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Abstract

This paper considers the impact of Knightian uncertainty or ambiguity about the re-

liability of a patient’s acquired comorbidities and risk factors as predictors of treatment

outcome on the optimal time to initiate treatment. I show that high levels of such ambigu-

ity is detrimental to patient welfare. Hence, learning about the clinical state (comprised of

the comorbidities and risk factors) as a predictor of treatment outcome in order to resolve,

at least partially, this ambiguity is crucial to improving their welfare.

The learning is achieved via a sequential hypothesis test in which the clinician will only

treat if her ambiguity about outcome is sufficiently low; i.e., below some threshold which is

derived based on the cost of making a wrong decision by treating. I show that learning in

this way does indeed improve patient welfare with respect to the optimal treatment (timing)

strategy.

The paper concludes with a discussion on the practical considerations for clinicians, how

they can use these results in managing patient care, and notes that the results support spe-

cialisation across hospitals so that certain treatments are only carried out a small number

of specialist centres.

Keywords : Decision analysis; Ambiguity; Sequential hypothesis testing.

1 Introduction

It is the job of the healthcare provider (hereafter referred to as the clinician) to ensure that the

decisions she makes about her patients’ care are optimal. This can only be achieved if patients

are receiving the right treatment at the most appropriate time. In this paper, the treatment

that is being given is not in question, but rather the timing of initiating it. Determining the

optimal time to treat a patient is a critical part of their care. Its importance is recognised by

clinicians, but determining the timing remains a challenge for many. For example, Crossland

et al. [2019] conduct a study of cardiac transplantation in a group of patients born with a
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particular congenital cardiac condition. They point out that “the optimal timing for listing

and transplanting these patients is key to improving outcomes”. The point is echoed in Kenny

et al. [2018] who say that determining this optimal time is challenging and having a greater

“understanding of this can help guide decision making” with regard to treatment. Tretter and

Redington [2018] analyse the treatment of pulmonary valve replacement (PVR) in patients with

a different congenital condition. They point out that for many patients with that condition,

PVR is inevitable, but that “it is, of course, all about timing”.

Delaney [2021] addresses the timing issue in healthcare treatment and develops a model

in which two thresholds on a patient’s clinical status score are derived based on real options

techniques. If the patient’s score is above the upper threshold, the patient is too well for

treatment now, and if it is below the lower threshold, the patient is too unwell for treatment.

However, if their clinical status score is between the two thresholds, the optimal strategy is

to treat the patient. That paper was anchored in the example of cardiac transplantation for

patients born with a cardiac condition discussed in Crossland et al. [2019]. However, the model

is generalisable and is currently being trialled for use in determining the optimal time for PVR

in an entirely different population of patients.

In that model (Delaney [2021]), the clinician is considering whether to provide risky life-

saving treatment to the patient and the patient’s acquired comorbidities and risk factors define

his clinical state. On one hand, the treatment is very risky so the patient needs to be in a

clinical state that is sufficiently low to justify the risk of treatment, but on the other hand, if

the patient is too unwell and the clinical state is too low, the treatment outcome will most likely

be bad. The clinician’s objective is to determine the optimal time, with respect to clinical state,

to perform the treatment such that the expectation of a good outcome is maximised.

Furthermore, the patient’s clinical state serves as a signal to the clinician about his likely

outcome from treatment, and it is assumed that the signal is only an accurate reflection of

the true outcome with some probability less than one. Indeed, in the context of healthcare

treatment, this is a natural assumption as patients often do not respond to treatment. As

Tretter and Redington [2018] say, “If there were no adverse consequences to PVR, the timing

question would be irrelevant”.

Now say s denotes a particular clinical state and say there are a number of different hospitals

all providing the treatment being considered. Moreover, say that for each hospital, retrospective

data shows that in their cohort of patients who had the treatment in state s, the proportion of

patients who did well from treatment varied across the hospitals. For example, Berg et al. [2017]

conducted an analysis to identify a set of preoperative risk factors and comorbidities that were

associated with a greater risk of post-operative mortality in patients who received a cardiac

transplant at UCLH Medical Center between 1991 and 2014. They developed a scoring system

based on the hazard ratio associated with each risk factor and comorbidity and patients were

scored according to what risk factors and comorbidities they had acquired. This score defined

the patient’s clinical state and patients were stratified according to their state.

The study was replicated by Polyviou et al. [2018] who conducted the analysis on a patient

cohort who also received cardiac transplant over a similar period in a UK hospital. They scored
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and stratified their patients according to the same criteria as in the Berg et al. [2017] study.

However, the results on postoperative mortality according to each strata (i.e., clinical state)

were very heterogeneous across the two cohorts. For example, for patients in the worst clinical

state, mortality in the Berg et al. [2017] study was 88%, but only 16% in the Polyviou et al.

[2018] study, whereas in the group of patients in the best clinical state, the mortality was 0%

and 33%, respectively.

Since it is reasonable to presume that the treatment will only be performed if the clinician

is sufficiently convinced that the outcome will be successful, the probability that s is a correct

reflection of the true outcome is equivalent to the success rate conditional on s. If this success

rate is heterogeneous across hospitals, as in the example mentioned above, the true (conditional)

success probability cannot be known with certainty.

In Delaney [2021], as in many standard real options models, the underlying assumption

is that the decision maker is perfectly certain about the probability measure characterising

the uncertainty over the future outcome. In other words, there is no distinction between risk,

where the probabilities of the outcomes of an uncertain event can be measured, and uncertainty,

where such probabilities cannot be measured. This distinction is emphasised by Knight [1921]

who stresses that uncertainty is more realistic in decision making settings. As such, such

uncertainty has become widely known in the academic literature as Knightian uncertainty or

ambiguity. Indeed, as the above example illustrates, ambiguity is present in clinical contexts

and, in particular, over the reliability of a patient’s clinical state as a predictor of outcome from

treatment (i.e., over signal quality).

In this paper, I examine the impact of this ambiguity over signal quality on the optimal

treatment strategy of the clinician. The main motivation for this is clear from the example

described; i.e., that the perfect certainty assumption over the signal quality is lacking in practical

realism.

In the next section, I present the model with ambiguity. It is closely related to the model

in Delaney [2021] but, instead, I assume that a signal arrives every period. This is to simplify

the analysis sufficiently so that the effect of ambiguity on the optimal treatment threshold can

be ascertained. I find that if the clinician has a high degree of ambiguity over the patient’s

clinical status as a predictor of treatment outcome (signal quality), the optimal strategy should

be to treat him even if she does not expect him to do well from treatment. The reason is that

ambiguity over signal quality reduces the value of waiting to obtain further signals on outcome

and, hence, more immediate treatment is optimal before the patient’s clinical state deteriorates

further. However, this optimal strategy is clearly questionable and counter-intuitive. Hence, as-

suming the clinician adheres to the optimal treatment strategy, I examine the effect of ambiguity

on patient welfare.

Importantly, I find that ambiguity has a negative impact on patient welfare because patients

may be treated in very poor clinical states if the clinical state is not a reliable predictor of

outcome. As such, this highlights the importance of reducing ambiguity over clinical state as a

predictor of outcome if such an optimal strategy is adhered to. However, as I argue in the next

paragraph, the optimal strategy itself is not to be dismissed and has the potential to be of huge
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value in practical clinical decision making contexts.

The optimal strategy is one of timing and is derived using techniques from real options

analysis. Real options analysis is more commonly used in corporate investment decision making

contexts and is underpinned by three important characteristics (i) uncertainty over outcome,

(ii) irreversibility and (iii) flexibility over timing. In the context of medical decision making

and patient care management, (i) outcome is uncertain, (ii) if the patient does not do well from

treatment (for example, they die after surgery), this cannot be undone, and (iii) “watchful wait-

ing” is very important for clinicians as it “increases information upon which a clinical decision

can be made” (Driffield and Smith [2007]). Therefore, it is appropriate to use such techniques in

medical decision making. Driffield and Smith [2007] give examples of the application of real op-

tions in medical decision making for glue ear and small abdominal aortic aneurysms. However,

they make the point that in those studies, deferral is not properly modelled because treatment

cannot be initiated at any time if the patient deteriorates quickly. The model in Delaney [2021]

(of which the model in this paper is a special case) does not have such stipulations over treat-

ment timing. Most importantly, it addresses the needs called for in the medical literature for

such a timing rule. As well as the points cited above, Polyviou et al. [2018] says “there is a

need for tools to help guide decision-making . . . ” (the context being with regard to timing)

and Geva et al. [2018] “Our results highlight several observations pertaining to the timing of

PVR. . . (clinical markers) do not fully define the inflection point of individual predictors. . . From

the clinician’s perspective, it would be helpful to define the window during which the risk of

poor outcomes begins to increase while the disease process has not transitioned from reversible

to irreversible. . . it would be ideal not to implant a PVR too early in asymptomatic patients

with stable disease who are at low risk of adverse outcomes”. The latter cites further evidence

in support of such a timing rule (in the interest of space, see references therein). The optimal

timing strategy derived in Delaney [2021] is exactly as called for in Geva et al. [2018].

The model in this paper is a special case of the model in Delaney [2021]. The difference

is that in this model, the patient’s clinical status changes continuously. Since age is a risk

factor for many treatments of serious illness, it could be argued that, indeed, a patient’s clinical

status is continuously changing as they are always ageing. However, in practical terms, it

is difficult to apply the model with this assumption. But, on the other hand, making this

restrictive assumption allows for the impact of ambiguity to be easily determined. Once its

effect is known, which as pointed out above, is that it has a negative effect on patient welfare,

the next step is to find a practical means of reducing ambiguity sufficiently so that the model in

Delaney [2021] can be used in clinical decision-making. The second part of this paper focuses

on this task.

The idea is that the clinician will only treat a patient in a particular clinical state if her

ambiguity over that clinical state as a predictor of outcome is below a certain threshold. This

ambiguity threshold is determined by solving for another optimal stopping problem in which

the clinician is learning and researching if her ambiguity is above the threshold; i.e., it is not

low. She will not treat the patient in that clinical state if she is learning to resolve ambiguity.

Contributions to the literature on ambiguity with active learning appear to be limited to
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the studies of Epstein and Schneider [2007], Miao and Wang [2011] and Epstein and Ji [2020].

Epstein and Schneider [2007] present a framework of learning under ambiguity in a discrete

time set-up and Miao and Wang [2011] apply the framework to a job search problem. Epstein

and Ji [2020], however, adapt the framework of Epstein and Schneider [2007] to a continuous

time setting, but the optimal stopping problem they address differs markedly from mine. The

optimal stopping problem over learning in this paper is more closely related to Peskir and

Shiryaev [2006] (Chapter 21) in that it addresses the problem of learning to resolve ambiguity

as a sequential hypothesis test with the objective to minimise loss. In the context of medical

decision making, this is appropriate as the loss from learning and, importantly, of making a

wrong decision by treating a patient that is too well or too unwell, is a negative impact on their

quality of life. I provide the technical solution for the rule and, subsequently, in the section that

follows, I discuss the applicability of the rule in clinical settings.

Throughout the paper, wherever appropriate, I provide accompanying intuitive examples to

support and explain the technicalities of the techniques used. The remainder of the paper is

organised as follows. In the next section, I present the set-up for the model. In Section 3 I

present the optimal treatment strategy in the case of ambiguity and in Section 4, I examine the

effect of this ambiguity on patient welfare by adhering to the optimal treatment strategy derived.

In Section 5, I address the issue of learning to resolve ambiguity and improve patient welfare

and discuss how this can be achieved. Concluding remarks about the practical implications of

the results and what they mean for practising clinicians are considered in Section 6. The proofs

of all the main results are placed in the Appendix.

2 The Model

2.1 General Set-Up and Ambiguity-Free Dynamics

Consider a clinician with the option to treat a patient whose outcome from treatment can be

Good (G), leading to an improvement in quality of life, or Bad (B), leading to a worsening

in quality of life. The patient’s current quality of life is I > 0 and this represents a cost of

treatment (cf. Delaney [2021]); i.e., the patient gives up this quality of life for a better or

worse state. If the outcome is G, the patient’s quality of life improves by an amount of at least

V G > 0, but if the outcome is B, the improvement is V B < 0. For expositional ease, I let

V B = 0 hereafter. The problem for the clinician is to determine the optimal time to treat so

that the patient’s expected quality of life from treatment is maximised.

Let time be continuous and indexed by t ≥ 0. Ex ante, the clinician is uncertain about the

treatment outcome but, at discrete intervals, the patient develops (or recovers from) comorbidi-

ties and risk factors. The comorbidities and risk factors that the patient has at time t defines his

clinical state at time t and this is a signal of the likely outcome from treatment. The uncertainty

about each outcome is modelled on a probability-statistical space (Ω;F ;Pπ, π ∈ [0, 1]) and the

process (πt)t≥0 represents the probability that the outcome is G. Let γ be a random variable

such that γ = 1 if the true outcome is G and γ = 0 if the true outcome is B. Further let P1 and

P0 be degenerate distributions such that P1(γ = 1) = 1 and P0(γ = 0) = 1; i.e., representing
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the true outcomes of G and B, respectively. Therefore, the structure of Pπ is as follows:

Pπ = πP1 + (1− π)P0.

A patient’s clinical state (signal), however, is not always an accurate reflection of what the

true outcome ends up being; i.e., a signal that is interpreted as being indicative of G may

actually result in B and, as such, is deemed an incorrect signal. I let λ denote the probability

that the signal is a correct reflection of the true outcome; i.e., if the signal is indicative of a G

(B) outcome and the true outcome is G (B), then the signal is correct. Let P j
γ for j = {G,B} be

degenerate distributions representing the true correctness of the signal such that the outcome

is γ and the signal is indicative of a j outcome. Therefore

λ = PG
1 = PB

0 and (1− λ) = PG
0 = PB

1 .

Because time is continuous, yet signals are received discretely, we need to construct (on the

probability space) a discrete-time representation of the log-likelihood ratio process of signal

arrivals (Lt)t≥0 and then apply a random walk approximation to derive a Brownian motion

driven stochastic differential equation describing the clinician’s belief process in which the signals

arrive continuously.

In Appendix A I derive the dynamics of the (Lt)t≥0 as being (see also Dalby et al. [2018])

dLt = (2γ − 1)
σ2
L

2
dt+ σLdWt, (1)

where σL is constant and (Wt)t≥0 is a standard Brownian motion under Pπ. The observable

process (Lt)t≥0 generates the filtration FL = (FL
t )t≥0 which is augmented with the Pπ-null

sets; i.e., it is a sub-filtration of F . If we view F as representing complete information, then

FL represents the available information and, since it is under the available information that

the clinician makes her decision, the following assumption is crucial and common when dealing

with incomplete information.

Let there be a standard Brownian motion W̃ = (W̃t)t≥0 on the filtered probability space

(Ω;FL;Pπ, π ∈ [0, 1]) such that the augmented natural filtration generated by W̃ is identical

to FL (Miao [2009]). This Brownian motion is typically referred to in the literature as the

innovation process. In essence, what this implies is that if we solve the problem with respect to

the filtered probability space, such that the standard Brownian motion representing uncertainty

in the dynamics of Lt is W̃t, then we can solve the problem under complete information. This

is known as the separation principle in the control literature (see, for example, Flemming and

Rishel [1975]). It states that optimal control problems involving incomplete information can be

solved separately as two independant problems: (i) of filtering and (ii) of control under complete

information (Miao [2009]).

The first step is that of filtering and this involves transforming Lt so that its dynamics are

represented entirely by the filtered probability space. By applying the procedure set out in

the literature on filtering (e.g. Lipster and Shiryaev [1977]), replace (2γ − 1) by its estimate
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2(π1 + (1− π)0) − 1 = 2π − 1 in Eq. (1) so that

dLt =(2πt − 1)
σ2
L

2
dt+ (2γ − 1)

σ2
L

2
dt+ σLdWt − (2πt − 1)

σ2
L

2
dt

=(2πt − 1)
σ2
L

2
dt+

(
dLt − (2πt − 1)

σ2
L

2
dt

)

=σ2
Lπtdt+ σL

(
1

σL
dLt − σLπtdt

)

=σ2
Lπtdt+ σLdW̃t,

(2)

where dW̃t =
1
σL

dLt − σLπtdt.

Assuming that the prior t = 0 probability in a G outcome is π0 = 1/2, the a posteriori

probability process (πt)t≥0 is expressed as

πt =
ϕt

1 + ϕt
(3)

such that the likelihood ratio process (ϕt)t≥0 is defined by the Radon-Nikodym derivative

ϕt =
d(PG

1 |FL
t )

d(PG
0 |FL

t )
= eLt−

σ2
L
2
t. (4)

and, by an application of Ito’s lemma, is found to solve the stochastic differential equation

(cf. Peskir and Shiryaev [2006] pg. 188)

dπt = σLπt(1− πt)dW̃t. (5)

2.2 Dynamics under Ambiguity

So far, it has been assumed that the clinician is perfectly certain that the probability of the

patient’s clinical state being a correct reflection of the true outcome from treatment is some

constant λ. However, as previously explained, this is lacking in practical realism. In this

subsection, I assume that the clinician lacks certainty in the signal quality parameter and, in

this way, she is ambiguous over the probability measure generating the likelihood process (Lt)t≥0

and, thus, over the posterior belief process (πt)t≥0.

2.2.1 Intuitive Example

Before proceeding with the technical modelling, I provide an intuitive example as follows. Say

there are three hospitals H which perform this particular treatment so that H = {A,B,C}.
Each hospital has data on the outcomes for patients that had the treatment in a particular

clinical state t at that H. From the data of their patient cohort, they can determine a λH
t

denoting the probability that the clinical state t was a correct predictor of the true outcome;

eg., in hospital A, 70% of their patients treated in state t had a successful outcome, in B, 30%

and in C, 56%. This depicts how ambiguity may arise over the quality of the clinical state as a

predictor of treatment outcome.
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Now a clinician treating a patient in clinical state t has a reference probability regarding

the signal quality. Say her reference probability is λA
t = 70%. This λA

t is associated with the

reference probability measure Pπ and with the associated density generator θAt = 0. The other

probabilities λB
t and λC

t are associated with different density generators for state t, θBt and θCt ,

respectively. Later I provide technical detail on how the generators arise. An example for the

set of density generators is as follows:

Θ =



θA1 θB1 θC1
θA2 θB2 θC2
θA3 θB3 θC3


 (6)

where the columns pertain to the hospital and the rows to the clinical state. One generator

for each state will be the clinician’s reference generator and, therefore, zero. However, if the

values of the other generators differ widely from the zero, then this implies the probabilities

representing signal quality are also very disparate across hospitals. Hence, the extent of the

deviation characterises the clinician’s degree of ambiguity.

2.2.2 Technical Modelling

Assume that for some process θ = (θt)0≤t≤τ ∈ Θ, a process (zθt )0≤t<τ is the unique solution to

dzθt = −zθt θtdW̃t, (7)

with zθ0 = 1. The process θ is a density generator if zθt is a martingale under Pπ (Nishimura

and Ozaki [2007]). It will be a martingale under Pπ if it satisfies Novikov’s condition that

EPπ

[
exp

(
1
2

∫ T
0 θ2sds

)]
< ∞. We assume then that θ is a density generator and therefore

generates another probability measure Qθ from Pπ via the Radon-Nikodym derivative

zθτ =
dQθ

dPπ
(8)

and, since zθt is a Pπ-martingale, it is shown in Nishimura and Ozaki [2007] that Qθ is equivalent

to Pπ. Moreover, any probability measure that is equivalent to Pπ can be generated by some

density generator via Eq. (8).

Let PΘ
π denote the set of probability measures equivalent to Pπ that are generated by θ

according to (8) so that the set

PΘ
π := {Qθ|θ ∈ Θ}.

Now, by Girsanov’s theorem (cf. Karatzas and Shreve [1991], Theorem 5.1), W θ
t = W̃t+

∫ t
0 θsds

is a standard Brownian motion with respect to Qθ so that the dynamics of the posterior belief

process (5) becomes, under the probability measure Qθ,

dπt = −σLθtπt(1− πt)dt+ σLπt(1− πt)dW
θ
t , (9)

with θt varying. Using this representation, the clinician now considers the belief dynamics for all
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probability measures Qθ ∈ PΘ
π (equivalently, for all θ ∈ Θ), such that each probability measure/

density generator represents a particular signal quality.

However, in order to use this set Θ of density generators to characterise her ambiguity,

we assume it (and the corresponding set of probability measures it generates PΘ
π ) is strongly

rectangular1. The intuition for why this is an important assumption is explained in the next

section when the optimal stopping problem has been defined. However, rectangularity implies

that for each outcome X ∈ L2(Ω,FL, Pπ), there exists a Qθ∗ ∈ PΘ
π such that for all t ≥ 0,

EQθ∗
[X|FL

t ] = min
θ∈Θ

EQθ

[X|FL
t ]

(cf. Chen and Epstein [2002] Theorem 2.1). Rectangularity ensures dynamic consistency in the

sense that the global minimisation over Θ is equivalent to repeated local minimisations over Θ.

Consequently, the uncertainty about the outcome being G or B is represented by a family

of filtered probability spaces defined by (Ω;FL;PΘ
π ).

As in much of the related literature (see, for example, Chen and Epstein [2002]; Nishimura

and Ozaki [2007]; Trojanowska and Kort [2010]), I let the measures in PΘ
π deviate only within

a small neighbourhood around the reference measure Pπ. The reference measure corresponds

with the generator θt = 0 (cf. Eq.(5) vs. Eq. (9)). Hence, let

Θ := {θ = (θt)t≥0|θ ∈ [−κ, κ]} (10)

in which κ = 0 represents no deviation from the reference measure and, hence, zero ambiguity.

Higher values of κ imply a greater degree of ambiguity. This form of ambiguity is more generally

known as κ-ignorance.

The final point that needs to be addressed before proceeding to the optimal stopping problem

is the following. Under κ-ignorance, the Radon-Nikodym derivative defined by Eq. (8) satisfies

Novikov’s condition only when the option’s life horizon is finite. In other words, equivalence

of measures is not ensured over an infinite horizon and Girsanov’s theorem does not apply.

However, it is analytically much more tractable to solve for optimal stopping problems when

options are infinitely-lived. Moreover, as pointed out in Trojanowska and Kort [2010], “In

practice, it does not really matter whether the option to invest exists over a sufficiently long

time horizon or an infinite one so long as the project has finite life time”. In my model, the

project is the treatment and it is finite in the sense that once performed, the outcome is known

and fixed. As such, given that the set Θ is defined by (10), we follow the literature2 by making

the assumption that for every θ ∈ [−κ, κ], the solution to Eq. (7) is a martingale.

1A full technical definition and outline of the concept in a continuous time setting is provided in Chen and
Epstein [2002] pp. 1411.

2See, for example, Nishimura and Ozaki [2007] and references therein.
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3 The Optimal Stopping Problem

3.1 The Optimal Stopping Problem Set-Up

The clinician is assumed to be ambiguity averse which has been supported by experimental

evidence since the seminal study by Ellsberg [1961]3. To characterise this ambiguity aversion, I

follow the approach commonly used in the literature (devised by Gilboa and Schmeidler [1989])

by assuming her objective is to optimally treat under the worst possible outcome. Note that

there are situations in which this assumption of extreme ambiguity aversion is not appropriate.

For example, Heath and Tversky [1991] show that decision makers who have a high degree of

self-confidence seek out ambiguous situations and Bhide [2000] states “low ambiguity aversion

of the individuals who start promising businesses derives from exceptionally high levels of self-

confidence”. Moreover, there are studies, see for example, Schroder [2011], which examine

the effect of ambiguity attitudes on the optimal stopping strategy. However, in the context

of medical decision making, when patients’ health and quality of life are at stake, it is not

appropriate for the clinician to be anything other than highly averse to ambiguity.

The utility function must permit the distinction between risk and ambiguity and, hence,

has a recursive structure in line with the Chen and Epstein [2002] notion of recursive multiple

priors utility. As such, the optimal stopping problem takes the form

V ∗(πt) :=max
τ>t

min
θ∈Θ

EQθ [(
πτ (θτ )(V

G − I) + (1− πτ (θt))(0 − I)
) ∣∣FL

t

]

=max
τ>t

min
θ∈Θ

EQθ [(
πτ (θτ )V

G − I
) ∣∣FL

t

] (11)

such that πt(θt)V
G−I > 0, τ the time of treatment, the minimum operator reflects her aversion

to ambiguity, and πt(θt) denotes her probabilistic belief in a G outcome at time t conditional

on θt which is the density generator characterising her ambiguity over signal quality at time t.

The belief dynamics are defined by Eq. (9).

As stated previously, the set of density generators Θ and the corresponding set of proba-

bility measures PΘ
π are assumed to strongly rectangular. With respect to the hospital example

described above, this assumption implies that all hospitals that perform this particular treat-

ment are elements in Θ. Otherwise, there could be some other hospital D whose data is not

considered by the clinician when making the decision (θD /∈ Θ), but whose density generator

generates another probability measure equivalent to the reference measure Pπ. However, θD

could yield the worst possible outcome for at least one clinical state t. For an ambiguity-averse

clinician, it is important that this is not the case and the rectangularity assumption circumvents

this by assuming there is no such hospital D; in other words, all possible hospitals perform-

ing the treatment are elements of Θ. It also ensures that the required dynamic consistency

across all probability measures in the continuation region is satisfied. Considering a rectangular

3The Ellsberg Paradox suggests agents prefer to act on known rather than unknown ambiguous probabilities.
This contradicts the Bayesian paradigm of a single probability measure underlying choices (Miao and Wang
[2011]).
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Θ defined by, for example, (6), it is clear that minΘ = min(min(θH1 ),min(θH2 ),min(θH3 )), for

H = {A,B,C}.

Returning to the problem more generally, it is shown in Appendix B that the value function

V ∗(πt) solves the following Hamilton-Jacobi-Bellman equation

V ∗(πt) = max
{
πt(κ)V

G − I,

(
1

2
σ2
Lπ

2
t (1− πt)

2V ′′
t − σLκπt(1− πt)V

′
t

)
dt+ Vt

}
, (12)

where V (πt) ∈ C2 is assumed to be an increasing convex function such that V (πt) > πtV
G − I.

A necessary condition for optimal stopping is that the value function V ∗(πt) dominates the

payoff function πtV
G − I for all t ≥ 0 (Peskir and Shiryaev [2006]). Eq. (12) implies that

πt(κ)V
G − I − V ∗(πt) ≤ 0, thus ensuring this condition is satisfied.

The second argument in the HJB equation (12) implies that the value in the continuation

(or planning) region solves the following ODE

1

2
σ2
Lπ

2(1− π)2V ′′ − σLκπ(1 − π)V ′ = 0 (13)

and this is subject to the boundary condition limπ→0 V (0) = 0 implying that as the expected

belief in a G outcome tends to zero, the value of treating is always zero.

According to the value-matching condition, at the threshold π∗ above which it is optimal to

treat,

π∗V G − I = V (π∗), (14)

where V (πt) is a general solution to (13) and, by the smooth pasting condition,

V G = V ′(π∗). (15)

Hence, the threshold π∗ satisfies the following equation:

V G

V ′(π∗)
=

π∗V G − I

V (π∗)
. (16)

The second condition for optimal stopping is that the value function is superharmonic; i.e.,

that V ∗(πt) ≥ minθ∈ΘEQθ
[
(
π∗V G − I

)
]. The superharmonicity condition ensures the unique-

ness of the solution. It is effectively the second order condition of the optimisation problem.

Eq. (16) is the first order condition and, therefore, V ∗(πt) is superharmonic if

−V ′′(π∗)V G

V ′(π∗)2
− V (π∗)V G − (π∗V G − I)V ′(π∗)

V (π∗)2
< 0 ⇐⇒ V ′′(π∗) > 0. (17)

This is satisfied by the convexity of V (πt).

The analytic solution to the optimal stopping problem (11) is then stated in the following

proposition.

Proposition 1. Let πτ := π∗ be such that τ := inf{t ≥ 0|πt ≥ π∗} and let β1 = 2κ/σL +1 > 0.

If the Knightian uncertainty that the ambiguity averse clinician faces is κ-ignorance, then her

11



value function is equal to

V ∗(πt) =





πt(κ)V
G − I for πt(κ) ≥ π∗

(
π∗V G − I

) (πt(κ)
π∗

)β1
(∑∞

k=0
πk
t (κ)ak(β1)∑∞

k=0
(π∗)kak(β1)

)
for πt(κ) < π∗,

(18)

where π∗ solves

π∗V G

π∗V G − I
= β1 +

(∑∞
k=0 k(π

∗)kak(β1)∑∞
k=0(π

∗)kak(β1)

)
, (19)

for a0(β1) = 1; a1(β1) =
β1

β1+1

(
κ−σL(β−1)
1

2
σLβ1−κ

)
, and ak(β1) satisfies (for k > 1)

(
1

2
σL(β1 + k − 1)− κ

)
(β1 + k)ak(β1)

=(β1 + k − 1) (σL(β1 + k − 2)− κ) ak−1(β1)

− 1

2
σL(β1 + k − 2)(β1 + k − 3)ak−2(β1).

(20)

Proof. See Appendix C.

3.2 The Impact of Ambiguity on the Optimal Treatment Strategy

Proposition 2. The optimal treatment threshold is decreasing in the extent of ambiguity.

Proof. See Appendix D.

This effect is depicted in Fig. 1 for the following parameter values: (V G, I, σL) = (30, 10, 0.2).

Figure 1: The impact of ambiguity on the optimal treatment threshold.

We see from Fig. 1 that higher levels of ambiguity suggest that treatment is optimal at

a lower probabilistic belief in a G outcome on the part of the clinician. Since we assumed

the prior probability to be 0.5, it is clear from the figure that for high levels of ambiguity,

the threshold belief is below this prior and as, such, immediate treatment is optimal for these

parameter values; in other words, early intervention is optimal. To understand this effect, first

12



consider the expected value from treating. This value is higher when the probabilistic belief in

a G outcome is higher which, in turn, is higher when Lt is higher (cf. Eq. (3)). Recall that

W̃t = W θ
t −

∫ t
0 θsds and replacing for dW̃t in (2) such that θt = κ under ambiguity aversion,

we find that Lt decreases in κ; i.e., the extent of ambiguity. Therefore, the expected value

from treating is lower for higher values of ambiguity which suggests that treatment should be

postponed.

However, the overall effect depicted in Proposition 2 and in Fig. 1 indicates the opposite;

i.e., intervention is optimal for patients when the clinician’s belief in a G outcome is low; in

other words, when they are in poor clinical states. This implies that the impact of ambiguity

is via its impact on the value of waiting meaning that waiting longer is less valuable for higher

levels of ambiguity. This is because the model is one of incomplete information in which the

signal in the form of the patient’s clinical state updates the clinican’s belief in the expected

outcome. If there is a high level of ambiguity over the signal quality, the value of this signal for

the purpose of decision making is low so it is disregarded somewhat and the clinician will treat

the sick patient promptly before he becomes his clinical state deteriorates further.

In effect, this result implies that if the clinician has a high degree of ambiguity over the

reliability of her patient’s acquired comorbidities and risk factors in predicting the likely outcome

from treatment, she should treat him even if he is in a very poor clinical state with a low

probability of a G outcome. Clearly, it is debatable whether this strategy corresponds with best

clinical practice so, in the next section, I examine the effect of the optimal treatment strategy

owing to ambiguity on the patient’s welfare.

4 The Impact on Patient Welfare

A patient’s welfare is defined as the ex ante expected welfare from being treated at any point

in time from initial assessment t = 0 until some specified time t = T .

In the model, the critical value is measured as a belief, and not as a unit of time. However,

to incorporate the time element, we need to determine the first passage time density through

the threshold π∗. Following Harrison [1985] (pp. 15), and assuming that the prior belief in a

G outcome is π0 = 1/2, the probability of the patient being treated within the time interval

t = [0, T ], is determined to be

Qκ( sup
0≤t≤T

πt ≥ π∗) = Φ(d1) +

(
π∗

1− π∗

)2κ/σL

Φ(d2), (21)

where Φ(·) is the standard normal cumulative distribution function and d1 = 1
σL

√
t
ln
(
1−π∗

π∗

)
−

κσL
√
t and d2 =

1
σL

√
t
ln
(
1−π∗

π∗

)
+ κσL

√
t.

The first passage time cumulative distribution function is given by (21), and I define the

associated first passage density function by fπ∗(t).

13



Figure 2: The effect of ambiguity on patient welfare.

Hence, his ex ante expected welfare from being treated at some t ∈ [0, T ] is given by

Wt(κ) =

∫ T

0
(πtV

G − I)fπ∗(t)dt. (22)

and Fig. 2 depicts patient welfare decreasing in the extent of ambiguity and this effect is robust

to a wide choice of parameter values. Therefore, reducing the extent of ambiguity over the

clinical status quality in predicting outcomes is key to improving patient welfare.

In the model, as comorbidities and risk factors are acquired (or reversed) by patients, their

clinical status changes and, in this way, the clinician learns more about the patient’s expected

outcome from treatment. However, through this process, she does not learn about the true

quality of the signals; in the context of the example provided previously, she does not learn

which λH
t , or equivalently, which θHt , is the correct one in representing the signal quality.

In the next section, I adapt the model to allow for learning about θt. In practical terms, this

is achieved as more patients in a particular clinical state are treated at the hospitals carrying

out the treatment and, in this way, the success rates of treating in a particular clinical state are

updated as more patients in that state are treated. However, it is impractical for the physician

and costly for the patient if the clinician will only treat when she has learned enough to resolve

her ambiguity entirely. Indeed, it may not be possible to fully resolve ambiguity. Resolving

ambiguity entirely is akin to reducing κ to zero over time. However, as pointed out in Epstein

and Schneider [2007], ambiguity may increase owing to the acquisition of new information which

is surprising relative to past experience and, hence, it is difficult to guarantee that ambiguity

will eventually be resolved through learning.

As such, for the sake of patient welfare, the clinician should treat only after reducing her

ambiguity about the clinical state as a predictor of outcome sufficiently, but not entirely. In

particular, I set up a new optimal stopping problem determining a threshold on the optimal

time to stop learning such that, to improve patient welfare, the clinician should only treat

the patient in particular clinical state if her belief in a G outcome is sufficiently high and her

ambiguity about the patient’s comorbidities and risk factors is below a certain threshold.

14



5 Ambiguity and Learning

5.1 Background and Intuition

Until now, the signals that were used in the decision making process were indicative of the

outcome. The signal was the patient’s clinical state and was comprised of his acquired comor-

bidities and risk factors. Learning via a change in his clinical state corresponded to learning

about outcome and the clinical state signal did not provide any information to the clinician

about the true probability measure describing (Lt)t≥0. By contrast, in this section, we want

to learn about that true probability measure in order to reduce the ambiguity associated with

signal quality for predicting outcomes from treatment in a particular clinical state.

The set of density generators Θ is associated with a set of priors which I denote by M0. In

the analysis thus far, this set of priors remained constant and the elements were not updated

over time. In this section, as more patients in a particular clinical state are treated across

hospitals, the success probabilities are updated and, in this way, the clinician learns more about

the quality of the specific clinical state as a predictor of outcome. Learning is modelled by prior

by prior Bayesian updating of each prior in M0 and a corresponding set of posteriors Mt is

obtained.

Once again, I return to the hospital example to provide the intuition. Consider the set Θ

described by (6) for clinical states t = {1, 2, 3} and hospitals H = {A,B,C}. Each θHt generates

a probability measure QθHt on the quality of the clinical state signal as being representative of

the true outcome. However, the true measure is associated with only one of these hospitals H

at each t and we want to learn which H at t. This is achieved as follows.

Recall that each generator is associated with a probability, which I denote by λH
t , that the

patient’s clinical status at t is a correct reflection on the true outcome from treatment based on

the data of patients treated by hospital H. Intuitively, say patient X’s clinical status at time

t is denoted by z. However, another patient Y may have been in the clinical state z at some

t′ < t and treated in that state. Past data is based on all patients treated at H at each t′ < t

in a clinical state z. As each H treats more patients in that state z over time, more data is

acquired and these λH
t ’s are updated and evolve over time.

Patient X is in clinical state z at time t. At t = 0, there was a prior probability, denoted

here by µH
z0 ∈ M0, that the true measure is associated with hospital H for clinical state z.

The set M0 consists of the priors for all clinical states z. The priors specific to each state

are updated over time, in a Bayesian way, as more patients are treated across the hospitals H

in that clinical state. Therefore, at time t, the posterior probability that the true measure is

associated with the data from H for patients in clinical state z is given by

µH
zt = µH

z0

d(QθHz |FL
t )

d
[∑

H µH
z0(QθHz |FL

t )
]

where Qθ is defined by (7) and (8) and Mt =: {µH
zt |FL

t }.

In the analysis hereafter, the focus is on resolving ambiguity about quality of the particular
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state at time t as being reflective of true outcome.

5.2 When to Stop Learning

5.2.1 Signal and Belief Dynamics

In our problem above, the ambiguity averse clinician based her decision about treatment accord-

ing to the probability measure associated with the worst outcome. However, the true outcome

may well be associated with a different probability measure which is associated with treatment

in a better clinical state and, therefore, higher patient welfare. As such, I formulate the learning

about ambiguity problem as a sequential hypothesis test such that the true probability measure

is Qκ or the reference measure Pπ. In essence, I assume that the set of density generators Θ is

binary across H for all t so that Θ = {0, κ}, and 0 and κ are the density generators associated

with H = A and H = B, respectively.

Since the probabilities λH
t that the specific clinical status at t is a correct reflection of

the outcomes are easily calculated, I assume these represent the signal process over the true

measure. The probability statistical space is described by (Ωλ,G, Pµ, µ ∈ [0, 1]) and I let η be a

random variable such that η = 1 if the true measure is associated with hospital A and η = 0 if

it is associated with B; i.e., with 0 or κ, respectively. Then

dλt = ηφdt+ σλdBt (23)

with φ 6= 0 and σλ are constant and (Bt)t≥0 is a standard Brownian motion under Pµ. Moreover,

I let µt denote the probability that η = 1 for all t; i.e., the probability that the true measure is

associated with H = A and the density generator θ = 0.

The filtration G represents the complete information but, as in Section 2.1, we need to analyse

the problem in the context of available information Gλ which is the sub-filtration generated by

(λt)t≥0. As such, we need to apply the filtering procedure once again. To do so, we replace η

in (23) with its estimate η̂t = µt(1) + (1− µt)(0) = µt so that

dλt = µtφdt+ dB̃t (24)

where dB̃t = dλt − µtφdt and describes the dynamics of the innovation process (B̃t) on the

filtered probability space (Ωλ,Gλ, Pµ, µ ∈ [0, 1]).

The likelihood ratio process is defined by (cf. Peskir and Shiryaev [2006] pg. 288)

ϕλ
t =

d(PA|Gλ
t )

d(PB |Gλ
t )

= eφ(λt−φ
2
t)

and the a posteriori probability process (µt)t≥0 is expressed as

µt =

µ0

1−µ0
ϕλ
t

1 + µ0

1−µ0
ϕλ
t

. (25)
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The following dynamics describing the belief over true probability measure is thus obtained by

an application of Ito’s lemma:

dµt = φµt(1− µt)dB̃t. (26)

5.2.2 Optimal Stopping Problem

While the clinician is learning about the true measure, she is not treating patients. By not

treating a patient in a particular clinical state, there is the chance that the patient’s clinical

status will deteriorate before treatment is initiated; i.e., he is treated when the clinician’s

probabilistic belief in a G outcome is lower and, hence, his expected outcome from treatment is

also lower. As such, there is a per period cost of learning which I denote by c. Additionally, in

the problem above, if κ is not the generator for the true measure, then deciding on his treatment

according to κ is also costly for the patient. This is because the true density generator will be

some θ < κ and, from Fig. 2, we infer that treating at a lower κ implies a higher patient welfare.

If however, it is the true generator, then it should be used in the decision making.

By observing the process (λt)t≥0, the clinician decides on what is the true measure by

sequentially testing the hypotheses H1 : η = 1 and H0 : η = 0. By stopping learning, she

accepts one of the hypotheses and her objective is to determine the optimal time to stop with

minimal cost (see Peskir and Shiryaev [2006] pg. 288). Let d be the terminal decision function

such that d = 1 if she accepts H1 and d = 0 if she accepts H0.

Say η = 1 so that the true measure is associated with θ = 0. Then a Type I error is

associated with accepting H0; i.e., choosing the measure κ > 0. This implies, from Fig. 1, that

the patient may be treated when he should not be; i.e., he is in too bad a clinical state. This

wrong choice is costly if the patient’s outcome from treatment is B; i.e., there is no improvement

in their quality of life. The cost, in that case, is their loss in quality of life from a B outcome I.

If, however, η = 0 so that the true measure is associated with θ = κ, but the clinician

makes her decision according to θ = 0 (i.e., accepts H1), the clinician may not treat the patient

when he should be treated. The cost to the patient from this error of not being treated at t is

πt(κ)V
G − I + I = πt(κ)V

G, such that πt(κ) is constant in state t and, hence, denoted by π

hereafter.

Therefore, the optimal stopping problem is then stated as follows

F ∗(µt) = inf
(d,τ)

EPµ [µτπV
G + (1− µt)I + c(τ − t)

∣∣∣Gλ
t ], (27)

where c(τ − t) denotes the average loss due to learning and not treating for t < τ .

From Shiryaev [1978] Lemma 1 pg. 166, however, d∗ = 1 if µtπV
G ≤ (1 − µt)I and d∗ = 0

otherwise for all t ≥ τ . Therefore, the optimal stopping problem becomes

F ∗(µt) = inf
τ
EPµ [min

[
(1− µτ )I, µτπV

G
]
+ c(τ − t)

∣∣∣Gλ
t ]. (28)
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Define a µd such that (1− µd)I = µdπV
G; i.e.,

µd =
I

πV G + I
.

Now for µt = 0 or µt = 1, the clinician is certain that the true measure is associated with

θ = κ or θ = 0, respectively; in other words, all her ambiguity is resolved. Therefore, µt = 0

or µt = 1 corresponds with κ = 0 in the no learning problem. Conversely, if µt = 1/2, she is

entirely ambiguous over the true measure.

The textbook treatment of this problem (see, for example, Peskir and Shiryaev [2006],

Chapter 6) is to solve it as a two-sided optimal stopping problem such that there exists some

µ∗ ≥ µd and µ∗ ≤ µd in which learning is optimal for all µt ∈ [µ∗, µ
∗]. Say that µd < 1/2

and µ∗ ∈ [µd, 1/2]. If µt ∈ [µ∗, 1/2], then the clinician will stop learning for higher levels of

ambiguity, which is contradictory to her learning objective, and the cost of stopping learning

would be lower for higher levels of ambiguity. On the other hand, if µd > 1/2, µ∗ ∈ [1/2, µd] and

µt ∈ [1/2, µ∗], then learning will also stop for higher levels of ambiguity. Thus, to ensure that

the expected cost from stopping is lower for lower levels of ambiguity for all µt in the interval,

we require that µd = 1/2. But µd = 1/2 implies that πV G = I. Hence, the optimal stopping

problem becomes

F ∗(µt) = inf
τ
EPµ [min [µτ , (1− µτ )] I + c(τ − t)

∣∣∣Gλ
t ]. (29)

Indeed, this makes sense in the context of the problem being considered. Ultimately, the decision

is wrong if the patient’s quality of life does not improve from treatment and, hence, he foregoes

the quality of life he had prior to treatment. If, for example, H1 is wrongly accepted, but the

patient’s outcome from treatment is G, accepting the wrong hypothesis is not costly.

The objective of the clinician is to stop learning when ambiguity is at least partially resolved.

If µt ≤ µ∗, the clinician is sufficiently confident that κ is the true generator and will accept

H0. However, this is a wrong decision if the true generator is θ = 0; i.e., it is a wrong decision

with probability µt. Therefore, the cost of stopping at µt ≤ 1/2 is µtI. Conversely, the cost of

stopping is (1−µt)I for µt > 1/2. Clearly, since the cost of stopping increases and decreases in

µt at the same rate for µt < 1/2 and µt > 1/2, respectively, and the cost functions intersect at

µt = 1/2, then F (µt) = F (1− µt) for all µt and, hence, µ
∗ = 1− µ∗.

The following is a verification theorem which establishes the free-boundary problem. In

particular, it states the conditions which must be satisfied for the existence of a solution to

(29).

Theorem 1. Let F (µt) ∈ C2 be a concave function such that 0 ≤ F (µt) ≤ min(µt, 1 − µt)I.

Suppose further that for

1. for µt ∈ (µ∗, 1− µ∗),
1
2φ

2µ2
t (1− µt)

2F ′′(µt) + c = 0 and

2. for µt /∈ (µ∗, 1− µ∗),

(a) 1
2φ

2µ2
t (1− µt)

2F ′′(µt) + c ≥ 0 and
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(b) F (µt) = min(µt, 1− µt)I.

Then the free-boundary problem solves the optimal stopping problem; i.e., F (µt) = F ∗(µt) and

τ = inf{t ≥ 0|µt /∈ (µ∗, 1− µ∗)}.

This is essentially a particular case of Oksendal [2005], Theorem 10.4.1, so its proof is

omitted.

The following value matching and smooth pasting conditions must also be satisfied:

F (µ∗) = min(µ∗, 1− µ∗)I = µ∗I, (30)

since µ∗ < 1/2. This also implies that

F (1− µ∗) = min(µ∗, 1− µ∗)I = µ∗I. (31)

The corresponding smooth pasting conditions are as follows:

F ′(µ∗) = I (32)

and

F ′(1− µ∗) = −I. (33)

Now there is a function

g(µt) =
2c

φ2
(1− 2µt) ln

(
µt

1− µt

)
(34)

such that

F (µt) = g(µt)− g(µ∗) + µ∗I + (µt − µ∗)(I − g′(µ∗)) (35)

satisfies condition 1 of Theorem 1 as well as Eqs. (30) and (32). It is easily verified that

g(µ∗) = g(1−µ∗) implying (35) satisfies (31) also. Finally, applying condition (33) to (35) gives

g′(1− µ∗) + I − g′(µ∗) = −I.

Now, it is also easily verified that g′(1 − µ∗) = −g′(µ∗). Hence, µ∗ satisfies the following

equation:

g′(µ∗) = I. (36)

Therefore, we obtain the following result.

Proposition 3. Let g(µt) be given by (34) and let µ∗ < 1/2 satisfy (36). Then

F ∗(µt) =

{
min(µt, 1− µt)I for µt /∈ (µ∗, 1− µ∗)

g(µt)− g(µ∗) + µ∗I + (µt − µ∗)(I − g′(µ∗)) for µt ∈ (µ∗, 1− µ∗),
(37)

and

d∗ =

{
0 for µt ≤ µ∗

1 for µt ≥ 1− µ∗
(38)
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*

Figure 3: Ambiguity is increasing (decreasing) in µt for µt < 1/2 (µt > 1/2).

solves the optimal stopping problem (29).

Proof. See Appendix E

The cost functions and learning thresholds are depicted in Fig. 3 for the following parameter

values: (I, c, φ) = (10, 0.2, 0.2).

Proposition 4. The higher the per period cost of learning, the earlier the clinician will treat;

i.e., for higher levels of ambiguity. However, if her belief in the true measure is very variable

over time (i.e., φ is high), she will be more likely to wait and refrain from treating.

Proof. See Appendix F.

6 Practical Considerations for Clinicians

Before discussing what the solutions mean for healthcare management, I first explain the rela-

tionship between the optimal treatment strategies in the learning and no learning cases.

6.1 No Learning versus Learning

In this section, I explain the relationship between the solutions to the optimal stopping problems

defined by Eqs. (11) (no learning) and (29) (learning) as stated in Propositions 1 and 3,

respectively.

Proposition 5. Reducing ambiguity according to the optimal strategy defined in Proposition 3

improves patient welfare relative to the strategy defined in Proposition 1.

Proof. See Appendix G.

To show this effect numerically, and to relate the numerical examples underpinning Figs.

3 and 1 (and, hence the welfare plot Fig. 2), I focus on the µt ∈ [0, 1/2] region in which the
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*

Figure 4: Value functions with no learning
about ambiguity for κ = 0.18.

*

Figure 5: Cost functions for µt ∈ (0, 1/2]

extent of ambiguity is decreasing in µt. This region corresponds with the κ ∈ [0, κ] ambiguity

region, where κ denotes complete ambiguity on the part of the clinician.

Using the parameter values used to plot Figs. 1 and 2, in Fig. 4 I plot the value functions

(described by Eq. (18)) which solve the optimal stopping problem in the no learning case

for κ = 0.18. From Fig. 4, in which κ = 0.18, note that for some values πt (above approx.

πt ≈ 0.355), it will be optimal to treat. However, in Fig. 5 (which is a snapshot of Fig. 3 with

κ = 0.25 = 2µt) we see that at κ = 0.18, learning is optimal; i.e., it is not optimal to treat.

Now, recall that πt decreases in κ. Therefore π(κ∗ = 0.15) > π∗(κ = 0.18). Hence, by

accounting for learning and, therefore, stopping only if πt > π(κ∗) > π∗ implies treatment is

optimal only if the clinician is more convinced of a G outcome and this leads to an improvement

in patient welfare because he is treated in a better clinical state.

Note that given Prop. 4, a challenge to the result is that if the per period cost of learning

is very high, the clinician will treat when she is still highly ambiguous. However, since this cost

relates to a decline in a patient’s clinical state, and since time is continuous, the periods are

very short and, hence, the decline per period can only be very incremental. Thus, in a practical

sense, c is very small implying we can accept the result in Prop. 5.

6.2 Practical Implications and Concluding Remarks

The theoretical results derived in previous sections are, for mathematicians working in opera-

tions research, not necessarily complex concepts, but they have little value for clinicians unless

they can be applied in specific and practical contexts. My objective in this section is to discuss

how they can be of value to practicing clinicians.

The timing model in Delaney [2021] is very applicable in a practical way to healthcare

decision making. The paper discusses how it can be applied, and it is being trialled for use as

a tool in assisting clinicians decide when to perform PVR. It will also intended to be trialled

for use in determining the timing for cardiac transplantation. However, in using that model,

the signal quality parameter, which is the probability the clinical state is a correct reflection

of the true outcome, needs to be estimated from past data. This is quite straightforward but,

as discussed, there is ambiguity over this value. Determining the value from different patient
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cohorts with the same clinical state produces different quality values. However, the model in

Delaney [2021] does not account for this ambiguity.

In this paper, I present a related model to determine the impact of ambiguity on the optimal

treatment strategy. From a practical perspective, it is inferior to the Delaney [2021] model

because it assumes risk factors and comorbidities are acquired every period. However, this

limiting assumption simplifies the model sufficiently so that the impact of ambiguity on patient

welfare, as a result of clinicians using the optimal treatment timing strategy defined in Delaney

[2021], is determined. Importantly, it shows that a clinician’s ambiguity over the clinical status

as a predictor of treatment outcomes is detrimental to patient welfare.

Hence, from a practical perspective, clinicians should use the Delaney [2021] model to de-

termine optimal treatment timing, but should only treat if their ambiguity over signal quality

is sufficiently low. If, for example, that model is saying the patient should be treated, but the

clinician is very ambiguous over signal quality, then she should not treat, but instead expend

time researching and learning in order to reduce her ambiguity.

The question is then, of course, how to determine a threshold level on ambiguity below which

treatment can be performed provided the clinician’s threshold on clinical status is between

the upper and lower bounds derived in Delaney [2021] which delineate the boundaries between

patients that are treatable and those that are, respectively, too well and too unwell for treatment.

To determine this threshold µ∗, the following parameters need to be estimated: φ, I and c

so that the equation
2c

φ2
(2µ∗ − 1) ln

(
µ∗

1− µ∗

)
= µ∗I

can be solved for µ∗. The parameter I is the quality of life without treatment, and there

are a number of measures used by clinicians to determine this (for example, Quality-Adjusted

Life Years (QALYs), Health-Related Quality of Life (HRQoL) or Patient Reported Outcomes

(PROMS)). Each period that the patient is not being treated reduces their quality of life as they

deteriorate further. The learning cost c can be viewed and calculated in this way. Finally, by

calculating, from past data, the probability λt that a specific clinical state is a correct reflection

of the true outcome at various time points, the parameter φ can be determined as the drift rate.

While it is relatively straightforward to determine these values, analysing past data is time

consuming for clinicians. The overarching point is that ambiguity over the quality of clinical

status as a predictor of treatment outcome needs to be low so that the model in Delaney [2021]

can be used without compromising patient welfare. In essence, the ambiguity is reduced via the

access to data on a large cohort of patients. If there are many hospitals treating such conditions,

each will have a relatively small number of patients in their dataset from which the clinicians

base their decisions. But if there is more specialisation within the hospitals so that certain

treatments are only provided at one or two specialist care centres, this provides the treating

clinicians with access to much more data, as well as experience, which will naturally lead to

a reduction in ambiguity. How this can be achieved, and for which conditions and illnesses, is

beyond the scope of this paper, but my results support the argument for a down-sizing of the

general hospital model towards more specialist care providers.
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Appendix

A Limit Dynamics for (Lt)t≥0

Consider a time interval [0, T ] and split it into n discrete steps of length ∆t. In each time step,

a signal arrives which is a correct reflection of the true outcome with probability λ. The log

likelihood of signals received up to time t is constructed as follows.

If the true outcome is G (i.e., γ = 1), then ∆Lt = ln
(

λ
1−λ

)
. Hence

LT =LT−∆t + ln

(
d(PG

1 |FT−∆t)

d(PB
1 |FT−∆t)

)
= LT−∆t + ln

(
λ

1− λ

)

=LT−2∆t + 2 ln

(
λ

1− λ

)

...

=L0 + n ln

(
λ

1− λ

)

But at t = 0, the clinician has no signals so that L0 = 0. Thus, for γ = 1,

LT = n ln

(
λ

1− λ

)

where n = T/∆t; i.e., the number of time steps in the [0, T ] interval.

On the other hand, if γ = 0,

LT = −n ln

(
λ

1− λ

)
.

Overall, therefore,

E[LT ] = ln

(
λ

1− λ

)
E[X]

where X = +n and X = −n for γ = 1 and γ = 0, respectively. If the signal over a ∆T interval

is good, then the outcome expected to be successful. This is only a true representation of the

actual outcome with probability λ. Therefore E[X] = nλ − n(1 − λ) = n(2λ − 1) for good

outcomes and E[X] = −n(2λ− 1) for bad outcomes.

Now

V [LT ] =

(
ln

(
λ

1− λ

))2

V [X]

=4n

(
ln

(
λ

1− λ

))2

λ(1− λ).

But in the limit, n =→ ∞ (or equivalently, ∆t → 0 since n = T/(∆t)). Thus, to keep the

variance finite, we assume that
(ln( λ

1−λ))
2

∆t = constant := σ2
L (cf. Dalby et al. [2018]). Now since
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λ = eσL
√

∆t

1+eσL
√

∆t
, λ(1− λ) → 1/4 as ∆t → 0 so that σ → σ2

LT and

lim
n→∞

E[Lt] =
TσL√
∆t

(
eσL

√
∆t − 1

1 + eσL

√
∆t

)
=

TσL√
∆t

(
−1 + 1 + σL

√
∆t+O(dt)

1 + 1 + σL
√
∆t+O(dt)

)
= T

σ2
L

2
(A.1)

for good outcomes and

lim
n→∞

E[Lt] = −T
σ2
L

2

for bad outcomes.

Therefore, in the limit,

dL = ±σ2
L

2
dt+ σLdW = (2γ − 1)

σ2
L

2
dt+ σLdW

since γ = 1 if outcome is G and γ = 0 if it is B.

B Derivation of Eq (12)

Vt =max
τ>t

min
θ∈Θ

EQθ
[
e−ρ(τ−t)

(
πτ (θτ )V

G − I
) ∣∣∣Ft

]

=max
{
min
θ∈Θ

[πt(θt)]V
G − I, Jt

} (B.1)

where

Jt = max
τ≥t+dt

min
θ∈Θ

EQθ
[
e−ρ(τ−t)

(
πτV

G − I
) ∣∣∣Ft

]

=e−ρdt max
τ≥t+dt

min
θ∈Θ

EQθ
[
EQθ

[
e−ρ(τ−t−dt)

(
πτV

G − I
) ∣∣∣Ft+dt

] ∣∣∣Ft

]

=e−ρdt max
τ≥t+dt

min
θ∈Θ

EQθ

[
min
θ′∈Θ

EQθ′
[
e−ρ(τ−t−dt)

(
πτV

G − I
) ∣∣∣Ft+dt

] ∣∣∣Ft

]

=e−ρdt min
θ∈Θ

EQθ

[
max
τ≥t+dt

min
θ′∈Θ

EQθ′
[
e−ρ(τ−t−dt)

(
πτV

G − I
) ∣∣∣Ft+dt

] ∣∣∣Ft

]

=e−ρdt min
θ∈Θ

EQθ [
Vt+dt

∣∣Ft

]

=(1− ρdt)

(
Vt +min

θ∈Θ
EQθ [

dVt

∣∣Ft

])
,

(B.2)

where, the second equality is due to the law of iterated expectations and the third due to the

rectangularity assumption.

By Ito’s lemma and Eq. (9),

EQθ [
dVt

∣∣Ft

]
=

(
1

2
σ2
Lπ

2
t (1− πt)

2V ′′
t − σLθtπt(1− πt)V

′
t

)
dt.

Since V (πt) is increasing and convex, V ′(πt) > 0, EQθ [
dVt

∣∣Ft

]
is minimal for θt = κ. This

establishes the value of Jt; i.e., the second argument in Eq. (12).

The first argument in Eq. (12) is the value from stopping immediately. This is actually an

expected value and, hence, it will be taken to be the minimum expected value with respect to
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the generators in Θ = [−κ, κ]. From Eq. (9), it can be inferred that π′
t(θt) < 0 and, therefore,

the value from stopping at t will be minimal for θt = κ. Hence, the dependence of πt on κ.

C Proof of Proposition 1

A general solution to Eq. (13) can be obtained by the method of Frobenius in the following

way. Ignoring the dependence of π on t for notational convenience, let

V (π) = Aπβ
∞∑

k=0

πkak(β)

where A is constant and β and αk(β) are to be determined.

Then V ′(π) = Aπβ−1
∑∞

k=0(β + k)πkak(β) and V ′′(π) = Aπβ−2
∑∞

k=0(β + k − 1)πkak(β).

Substituting for V ′ and V ′′ in Eq. (13) and rearranging and re-indexing according to the

method gives

1

2
σ2
L

∞∑

k=0

(β + k)(β + k − 1)πβ+kak − σ2
L

∞∑

k=1

(β + k − 1)(β + k − 2)πβ+kak−1

+
1

2
σ2
L

∞∑

k=2

(β + k − 2)(β + k − 3)πβ+kak−2 − σLκ

∞∑

k=0

(β + k)πβ+kak

+ σLκ

∞∑

k=1

(β + k − 1)πβ+kak−1 = 0.

(C.1)

For the first term in the series k = 0, we have

(
1

2
σ2
Lβ(β − 1)− σLκβ

)
a0 = 0. (C.2)

Ruling out the trivial solution that a0 = 0 implies that the general solution satisfies

V (π) = A1π
β1

∞∑

k=0

πkak(β1) +A2,

where A1 and A2 are constant and β1 = 2κ/σL + 1.

However, in order for the boundary condition V (0) = 0 to be satisfied, I let A2 = 0.

Continuing with the recursion, for k = 1, we have

a1 =
β1

β1 + 1

(
κ− σL(β − 1)

1
2σLβ1 − κ

)
a0, (C.3)

where we can let a0 = 1 hereafter.
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For the kth term in the recursion, for k > 1, we have

(
1

2
σL(β1 + k − 1)− κ

)
(β1 + k)ak

=(β1 + k − 1) (σL(β1 + k − 2)− κ) ak−1

− 1

2
σL(β1 + k − 2)(β1 + k − 3)ak−2.

(C.4)

The value of waiting is therefore given by

V (πt) = A1π
β1

t

∞∑

k=0

πkak(β1),

where β1 and ak(β1) are defined as above.

According to the value-matching condition, at the threshold π∗, above which it is optimal

to treat,

A1 =

( ∞∑

k=0

(π∗)kak(β1)

)−1(
π∗V G − I

(π∗)β1

)
(C.5)

and (18) follows from this.

Moreover, Eq. (19) follows from (16) with the appropriate substitutions for V (πt) and

V ′(πt).

D Proof of Proposition 2

From Eq. (19), letting the summations range from k = 0 to k = 1, we have that

π∗V G

π∗V G − I
≈ β1 +

a1(β1)π
∗

1 + a1(β1)π∗ , (D.1)

a1(β1) =
β1

β1 + 1
(1− β1) < 0

and

∂a1
∂κ

> 0 ⇐⇒2
(β1 + 1) (1− 2β1)− β1(1− β1)

σL (β1 + 1)2
> 0

⇐⇒ (β1 + 1) (1− 2β1)− β1(1− β1) > 0

⇐⇒1− 2β1 − β2
1 > 0

(D.2)

This cannot hold, so ∂a1
∂κ < 0.

Let

W =
π∗V G

π∗V G − I
− β1 +

a1π
∗

1 + a1π∗ = 0
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Then

∂W
∂κ

=
∂W
∂π∗

∂π∗

∂κ
+

∂W
∂a1

∂a1
∂κ

− ∂β1
∂κ

= 0

=⇒∂π∗

∂κ
=

2/σL − ∂W
∂a1

∂a1
∂κ

∂W
∂π∗

(D.3)

Then since ∂a1
∂κ < 0 and

∂W
∂a1

=
1

(1 + a1π∗)2
> 0

∂π∗

∂κ
> 0 ⇐⇒ ∂W

∂π∗ > 0. (D.4)

But
∂W
∂π∗ = − I

(π∗V G − I)2
< 0.

Therefore, ∂π∗

∂κ < 0.

E Proof of Proposition 3

Denote the function on the right hand side of Eq. (37) by G(·). By Dynkin’s formula,

G(µt′) = G(µt) +
φ2

2

∫ t′

t
µ2
s(1− µs)

2G′′(µs)ds+ φ

∫ t′

t
µs(1− µs)G

′(µs)dB̃s. (E.1)

1. Let µt′ /∈ (µ∗, 1−µ∗). Then G(µt′) = min(µt′ , 1− µt′)I. Then, by condition 2(a) in Thm.

1, φ2

2 µ2
s(1− µs)

2G′′(µs) ≥ −c. Hence

F (µt′) ≥ F (µt)−
∫ t′

t
cds± φI

∫ t′

t
µs(1− µs)dB̃s. (E.2)

It is easily verified that
∫ t′

t µs(1−µs)dB̃s is a martingale. Hence, by the optional sampling

theorem (see Peskir and Shiryaev [2006], pp. 60), EPµ [
∫ t′

t µs(1 − µs)dB̃s] = 0 whenever

EPµ [t′] < ∞. Since we take the infimum over stopping times, we can replace t′ by τ in

(E.2) and take the expectation over EPµ to give (cf. Eq. (29))

F (µτ ) + c(τ − t) ≥ F (µt) = F ∗(µt). (E.3)

2. Let µt′ ∈ (µ∗, 1− µ∗). Then by condition 1 of Thm. 1, Eq. (E.1) becomes

G(µt′) = G(µt)−
∫ t′

t
cds + φ

∫ t′

t
µs(1 − µs)G

′(µs)dB̃s. (E.4)

By the same reasoning as in point 1 of this proof,

F (µτ ) + c(τ − t) = F (µt) = F ∗(µt). (E.5)
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Points 1 and 2 ensure that F ∗(µt) ≤ F (µτ ) + c(τ − t) (where F (µt) = min(µt, 1 − µt)I) for all

t ≥ 0, which completes the proof.

F Proof of Proposition 4

Since µ∗ < 1/2

g′(µ∗) =
2c

φ2

[
1− 2µ∗

µ∗(1− µ∗)
− 2 ln

(
µ∗

1− µ∗

)
> 0

]

Thus, g′(µ∗) is higher, and hence µ∗ is higher for higher levels of c and lower levels of φ.

G Proof of Proposition 5

1. Let πt < π∗: For clinical states associated with πt, the probability of a G outcome is

too low to make treatment worthwhile. Thus, the patient will never be treated so the

value of learning about the clinical state is not worthwhile; i.e., the learning problem is

moot. Furthermore, since the patient will not be treated for πt in this region, the ex ante

expected welfare from treatment patients in the associated clinical state is also irrelevant.

2. Therefore, the learning problem is only relevant and valuable for clinical states such that

πt ≥ π∗. In the no learning case, treatment will be initiated with probability one. If the

clinician’s ambiguity is high, the clinical state of the patient is low, and the likelihood of

a B outcome is higher. In other words, the ex ante expected cost from treatment at πt is

(1−πt)I. However, in the learning case, the probability of being treated at πt is given by

P (µt ≤ µ∗) =
1−µ∗−µt

1−2µ∗
. This is adapted from Poor and Hadjiliadis [2009] Eq. (4.67), but

I provide the derivation specific to this case at the end of the proof. Thus, the ex ante

expected cost from treatment at πt is

(1− πt)IP (µt ≤ µ∗) ≤ (1− πt)I.

Now, since µt denotes the extent of ambiguity, P (µt ≤ µ∗) is low for µt high. Therefore,

when the extent of ambiguity is high, the ex ante expected cost from treatment is lower in

the learning case than in the no learning case implying patient ex ante expected welfare

is also higher in the former than in the latter.

G.1 Derivation of P (µt ≤ µ∗)

Let g(µt) = Pπ(µt ≤ µ∗). In the learning region, using the SDE (26) describing the dynamics

of (µt)t≥0, get that the following ordinary differential equation which must be satisfied:

φ2

2
µ2
t (1− µt)

2g′′(µt) = 0
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such that g(µ∗) = 0. A general solution to this equation is given by

g(µt) = A1µt +A2,

where A1 and A2 are constant. Then A1 = −A2

µ∗ . A further condition is that g(µ∗) = 1. Hence

together these conditions give

P (µt ≤ µ∗) =
µ∗ − µt

µ∗ − µ∗
.

As shown and discussed, µ∗ = 1− µ∗, which yields the expression used in the proof above.
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