ β

∫ t+h

t

sin(2πs + ψ)ds − K

∫ t+h

t

(Xs − µ)ds

+ σ(ωt+h − ωt) + log〈α, Zt+h〉 − log〈α, Zt〉 . (9)

We observe S and Z so

Yt := log St+h − log St

is known, as is

δt := log〈α, Zt+h〉 − log〈α, Zt〉 .
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Consequently we have a sequence of observations Y = {Yt, t ≥ 0} where

Yt :�γ sin

(
2π

365
t + φ

)
h

+ β sin(2πt + φ)h − K(Xt − µ)h

+ σ
√

hBt + δt.

WE shall consider observation times at the partition points {nh : n ∈ Z+}
and, with abuse of notation, suppose t takes non-negative integer values and
that t ∈ {nh; n ∈ Z+}.

In the above expression B = {Bt, t ≥ 0} is a sequence of i.i.d. N(0, 1)
random variables on (Ω,J , P ).

Write φ(y) =
1

2π
exp

(
−y2

2

)
for the N(0, 1) density. Then the likelihood

ratio for this model, up to time T , is

ΛT :=
T∏

t=1

λt .

where

λt =

φ

(
Yt−γ sin( 2π

365
t+φ)h−β sin(2πt+ψ)h+K(Xt−µ)h−δt

σ
√

h

)
σ
√

hφ(Yt)

Therefore,

log ΛT = − T log(σ
√

h)

− 1

2σ2h

T∑
t=1

(
Yt − γ sin

(
2π

365
t + φ

)
h+

+ β sin(2πt + ψ)h + K(Xt − µ)h − δt

)2

−
T∑

t=1

Y 2
t

2
.

We observe the Yt and the δt. We estimate γ, φ, β, ψ, σ, K and µ recursively
using filtering and the EM algorithm. (Note we do not observe the Xt in the
above sum.)
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The EM algorithm starts with some prior values γ0, ψ0, β0, φ0, σ0, K0, µ0

and re-estimates each of these parameters, one at a time, recursively, given
the data.

Suppose, given Y1, . . . , YT and δ1, . . . , δT , we have, after p iterations,
estimates

γp, φp, βp, ψp, σp, Kp, µp .

Write Yt = σ{Y0, Y1, . . . , Yt} for the filtration generated by Y .
Suppose, initially, we wish to estimate γp+1. We consider

Ep[log ΛT | YT ] = QT (γp, φp, βp, . . . )

From the first order conditions we consider
∂QT

∂γp

= 0 and the value of γp

which satisfies this.
This gives γ̂p+1. We proceed similarly to update the other coefficients.
For example,

QT =E[log ΛT | YT ]

= − T log σ − T

2
log h

− 1

σ2h
E

[
T∑

t=1

(
Yt − γp sin

(
2π

365
t + φp

)
h − βp sin(2πt + ψp)h

+ Kp(Xt − µp)h − δt

)2

| Yt

]
−

T∑
t=1

Y 2
t

2
.

Then

∂QT

∂γp

=
1

σ2
E

[
T∑

t=1

sin

(
2π

365
t + φp

) (
Yt − γp sin

(
2π

365
t + φp

)
h

− βp sin(2πt + ψp)h + Kp(Xt − µp)h − δt

)
| YT

]
.

Putting
∂φT

∂γp

= 0 we have

γ̂p+1 =
1

h
T∑

t=1

sin
(

2π
365

t + φp

)2

T∑
t=1

sin

(
2π

365
t + φp

)
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×
(

Yt − βp sin(2πt + ψp)h − δt − KpµphT + KpE

[
T∑

t=1

Xt | YT

]
h

)

Similarly,

∂QT

∂σp

= − T

σp

+
1

σ3
ph

E

[
T∑

t=1

(
Yt − γp sin

(
2π

365
t + φp

)
h − βp sin(2πt + ψp)h

Kp(Xt − µp)h − δt

)2

| YT




giving an estimate

σ̂2
p+1 =

1

T
E

[
T∑

t=1

(
Yt − γp sin

(
2π

365
t + φp

)
h − βp sin(2πt + ψp)h

+ Kp(Xt − µp)h − δ2
t

)2

| YT




In the sum on the right Yt, δt, t = 1, . . . , T , are known, as are the estimates
γp, φp, βp, ψp, Kp, µp.

We are faced with estimating sums of the form E

[
T∑

t=1

F1(t, Yt, δt)Xt | YT

]

and E

[
T∑

t=1

G1(t, Yt, δt)X
2
t | YT

]
.

These can be recursively using the extensions to the Kalman filter given
in [2].

Similarly

∂QT

∂φp

= − 1

σ2
E

[
T∑

t=1

cos

(
2π

365
t + φp

) (
Yt − γp sin

(
2π

365
t + φp

)
h

− βp sin(2πt + ψp)h − δt

)
| YT

]
(10)
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This again involves E
[∑T

t=1 Xt | YT

]
.

We look for the implicit solution φ̂p+1 to
∂QT

∂φp

= 0. Similarly

∂QT

∂ψp

= − 1

σ2
E

[
T∑

t=1

cos(2πt + ψ)

(
Yt − γp sin

(
2πt

365
+ φp

)
h

− βp sin(2πt + ψ)h + Kp(Xt − µp)h − δt

)
| YT

]
.

We set
∂QT

∂ψp

= 0 and look for the implicit solution ψ̂p+1.
∂QT

∂βp

is similar to

∂QT

∂γp

. For
∂QT

∂Kp

we have

= − 1

σ2
E

[
T∑

t=1

(
Yt − γp sin

(
2π

365
t + φp

)
− βp sin(2π + ψp) − δt

− Kp(Xt − µp)h

)
(Xt − µp) | YT

]

Setting
∂QT

∂Kp

= 0 gives

K̂p+1 =
1

E

[
T∑

t=1

(Xt − µp)2 | YT

]E

[
T∑

t=1

(
Yt − γp sin

(
2πt

365
+ φp

)

βp sin(2πt + ψp) − δt

)
(Xt − µp) | YT

]
.

Again, the estimate involves things of the form E

[
T∑

t=1

F2(t, Yt, δt)X
2
t | YT

]
and E

[∑T
t=1 G2(t, Yt, δt)Xt | YT

]
. Recursive estimates for those can be found

as in the paper [2].
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4 European Calls

We have taken the model for the spot price to be S where

St = ftgt exp Xt · 〈α, Zt〉

Now for T ≥ t

E[XT | Xt] = e−K(T−t)
[
Xt + µ(eK(T−t) − 1)

]
= µT,t

and

Var[XT | Xt] =
σ2

2K
[1 − e−2K(T−t)] = νT,t .

Given ZT and knowledge of the parameters, ST is log-normal.
So, with

Jt =σ{Xs : s ≤ t} ,

FC)(t, T ) =E[ST | Jt ∨ {ZT}]
=E[fT gT exp Xt · 〈α, ZT 〉 | Jt ∨ {ZT}]

=fT gT exp

(
µT,t +

ν2
T,t

2

)
〈α, ZT 〉 . (11)

This is the future price in our model, and we assume this also the forward
price, (given ZT ).

Now FC(t, T ) is martingale in t so

dFC(t, T ) = FC(t, T )
(
σe−K(T−t)dωt

)
.

Then

Var[log FC(t, T ) | Jt ∨ {ZT}] = σ(t, T )

where

σ(t, T )2 =e−2KT σ2

∫ t

0

e2Kvdv

=
e−2KT

2K
σ2(e2Kt − 1) .

12



Therefore,

FC(t, T ) = FC(0, T ) exp

[
σ

∫ t

0

e−K(T−v)dωv
1

2
σ1(t, T )2

]
.

With

d(t, T ) =
log

(
FC(0,T )

K

)
σ1(t, T )

+
σ1(t, T )

2

the price of a European call and FC(t, T ) with expiration t and strike K is,
(given ZT ),

C(0, t, X0, ZT ) =E[e−rt(FC(t, T ) − K)+ | J0 ∨ {ZT}]
=e−rt[F (0, t)N(d(0, T ) − KN(d(0, T ) − σ1(t, T ))] (12)

Write

C = (C(0, t, X0, e1), . . . , C(0, t, X0, eN)) .

Taking the expectation over the possible values of ZT gives the price of the
call as

E[〈C, ZT 〉] = 〈C, AZ0〉 .

5 Empirical Estimation

The Power Pool of Alberta publishes hourly data on generator availability,
demand, supply and pool price on the Internet, but not in archived form.
We were fortunate2 to receive the Power Pool’s own hourly data set of pool
prices, demand and supply by each of the generators in Alberta for the period
January 1, 1996 to March 31, 2000. Here we present the analysis of the 4-year
data set for 1996-1999.

2We gratefully acknowledge the support of Maury Parsons and Owen Craig in obtaining
the data.
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5.1 Estimating the Markov Process of On-line Gener-
ators

An examination of the data revealed that the Power Pool had 14 large coal-
fired generators with a capacity in excess of 250 megawatts. All the other
generators were much smaller. While the generators don’t always develop
power at their full capacity, they can’t be run for significant periods of time
at much less than a load of 90%, for at lower loads they become unstable.
(** Check this precise number.**) Thus, it was not difficult to distinguish
the periods when a large generator was on-line from those when it was off-
line. We chose the cut-off of 10 megawatts of power being generated by these
units. We identified periods of time when as few as 9 generators were running
and periods when as many as 14 generators were running. Table 1 provides
summary statistics of the length of time spent in each of these states and the
time to wait before transition.

Table 2 is the Markov transition matrix from the state of identified by
the top of each column to the state identified by the first item of each row.

Table 3 shows the Markov transitions after convolution for 1 day, 2 days,
. . . , 90 days. Note that the columns of the 30 and 90 day matrices are
essentially identical, and this vector is essentially the ergodic probability
vector that represents the long-term steady-state probability of being in each
of the states. The most common state is that with 13 generators running
(35.2% probability). For shorter periods of time, the transitions are most
commonly to increase or decrease by only one generator.

5.2 Estimating Price Seasonality

The Expectation Maximization algorithm requires an initial estimate of pa-
rameters. We chose to estimate these parameters in a two step process in
which we first take logarithms of the data and estimate the (daily and an-
nual) seasonal characteristics ft and gt of the prices and then deflate the
process to get de-seasonalized process Xt. Then, the de-seasonalized process
is studied for its mean-reversion characteristics and to extract the properties
of the residuals or diffusion terms.

The Pool Price data exhibited a clear uptrend in price levels, so we esti-
mated a trend along with the seasonality. The demand for electricity is also
affected by some characteristics that do not follow a purely sinusoidal form,
such as the distinction between weekday and weekend (identifying industrial
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Table 1: Hourly status of numbers of large generators on-line 1996-99. To
interpret this table, note that the first row indicates that there were 5 tran-
sitions from the state with 9 generators to the state with 10 generators. The
mean time before the transition is 12.8 hours and the median is 10 hours.
The minimum number of hours before the transition is 2 and the maximum
is 29.

Zt Zt+1 Visits Mean Stay Median Min Stay Max Stay
9 10 5 12.8 10 2 29
10 9 5 18.2 7 1 59
10 11 44 16.5 9 1 158
10 12 1 3.0 3 3 3
11 10 43 35.3 20 1 171
11 12 123 25.0 17 1 127
11 13 1 118.0 118 118 118
12 10 2 41.0 41 38 44
12 11 122 45.2 26 1 363
12 13 162 28.4 17 1 189
13 11 1 133.0 133 133 133
13 12 161 47.8 25 1 310
13 14 129 34.7 24 1 158
14 13 129 53.0 33 1 308

Table 2: Hourly Markov probability transition matrix Π = [πji] showing the
probability of a transition from state i to state j.

State 9 10 11 12 13 14
9 0.9218 0.0061 0 0 0 0
10 0.0781 0.9389 0.0093 0 0 0
11 0 0.0525 0.9645 0.012 0 0
12 0 0.0024 0.0258 0.9719 0.0131 0
13 0 0 0.0002 0.0157 0.9763 0.0186
14 0 0 0 0 0.0104 0.9813

Total 1 1 1 1 1 1
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Table 3: Markov transition probabilities after 1, 3, 7, 30 and 90 days. The
columns represent the initial states of 9, 10, . . . 14 generators and the rows
represent the ending states of 9, 10, . . . 14 generators.

1 day
0.1684 0.0311 0.0045 0.0005 0 4.41E-06
0.3992 0.2951 0.0819 0.014 0.0016 0.0001
0.3288 0.4622 0.5172 0.1507 0.025 0.0037
0.0925 0.1825 0.3253 0.5838 0.1837 0.0413
0.0103 0.0269 0.0651 0.2215 0.6306 0.284
0.0005 0.0019 0.0058 0.0292 0.1588 0.6706
3 days
0.0158 0.0092 0.0051 0.0021 0.0006 0.0002
0.1183 0.0865 0.0588 0.0293 0.0109 0.0041
0.3714 0.3348 0.2827 0.1774 0.0817 0.0372
0.3392 0.3661 0.3842 0.3722 0.2569 0.1577
0.1301 0.1662 0.2134 0.3105 0.4229 0.4045
0.025 0.0368 0.0555 0.1082 0.2266 0.3961
7 days
0.0033 0.003 0.0027 0.0021 0.0015 0.0011
0.0387 0.0358 0.0327 0.0269 0.0201 0.0155
0.198 0.1873 0.1747 0.151 0.1207 0.0989
0.3424 0.3358 0.3272 0.3082 0.2791 0.2543
0.2944 0.3045 0.3162 0.338 0.3644 0.3809
0.1229 0.1333 0.1463 0.1735 0.214 0.249
30 days
0.0018 0.0018 0.0018 0.0018 0.0018 0.0018
0.0233 0.0233 0.0233 0.0233 0.0233 0.0233
0.1342 0.1342 0.1342 0.1341 0.1341 0.1341
0.2906 0.2906 0.2906 0.2906 0.2906 0.2905
0.3519 0.3519 0.352 0.352 0.352 0.352
0.1979 0.198 0.198 0.198 0.1981 0.1981
90 days
0.0018 0.0018 0.0018 0.0018 0.0018 0.0018
0.0233 0.0233 0.0233 0.0233 0.0233 0.0233
0.1341 0.1341 0.1341 0.1341 0.1341 0.1341
0.2906 0.2906 0.2906 0.2906 0.2906 0.2906
0.352 0.3521 0.3521 0.3521 0.352 0.352
0.1981 0.1981 0.1981 0.1981 0.1981 0.1981
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Table 4: Estimates of Seasonal Pool Price Effects
Log price Coeff. Std. Err. t Prob > |t| Exp(Coeff.)
Constant 2.39237 0.00736 325.2 0.00 10.94
Time (Hours) 0.00004 0.00000 144.1 0.00 1.000039
Weekend -0.15846 0.00592 -26.8 0.00 0.85
Sine Daily -0.33711 0.00450 -74.9 0.00 0.71
Cosine Daily -0.30585 0.00678 -45.1 0.00 0.74
Night-time 0.00464 0.01077 0.4 0.67 1.0046
Sine Annual -0.08279 0.00387 -21.4 0.00 0.92
Cosine Annual 0.11860 0.00427 27.8 0.00 1.13
R-squared 0.529
Daily Amp. 0.455 1.58
Peak Hour 15.2
Annual Amp. 0.145 1.16
Peak Month 10.86

demand) and the distinction between daylight hours and nighttime hours
(identifying street and home lighting demand). Introducing these dummy
variables also allows for the possibility of replacing the sinusoidal seasonals
with seasonal dummy variables.

In addition, the price level adjustment 〈α, Zt〉 that depends on the number
of on-line generators can be augmented to allowing a completely different
seasonal and dummy model for each level of on-line generation, since there
are only 6 different values of Zt in the data.

Table 4 shows the results of the first-stage seasonal regression of log
price on seasonal, dummy and trend variables. The last column provides
the exponential transformation of the coefficient, which can be interpreted
as a factor affecting the price level. For example, the exponential of the
constant is 10.94, which suggests that the typical pool price at the begin-
ning of the time period (January 1996), a typical pool price was $10.94 per
megawatt-hour, or in household terms, 1.094 cents per kilowatt-hour. In
this model, time is measured in hours, so at the end of December 1999,
there were 24 × 365 × 4 = 35, 040 hours. The time-trend led to a factor of
exp(35, 040×.00004) = 3.89, so that a typical price was 10.94×3.89 = $42.60
per megawatt-hour. This is a very substantial rate of increase and may not
continue into the future.

The weekend had an effect of reducing the price by a factor 0.85.

17



Entering the night hours3 only increased the price by a factor of 0.46%,
and this was insignificant. This suggests that the increased demand as street
lights and house lights are turned on does not have a significant price effect.
Of course, this variable is correlated with the time of day, and the price in the
evening was typically reduced by the reduced industrial demand, so a proxy
effect with errors in the variables may be muting the statistical significance
of this factor.

The daily and annual seasonal factors were estimated by noting that the
integrals in equations (1) and (2) become sines with a phase angle shift. Thus,
for example, the daily seasonal in logged prices is −.33711 sin(t × 2π/24) −
0.30585 cos(t × 2π/24). Recall the trigonometric identities

a sin(x + φ) = a cos(φ) sin(x) + a sin(φ) cos(x) (13)

a2 = (a cos(φ))2 + (a sin(φ))2. (14)

Associating the coefficients of the daily sine and cosine in the regression with
a cos(φ) and a sin(φ), respectively, we can solve for the amplitude a by taking
a square root of the sums of the squares of the coefficients. This gives a daily
amplitude of 0.455 for the logarithm and a factor of 1.58 for the price. Thus,
the peak price of the day is typically 158% of the mean price for the day.
To determine the peak hour, we can take the inverse sines and cosines of the
regression coefficients divided by the amplitude. Some care must be taken to
interpret these correctly, since the square root might have been the negative
root. Moreover, equation (13) gives a phase angle relative to the sine, which
has its maximum at π/2, rather than 0. Thus, the daily peak is at a time
that is either 6 hours before or 6 hours after the time given by φ. Going
through this, we see that the peak price hour for the day is 15.2, or about 3
pm.

Similarly, we can interpret the annual seasonal. Note that the amplitude
of the swings is less than for the daily swings (a maximum factor of 1.16 at
the peak). The peak month is month 10.86, which is late October to early
November.4 The annual seasonal in electricity is clearly affected by several
confounding factors: holiday seasons, air conditioning seasons, and heating

3We used software [4] by the US Naval Observatory to calculate the darkness hours,
including twilight, for both Edmonton and Calgary and assigned a dummy variable of 1 for
darkness. We averaged the dummy variable for Edmonton and Calgary. We are grateful
to Jonathan Sick for helping us to extract this ephemeris data.

4Of the 4 years in our data set, two Octobers were very unusual. October 1998 had a
shortage of supply and some cities had to shed load by cutting off electricity to customers.
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seasons. We have already removed the effect of darkness hours for street
lighting.

5.3 Estimating Mean Reversion of Prices

We take the residuals of the previous regression as estimates of the deseason-
alized and detrended variable Xt. We represent the mean-reverting diffusion
(5) as an auto-regression of changes in Xt on prior levels Xt−1:

Xt − Xt−1 = κµ − κXt−1 + σ∆ωt (15)

A priori there is no reason to believe that the coefficient of mean rever-
sion, κ will differ according to the number of generators on-line, but we would
expect the long-run mean of the log price, µ to vary with the number of large
generators that are on line. Thus, we record this auto-regression in Table 5
for the generator states Gen 9, Gen 10, . . . , Gen 14. The autoregression
coefficient κ is always significantly different from zero, so the process is not
a random walk (it doesn’t have a unit root). We report the half life of a
deviation from the mean, measured in hours. Note that half of any price
shocks are eroded away withing 4 or 5 hours. This reduces the price risk
considerably. We also report the long-run mean µ and the exponential of
the long run mean. This latter number provides a price factor adjustment,
according to the number of large generators that are running. Thus, when
only 9 large generators are on-line, the price is about 68% higher than nor-
mal, while when 14 generators are running, the price is about 8% lower than
normal.

We analyze the residuals of the mean-reversion regressions in Table 6.
This provides an estimate of volatility σ, which seems to be fairly constant
across the models at 25% to 35% per hour. Thus, price changes are quite
volatile on an hourly basis, but deviations decay rapidly over a matter of
hours towards the long run mean. The long run mean price is higher when
there are fewer generators running.

Table 6 shows that the residuals are quite non-normal, so that the Gauss-
Wiener diffusion assumption is violated. The residuals are normally right

October 1999 saw a change in the rules for revising bids to make it harder for a generator
to bid power in but withdraw it and re-bid at a higher price if demand is high. The rule
transition caused some difficulties in the market. Both Octobers saw high electricity prices
and this even might not repeat itself.
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Table 5: Estimation of the Mean Reverting Process for Deseasonalized and
Detrended Price.
Gen 9 Coef. Std. Err. t Prob > |t| Half Life µ exp(µ)
κ 0.200 0.049 -4.1 0.00 3.47 0.52 1.68
κµ 0.104 0.047 2.2 0.03
Gen 10
κ -0.166 0.021 -7.9 0.00 4.18 0.37 1.45
κµ 0.062 0.016 3.8 0.00
Gen11
κ 0.191 0.009 -21.9 0.00 3.63 0.13 1.13
κµ 0.024 0.005 5.0 0.00
Gen 12
κ -0.154 0.005 -28.6 0.00 4.49 0.03 1.03
κµ 0.005 0.003 1.8 0.08
Gen 13
κ 0.136 0.005 -29.6 0.00 5.08 -0.07 0.93
κµ -0.010 0.002 -4.5 0.00
Gen 14
κ 0.142 0.006 -22.5 0.00 4.88 -0.09 0.92
κµ -0.012 0.003 -4.0 0.00

Table 6: Residual Analysis to Estimate Volatility
Num Gen σ exp(σ) Kurtosis Skew Min Max Count

9 0.25 1.29 6.30 -1.90 -1.04 0.43 59
10 0.38 1.46 12.65 0.36 -2.15 2.23 769
11 0.32 1.37 13.91 0.24 -2.06 2.62 4544
12 0.26 1.30 14.92 0.35 -2.28 2.60 9919
13 0.23 1.26 10.16 -0.01 -1.73 1.61 12046
14 0.25 1.28 8.08 0.32 -1.45 2.53 6773

20



Pool Price

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

$- $200 $400 $600 $800 $1,000

Cumulative Probability

Figure 2: Bootstrap simulation of January 30 Pool Price distribution, start-
ing at the means on January 1.

skewed (except when only 9 generators are running), so it is possible to get
large upward deviations in price but not so likely to get large negative devia-
tions in price. Moreover, the distribution is lepto-kurtotic or fat-tailed. This
suggests that caution should be exercised in using analytic representations
of the state-price density in calculating option prices, since these analytic
expressions will generally be based on the assumption of log-normality.

An alternative approach to pricing options that may be preferred is to
simulate the Markov process for Zt using the Markov transition matrix, and
then simulate the conditional changes in the deseasonalized and detrended
price Xt conditional on the values of Zt. Then the detrended price can
be multiplied by the seasonal factors to get a final price. Repeating the
simulation for 1000 or 10,000 times will give a good representation of the
state price density, which can be used to form the expectations of equations
(11) and (12) to price out European calls and other options. This is the
subject of future work.

Figure 2 shows such simulation looking one month ahead to the de-
seasonalized price for January 30, 2000. The maximum price that the system
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Figure 3: Closeup view of restricted price range in simulation of January 30
Pool Price distribution, starting at the means on January 1.

computers can handle is $999. Rarely does the price go above $200, but it
often exceeds $50.

Figure 3 zooms in to the pricing region of $0 to $200.

6 Items To Come

To complete the paper, we intend to describe the state price density and
price some put and call options.

A key issue in estimating real options to deliver electricity will be to model
the long-term growth trend in the process. Our data set is too short to draw
any inferences about growth. The growth in prices could reflect a change in
generation market regime from quasi-regulated to quasi-competitive. During
this transition, relatively few new generators were built, yet the Province
grew substantially. It could also represent a change from reliance on coal
to greater reliance on gas as a fuel source. We have no futures market to
help estimate the long-term growth or the long-run mean electricity price.
Nevertheless, such a market will come into being as the market becomes
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deregulated, and this represents an initial step in understanding how real
assets and electricity options will be priced.

7 Concluding Remarks

In this paper we have analyzed the generation and pricing process for the
Alberta Power Pool, which is an electricity market with minimal excess ca-
pacity and minimal opportunities for importation of electricity. The Pool
has a number of large generators, which develop most of the power, so that
prices can spike upward when these large generators go off-line.

Over the 4-year period we studied, there were always 9 to 14 of these
generators running. The long run mean price is higher when fewer generators
are running, by a factor of approximately 1.7 when only 9 generators are
running. There are signficant price variations within the day, with prices
increasing by a factor of 1.6 for the daily peak. Price deviations are mean
reverting with a half life of deviations from the long-run mean being measured
in hours rather than days. However, the hourly volatility of prices is high—
on the order of 25% to 35%. Another important factor in the pricing of
electricity is that deseasonalized prices almost tripled over the 4-year period.
It is unlikely that electricity prices will continue to grow at this rate, so some
careful judgement is required to use the model on a forward-looking basis to
price electricity derivatives.
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