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1 Introduction

In this paper, we allow the (risk-neutral) drift and the volatility of the under-
lying asset vary as an arbitrary (continuous) function of the underlying asset
value and time. We develop a lattice technique for valuing derivative assets (in-
cluding real options) that have values dependent on the underlying asset. The
prior literature shows how to do this for specific functional forms for the drift
and volatility, such as for a lognormal diffusion. These papers do this by trans-
forming the diffusion to a simple diffusion, such as an additive normal diffusion
and generating a lattice with constant parameters.

We allow the lattice jumps to vary to accommodate the arbitrary changes
in the volatility. We accomplish this by defining a lattice and probabilities
on the lattice that achieve the correct volatility in the limit as the step size
vanishes even though the drift may be incorrect in the limit. Then we consider
a change of measure to correct the drift, in the spirit of a discrete-time version
of Girsanov’s theorem. The revised process converges to the desired underlying
process.

2 Asset Price Processes and Convergence from
Discrete- to Continuous-Time Processes

Consider a general stochastic differential equation:
∗Dan Calistrate wishes to thank the Mathematical Finance Laboratory at The University

of Calgary for supporting his recent post-doctoral fellowship appointment with partial funding
from MITACS.
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dSt = µ (S, t) dt+ σ (S, t) dWt where (1)

S0 = constant and t ∈ [0, T ] (2)

We allow for two possible interpretations of this process for the underlying asset
or state variable. First, it could represent the true stochastic process for a state
variable, and we are merely interested in approximating this with a discrete
process. Second, it could represent the “equivalent martingale process” for the
asset that is used for pricing the asset and derivatives of the asset by discounting
expected payoffs. This is sometimes called a risk-neutral process. In this case,
the drift µ (S, t) can be equivalently represented as true drift minus a systematic
risk premium, or as the return on the riskless asset r minus any convenience
yield (netted for the cost of carry) δ. In this interpretation, the discrete process
can be used to price and assess derivatives on the underlying asset. For example,
under this interpretation, we can assess real options to acquire a commodity by
undertaking a production process. The optimal time to build the production
system can be analyzed by backward recursion on a tree of project values that
is derived from the risk-neutral process for the underlying commodity.

We need suitable assumptions of smoothness and bounds on the local vari-
ation for the parameter functions µ and σ. More precisely, we will assume the
following:

Condition 1 µ is of class C1 (admits continuous partial derivatives) with re-
spect to S and it has locally bounded variation.1

Condition 2 σ is a strictly positive function of class C2 with respect to S and
C1 with respect to time t and it has locally bounded variation.

These conditions are sufficient to guarantee the existence and uniqueness of
weak solutions to (1) and are general enough to be satisfied by the majority of
price processes in financial models.

The goal is to obtain a sequence of recombining binomial (lattice) discrete
processes that converge in distribution to the solution of (1). Then we can
appeal to results of Nelson, Ramaswamy, Amin and Khanna [2], [1] to ensure
the convergence of discrete option prices to the continuous values for European
and, respectively American style payoffs. The general sufficient conditions for
convergence (on the binomial parameters) given by Nelson and Ramaswamy in
[2] will be used. First, we define the discrete processes:

1For any (ascending) collection of compact sets {Ci}i≥0, (such that Ci ⊂ Ci+1 for every

i, and ∪∞i=0Ci covers the spatial domain), and for every i ≥ 0, there exist ci, di > 0 so that
|µ (S, t)− µ (S′, t)| ≤ ci |S − S′| and |µ (S, t)− µ (S, t′)| ≤ di |t− t′| for any S, S′ ∈ Ci and
t, t′ ∈ [0, T ].
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Notation 3 For every positive integer n, we divide the time interval [0, T ] into
n discrete time intervals of length ∆t = hn := T/n. A binomial lattice process
will be uniquely determined by the values Sni,j at the nodes (i, j) of a binomial
lattice and by the discrete conditional probabilities pni,j. That is, the process will
transition from a node (i, j) to either (i+ 1, j + 1) or (i+ 1, j) with probabilities
pni,j and 1− pni,j, respectively. The first indices of S and p represent the current
number of discrete time intervals (t = in) and the second indices represent the
number of up-jumps experienced by S prior the time t. For any i and j, we call
a transition from (i, j) to (i+ 1, j + 1) an up-jump, and a transition from (i, j)
to (i+ 1, j) a down-jump.

The following conditions on the discrete process will ensure that the up- and
down-jumps in S decrease at a sufficiently fast rate and that the discrete first
and second moments “adequately” approximate the instantaneous continuous
ones. The conditions are formulated in the spirit of [2]:

Condition 4 For any interval [Smin, Smax] in the spatial domain,

lim
n→∞

sup
Smin≤Sni,j≤Smax

0≤i≤n−1

∣∣Sni+1,j+1 − Sni,j
∣∣ = 0

and

lim
n→∞

sup
Smin≤Sni,j≤Smax

0≤i≤n−1

∣∣Sni+1,j − Sni,j
∣∣ = 0

In other words, the up- and down-jumps uni,j := Sni+1,j+1 − Sni,j and dni,j :=
Sni+1,j − Sni,j , converge to zero uniformly on compact sets.

Definition 5 The discrete drift at a node (i, j) is

µni,j =
(
pni,j

(
Sni+1,j+1 − Sni,j

)
+
(
1− pni,j

) (
Sni+1,j − Sni,j

))
/hn.

The discrete (non-central) second moment at (i, j) is(
σni,j
)2 =

(
pni,j

(
Sni+1,j+1 − Sni,j

)2 +
(
1− pni,j

) (
Sni+1,j − Sni,j

)2)
/hn.

The second moment of the distribution and the variance of the distribution
differ by the square of the mean, which is O(h2

n), so that the difference between
the two becomes negligible in the limit as n→∞.

Condition 6 For any interval [Smin, Smax],

lim
n→∞

sup
Smin≤Sni,j≤Smax

0≤i≤n−1

∣∣µ (Sni,j , in)− µni,j∣∣ = 0

In other words, the discrete drift µn approaches µ as n→∞.
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Condition 7 For any interval [Smin, Smax],

lim
n→∞

sup
Smin≤Sni,j≤Smax

0≤i≤n−1

∣∣σ (Sni,j , in)− σni,j∣∣ = 0

The following theorem [2] gives the desired convergence property.

Theorem 8 If conditions 1, 2, 4, 6 and 7 are satisfied, then the discrete process
Sni converges weakly in distribution to the solution of (1).

3 Construction of The Binomial Lattice

3.1 The Basic Concept

The idea is to produce a discrete process that matches the second moment of
the continuous diffusion and has the first (discrete) moment altered with the
purpose of making recombination possible.2 Once this is achieved, an appro-
priate change in the discrete probabilities will force a match of the correct first
moment without affecting the second moment in the limit as hn → 0. We will
compute the discrete lattice parameters Sni,j for the altered process and keep the
same lattice for the corrected process. Denote the probability of an up-move at
node (i, j) by qni,j . The drifts µ∗ni,j of the altered process are determined recur-
sively backwards in time — this is back-folding for computing the underlying
tree itself!

At the end of the procedure, the discrete computed initial value Sn0,0 may
not equal the true initial value S0. We will then modify3 the start-up values on
the boundary {t = T} and repeat the procedure until Sn0,0 converges to S0.

This is useful if we desire the value of an option on the underlying asset
when the underlying asset price at time t = 0 is S0. If we desire an array of
option prices for various underlying asset prices at time 0, we might not need
to be so precise at ensuring the tree goes through S0 and instead start the tree
a few periods prior to time 0 so that the tree has several prices at time 0.

3.2 Recursive Computation of The Lattice

For the first iteration of the procedure and every 0 ≤ j ≤ i ≤ n, the computation
of the lattice points Sni,j , the conditional probabilities and the drifts of the altered
process qni,j and µ∗ni,j are computed recursively. The correct probabilities pni,j are
then calculated from the resulting lattice to approximate the desired drift of
the actual process (which may be the true or risk-neutral drift). We proceed
recursively as follows:

2Note that recombination is already implicitly assumed by the notation — indexing the
nodes of the tree by the number of up-jumps implies that the values of the discrete process
do not depend on the order in which these jumps ocurred.

3Several methods can be used here – we have experimented with a tangent (Newton type)
method that hits the correct initial value in only one and two iterations for normal and,
respectively lognormal difussions.
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3.2.1 The Boundary:

As the recursive computation requires knowledge of the discrete parameters at
the next time moment, we start the process by assigning the parameters at time
n.

Let j′ =
[
n+1

2

]
, where [x] denotes the largest integer less than or equal to x

and set

Snn,j′ = S0. (3)

Next, compute the asset values Snn,j at the last moment in time in such a way
that the differences between consecutive values equal twice the local standard
deviation, as given by the continuous process. This is chosen so that the discrete
process has the correct second moment in the limit. Set:

Snn,j+1 − Snn,j = 2 · σ
(

1
2
(
Snn,j + Snn,j+1

)
, nhn

)
·
√
hn for 0 ≤ j ≤ n− 1. (4)

The values of the probabilities and the drifts at the last time moment are
not relevant.

3.2.2 The recursive step

Assume everything is computed for all l > i.

1. We first define the time-i transformed drifts µ∗ni,j for the number of up-
jumps j ≤ i.
First, let j′ := arg maxj{Sni+1,j |Sni+1,j ≤ S0}
Recursively, define the transformed drifts at time i as follows:

µ∗ni,j′ = 0

For j ≥ j′:

µ∗ni,j+1 = µ∗ni,j +
1

2
√
hn

 σ
(
Sni+2,j+1, (i+ 2)hn

)
+σ
(
Sni+2,j+2, (i+ 2)hn

)
−2σ

(
Sni+1,j+1, (i+ 1)hn

)
 (5)

For j ≤ j′:

µ∗ni,j−1 = µ∗ni,j −
1

2
√
hn

 σ
(
Sni+2,j , (i+ 2)hn

)
+σ
(
Sni+2,j+1, (i+ 2)hn

)
−2σ

(
Sni+1,j , (i+ 1)hn

)
 (6)

When i = n− 1, however, Sni+2,· are not computed so we will use instead:
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2. Compute the node values for the asset at time i:

Sni,j =
1
2
(
Sni+1,j+1 + Sni+1,j

)
− 2hn · µ∗ni,j (7)

3. Compute the node values for the probabilities at time i:

qni,j =
hn · µ∗ni,j + Sni,j − Sni+1,j

Sni+1,j+1 − Sni+1,j

(8)

and

pni,j =
hn ·

(
µ
(
Sni,j , ihn

)
− µ∗ni,j

)
+ Sni,j − Sni+1,j

Sni+1,j+1 − Sni+1,j

(9)

Iterate the entire procedure by replacing the starting value S0 in equation 3
by a new starting value. The goal is to end up with Sn0,0 within a specified
error away from the correct initial value S0. We denote by S0 (k) the starting
value in equation 3 at the beginning of the kth iteration. Of course, on the first
iteration:

S0 (1) = S0.

Then,

S0 (k) = S0 (k − 1) · S0

S0,0 (k − 1)

Here, S0,0 (k − 1) denotes the value Sn0,0 obtained at the root of the lattice after
the (k − 1)th iteration. Stop the iteration when

|S0 − S0,0 (k − 1)| ≤ εn

where εn > 0 is a pre-determined error margin.

3.3 Proof of Convergence

We prove that conditions 4, 6 and 7 are satisfied and therefore the discrete
process converges to the continuous diffusion as hn → 0.

The steps of the proof:

• Step1

Show inductively on i that the following relationship holds for every i, j
and n:

Sni,j+1 − Sni,j = 2 · σ
(
Sni+1,j+1, (i+ 1)hn

)
·
√
hn. (10)
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For i = n, equation 10 is satisfied because of the choice of the boundary
values for σ and equation 4. Assume now that equation 10 holds for every
i′ > i. To show it holds for i, we first obtain the terms in the left side
from equation 7:

Sni,j+1 =
1
2
(
Sni+1,j+2 + Sni+1,j+1

)
− 2hn · µ∗ni,j+1

Sni,j =
1
2
(
Sni+1,j+1 + Sni+1,j

)
− 2hn · µ∗ni,j

The left side of equation 10 becomes

Sni,j+1 − Sni,j =
1
2
(
Sni+1,j+2 − Sni+1,j+1

)
+

1
2
(
Sni+1,j+1 − Sni+1,j

)
(11)

− 2hn
(
µ∗ni,j+1 − µ∗ni,j

)
(12)

The expressions
(
Sni+1,j+2 − Sni+1,j+1

)
and

(
Sni+1,j+1 − Sni+1,j

)
satisfy the

induction hypothesis equation 10 and can be replaced in equation 11. Also,
µ∗ni,j+1 and µ∗ni,j can be replaced with the expressions given by equations 5
or 6 (depending on j). Simple algebra turns equation 10 into an identity
and the proof of the inductive step is completed.

• Step 2

Assume without loss of generality that j ≥ j
′

and note that equation 5 can
be written as follows:

µ∗ni,j+1 − µ∗ni,j =

1
2
√
hn


2σ
(
Sni+1,j+1, (i+ 2)hn

)
− 2σ

(
Sni+1,j+1, (i+ 1)hn

)
+2σ

(
Sni+2,j+1+Sni+2,j+2

2 , (i+ 2)hn
)
− 2σ

(
Sni+1,j+1, (i+ 2)hn

)
+σ
(
Sni+2,j+1, (i+ 2)hn

)
+ σ

(
Sni+2,j+2, (i+ 2)hn

)
−2σ

(
Sni+2,j+!+S

n
i+2,j+2

2 , (i+ 2)hn
)


(13)

Using the notation o (En) for an expression that is negligible with respect
to En when n→∞, we have a limiting function v = µ∗ where:

µ∗ni,j+1 − µ∗ni,j = ∂Sµ · 2σ
√
hn + o

(√
hn

)
,

2σ
(
Sni+1,j+1, (i+ 2)hn

)
− 2σ

(
Sni+1,j+1, (i+ 1)hn

)
= 2 · ∂tσ · hn + o (hn) ,

2σ
(
Sni+2,j+1 + Sni+2,j+2

2
, (i+ 2)hn

)
− 2σ

(
Sni+1,j+1, (i+ 2)hn

)
= 2 · ∂Sσ · 2hnµ∗ + o (hn)
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and

σ
(
Sni+2,j+1, (i+ 2)hn

)
+ σ

(
Sni+2,j+2, (i+ 2)hn

)
− 2σ

(
Sni+2,j+1 + Sni+2,j+2

2
, (i+ 2)hn

)
= ∂SSσ ·

(
σ
√
hn

)2

+ o (hn) =

= ∂SSσ · σ2hn + o (hn)

Multiplying through equation 13 by 1
2
√
hn

, followed by a re-arrangement of the
terms, leads to

σ · ∂Sµ∗ =
1
2
µ∗ · ∂tσ + µ∗ · ∂Sσ +

1
4
σ2 · ∂SSσ + o (1)

where o (1) is a remainder that goes to zero when n → ∞. Therefore, the
computed discrete modified drift µ∗ converges to the solution v of the differential
equation 14.

Let

v (S, t) =
1
2
σ (S, t) ·

∫ S

S0

(
∂tσ (s, t)
σ2 (s, t)

+
1
2
∂SSσ (s, t)

)
ds

be the solution to the differential equation

σ · ∂Sv − v · ∂Sσ −
1
2
∂tσ −

1
4
· σ2 · ∂SSσ = 0 (14)

with boundary condition

v (S0, t) = 0 for t ∈ [0, T ] .

Then, the following equation (similar to the one given by Condition 6) holds:

lim
n→∞

sup
Smin≤Sni,j≤Smax

0≤i≤n−1

∣∣v (Sni,j , ihn)− µ∗ni,j ∣∣ = 0 (15)

It can be derived from the fact that the recursive definition of µ∗ni,j is a valid
finite-difference discretization of v in the above differential equation. Also, note
that v satisfies Condition 1.

• Step 3

Show that the discrete volatilities implicitly defined by(
σni,j
)2 =

(
qni,j
(
Sni+1,j+1 − Sni,j

)2 +
(
1− qni,j

) (
Sni+1,j − Sni,j

)2)
/hn

where

qni,j =
hn · µ∗ni,j + Sni,j − Sni+1,j

Sni+1,j+1 − Sni+1,j
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satisfy Condition 7. This is “straightforward” algebra as long as

0 ≤ qni,j ≤ 1.

• Step 4

Using the theorem in the previous section, conclude that the sequence of
discrete processes given by

(
Sni,j , q

n
i,j

)
is converging to the solution of

dSt = v (S, t) dt+ σ (S, t) dWt.

• Step 5

The discrete processes with corrected probabilities pni,j converges to the
original diffusion as the new discrete second moments

(σ′ni,j)
2 =

(
pni,j

(
Sni+1,j+1 − Sni,j

)2 +
(
1− pni,j

) (
Sni+1,j − Sni,j

)2)
/hn

still satisfy Condition 7. This statement can be regarded as a discrete
consequence of Girsanov’s Theorem, namely that changing the probability
measure to match a different drift does not change the variance of the
process. In the discrete setting, it is enough to show that

(
σni,j
)2−(σ′ni,j)

2 =
o (1) uniformly on compacts of the form [Smin, Smax]× [0, T ].

4 Numerical Examples

A first example of an application will be to price a European and an American
call option written on an underlying S which (in risk-neutralized form) follows
a generalized diffusion:

dSt = α (L− S) dt+ a exp (bt) dWt

where:

• α is the strength of mean-reversion

• L is a (constant) long term mean

• a and b are parameters that give an exponential growth formulation for
the (absolute) volatility

We assume that possession of the underlying incurs a net dividend yield δ at
each moment in time and it is expressed as an annualized (constant) proportion
of the underlying.

The following values for the input parameters will be used as the starting
point:
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• Riskless rate r = 5%

• Value of S at time zero S0 = 100$

• Time to expiry T = 1 year

• Strike price K = 100$

• α = 0.5

• L = 100$

• δ = 10%

• a = 100$

• b = 0.1

• Number of discrete time steps n = 200

The computed values of the European and American call options with the
above contract and model specifications are

E = 26.758$

and, respectively

A = 34.695$.

The following table displays the option values when one parameter at a time
is changed as indicated in the left coloumn:

European American
Base case 26.758 34.695
T = 0.5 22.200 25.291
T = 2 30.170 48.368
K = 90 31.518 40.325
K = 110 22.712 29.686
α = 0 32.910 35.864
α = 1 22.612 34.239
L = 80 23.643 32.181
L = 120 30.131 37.410
a = 50 11.821 16.090
a = 150 41.781 53.366
b = 0 25.495 33.046
b = 0.2 28.183 36.502
δ = −5% 31.325 37.652
δ = −15% 36.592 41.105
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