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Abstract 

Resource redeployment and resource idling are two important resource allocation strategies that have 
always been considered separately from each other. This study develops a formal model that demonstrates 
that resource idling is an important precursor to resource redeployment. Not only does idling directly 
increase the use of redeployment but it also significantly enhances the effects of the inducement and cost 
to redeploy, which are two key determinants of redeployment. These theoretical predictions are tested 
with data on oil wells drilled in Texas over 25 years. The resource that can be idled and redeployed in this 
context is the rig owned by an oil-drilling contractor. Empirical analyses corroborate the theoretical 
predictions and demonstrate that the results are economically meaningful. In addition, the study 
demonstrates the biases that exist when redeployment is considered separately from idling. 
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INTRODUCTION 

Allocation of firms’ resources is a core managerial function that is fundamental to strategic management 

(Bower, 2016; Maritan and Lee, 2017) and that is realized by firms through the use of various real options 

(Trigeorgis, 1996). One option that firms can apply to allocate resources is resource redeployment, or the 

withdrawal of resources from one use and switching them to another use. How firms change the 

allocation of resources through redeployment has been assessed in many theoretical studies (Feldman and 

Sakhartov, 2021; Helfat and Eisenhardt, 2004; Levinthal and Wu, 2010; Lieberman, Lee, and Folta, 2017; 

Sakhartov, 2017; Sakhartov and Folta, 2014; 2015) and has been examined in substantial empirical 

research (Anand, 2004; Anand and Singh, 1997; Chang and Matsumoto, 2022; Dickler and Folta, 2020; 

Giarratana and Santaló, 2020; Miller and Yang, 2016; Morandi Stagni, Santaló, and Giarratana, 2020; 

O’Brien and Folta, 2009; Sohl and Folta, 2021; Wu, 2013). Another option that is far less understood but 

also important is resource idling, whereby firms halt the use of their resources temporarily to possibly 

reengage them in the future. There have been a few studies on this second option in general, either 

modeled formally (Brennan and Schwartz, 1985; McDonald and Siegel, 1985; Trigeorgis, 1996) or 

explored empirically (Brown, Carpenter, and Petersen, 2019; Corts, 2008; Moel and Tufano, 2002).1 

Moreover, while research on redeployment has expanded greatly in recent years, it has not accounted for 

the possibility that firms can respond to changing market conditions by first idling their resources. 

Similarly, the few studies that exist on idling have not considered the exercising of other options after 

reactivating those idled resources. Thus, previous research has provided researchers with a deeper 

understanding of determinants and effects of each option in isolation, it has not characterized how 

multiple options, such as resource redeployment and resource idling considered in this study, are used in 

conjunction with each other and potentially interact as flexible resource allocation strategies. A combined 

theoretical and empirical treatment of the two options therefore holds the possibility of adding new 

 
1 Other options that are also involved in resource allocation were reviewed in Trigeorgis (1996). Their discussion is omitted in 
this study to focus on precise identification of the two highlighted options that are typical of the considered empirical context. 
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insights into resource allocation and even potentially challenging existing insights that have been built 

based upon an independent treatment of each option. 

The opportunity identified above provides the main purpose of this study: to investigate how the 

two resource allocation strategies, idling and redeployment, are used together and interact with each 

other. While redeployment is considered a key resource allocation strategy for the firm to alter and 

reconfigure its resource base (i.e., Folta, Helfat, & Karim, 2016; Sakhartov & Folta, 2014), idling can be 

another important strategy that affords the firm flexible capacity choices to temporarily alter the scale of 

of its operations and resources based on evolving market conditions over time (Brennan and Schwartz, 

1985; McDonald and Siegel, 1985; Trigeorgis, 1996). This study is based on theory developed by 

adapting previous formal models of resource redeployment (Feldman and Sakhartov, 2021) to add 

resource idling as a means of managing resources. 

The model considers a firm that can idle its resources and redeploy them to another use, after 

idling or without idling. The model reveals that resource idling affects the use of resource redeployment, 

systematically and significantly. In general, redeployment is more likely after idling than without idling. 

The rise in the odds of redeployment holds because, after idling was used by the firm, this alternative no 

longer competes with redeployment in how the firm can address adverse changes in its profit. 

Alternatively, if idling was not used yet, it remains an alternative to redeployment in how the firm copes 

with such changes, thus reducing the use of redeployment. In addition, the rise in the odds of 

redeployment due to the previous use of idling makes the use of redeployment more sensitive to its key 

determinants. The first of these known determinants is the inducement to redeploy the firm’s resources to 

another use that provides the firm with higher returns. This inducement acts as an opportunity cost to 

continuing the original use (Levinthal and Wu, 2010). The second determinant is the redeployment cost 

that the firm incurs in withdrawing resources from the original use and putting them into another use, thus 

losing some efficiency in the resource use (Montgomery and Wernerfelt, 1988). In sum, the model 

predicts that the previous use of idling strengthens both the positive effect of the inducement and the 

negative effect of the redeployment cost on the use of redeployment. The fact that idling has these direct 
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and indirect effects on resource redeployment underscores the importance of considering both resource 

allocation options at the same time in future theoretical and empirical research. 

To test these predictions empirically, the study analyzes data collected on oil wells drilled in 

Texas over 25 years. In this empirical context, the resource that can be idled and/or redeployed is the rig 

that is owned by an oil-drilling contractor. The driller can “stack” the rig, thus temporarily idling it but 

holding the option to reopen it in the future; or the driller can withdraw the rig from the well in the 

original field and redeploy it to a well in another field. Moreover, in this empirical context, redeployment 

can happen without idling, when the rig is redeployed to another field after having been active in the 

original field. Redeployment can also occur after idling, when the rig is redeployed to another field 

having been stacked in the original field for some time. The use of each of these resource allocation 

strategies is observed directly in the data by tracking the operational status and movement of rigs. 

Because resource idling is a choice that can potentially affect resource redeployment, the empirical 

approach should account for the selection into resource idling in the first place. Therefore, the study uses 

a two-stage residual inclusion (2SRI) model and an accompanying regression switching model suitable 

for non-linear estimation predicting dichotomous outcomes. 

The empirical results confirm that resource redeployment is more likely after resource idling, and 

that the previous use of idling reinforces both the positive effect of the inducement and the negative effect 

of the redeployment cost on the use of resource redeployment. Moreover, the empirical approach 

validates the need to consider resource idling as an important precursor to resource redeployment. 

Namely, the empirical evidence suggests that the positive effect of idling on the likelihood of 

redeployment is stronger once the endogeneity of this resource reallocation strategy is accounted for. 

Overall, the results confirm the predictions stemming from the formal model and demonstrate that they 

are economically meaningful. 

The first and primary contribution of this paper is that it demonstrates how the two resource 

allocation strategies – idling and redeployment – are used together by firms and thus should be considered 

together by researchers in the future. Despite repeated calls for the joint consideration of multiple 
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interacting options that are available to firms (Adner and Levinthal, 2004; Chi et al., 2019; Folta and 

O’Brien, 2004; Trigeorgis, 1993; Trigeorgis and Reuer, 2017; Vassolo, Anand, and Folta, 2004), resource 

idling and resource redeployment have always been investigated separately from each other in existing 

theoretical and empirical research. It might also be that the relatively limited attention to idling when 

considering redeployment decisions can be explained by modern resource-based perspectives in strategy 

that suggest idleness should be avoided (Penrose, 1959), or indicate that unused or excess resources 

should be redeployed or even divested (Sirmon, Hitt, and Ireland, 2007). Yet it is not necessarily 

inefficient to idle resources, as an argument can be made that “it is better for productive resources to 

remain idle for a time than to be misused” (Hutt, 1977). As existing research has focused on 

redeployment alone or has separately treated these options, important causal relationships in the allocation 

of resources have been omitted.  By contrast, we theoretically and empirically demonstrate that resource 

idling can be an important precursor to resource redeployment, and it moderates the effects of the known 

determinants of redeployment on the use of redeployment. 

The second contribution of this study is that it demonstrates that the omission of the derived 

interactions between idling and redeployment introduces biases in the estimates in the determinants of the 

use of resource redeployment considered in isolation. Specifically, this paper provides compelling 

evidence in the empirical context of oil-drilling not only for the existence of such biases but also for their 

economic significance, thus demonstrating the need to consider a portfolio of resource allocation options 

available to a firm. To illustrate the potency of the bias from disregarding the selection into idling as a 

possible precursor to redeployment, this study demonstrates that the effect of idling on the likelihood of 

redeployment is underestimated without accounting for endogeneity. In fact, this effect is over 40% 

higher after accounting for endogenous selection. Then, to illustrate the potency of the bias from omitting 

the interaction effects with idling on redeployment in this context, when redeployment is predicted from 

the inducement, the positive effect that the inducement has on redeployment is 59 percent stronger for 

idled rigs than for non-idled rigs. In turn, when redeployment is predicted from the redeployment cost in 

this context, the negative effect that redeployment cost has on redeployment is 41 percent stronger for 
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idled rigs than for non-idled rigs. The next section presents a formal model of resource allocation that 

leads to the research hypotheses. A presentation of the empirical evidence follows. The study concludes 

with suggestions for the development of research on resource redeployment and the broader topic of 

resource allocation. 

RESEARCH HYPOTHESES 

Hypotheses for the context where resource redeployment and resource idling are both present are derived 

by extending the formal model of resource redeployment in Feldman and Sakhartov (2021) to add the 

possibility that such redeployment is preceded by resource idling.2 The expanded model focuses on an 

oil-drilling firm that used its rig on the oil well situated in the original field. Namely, before time 0t = , 

the firm deployed its rig in field i , which is denoted in the model as 0 1i tm −∂ = . At any time before the 

end of the useful life of the rig t T= , the firm can idle that rig by temporarily halting its use. At any 

future time before t T= , the firm can reopen its rig and continue drilling in the original field. In addition, 

the firm can redeploy its rig to the alternative field j , from both the active mode where the rig was used 

to drill the original well in the immediate previous time and the idled mode where the rig was not used in 

the immediate previous time period. If idling in the original field i  occurs at time t , the firm’s choice as to 

where its rig is used switches from 1it tm −∂ =  and 0jt tm −∂ =  to 0itm =  and 0jtm = . If redeployment of 

the active rig to the alternative field j  happens at time t , the firm’s choice as to where its rig is used 

switches from 1it tm −∂ =  and 0jt tm −∂ =  to 0itm =  and 1jtm = . If redeployment of the idled rig to the 

alternative field j  happens at time t , the firm’s choice as to where its rig is used switches from 0it tm −∂ =  

and 0jt tm −∂ =  to 0itm =  and 1jtm = . If reopening of the idled rig in the original field i  happens at time t , 

 
2 A reverse order, in which resource redeployment precedes resource idling was also tried in the model. This alternative scenario 
never occurs in the dynamically optimal model of resource allocation for the following reason. The firm uses resource idling to 
avoid losses, only in scenarios with unfavorable realizations of revenue. When such scenarios are expected in the destination to 
which the firm’s resources are considered to be redeployed, the firm would not use that redeployment in the first place. 
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the firm’s choice as to where its rig is used switches from 0it tm −∂ =  and 0jt tm −∂ =  to 1itm =  and 0jtm = . 

The presentation of the model involves five elements: (1) a specification of the firm’s revenue in the two 

fields, (2) a specification of the idling option, (3) a specification of the redeployment option, (4) an 

account of how the firm uses these options, and (5) a summary of key results. 

Revenues in two fields 

Revenues that the firm can receive in the two fields are uncertain, with uncertainty represented with the 

following geometric Brownian motions: 

2

2
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i
i i itt W

it iR R e
σ

µ σ
  
   +    

−
=   (1) 

2

2
0

j
j j jtt W

jt jR R e

σ
µ σ

  
  − +
    =   (2) 

it jtdW dW dtρ= .  (3) 

In Equations 1–3, itR  and jtR  are current (i.e., at any time t) rates of revenues the firm would receive per 

unit of time by using the rig in fields i  and j , 0iR  and 0jR  are present (i.e., at present time 0t = ) rates 

of revenues the firm would receive per unit of time by using its rig in fields i  and j ; iµ  and jµ  are 

drifts for these revenues; iσ  and jσ  are volatilities of the revenues that capture the extent of uncertainty; 

and itW  and jtW  are Brownian motions with correlation ρ . This specification is common in models of 

resource redeployment (e.g., Feldman and Sakhartov, 2021; Reuer and Sakhartov, 2021; Sakhartov, 2022; 

Sakhartov and Folta, 2014; 2015) because it makes a plausible assumption that the two random variables, 

itR and jtR , get more difficult to predict the farther they are projected into the future and because it is 

convenient for the numerical completion of the model. 
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Idling option 

If at time t  the firm starts idling its rig in the original field i , it pays the idling cost proportionate to the 

current revenue itR  in the original field i ; that costs represents the only cash flow (i.e., the outflow) for 

the firm at time t . The value that the firm expects to accumulate from time t  to time t T=  in this case is 

specified with the following Bellman equation (Bellman, 1957): 

( )* *| 0, 0
ijxyA I x r t P

t it t t it jtV R t e E V m mαγ→ − ∂
+∂= − ∂ + = =   .  (4) 

In Equation 4, α  is the proportion of the idling cost that is incurred upon idling; γ  is the marginal idling 

cost (i.e., per a unit of revenue); ( )* *| 0, 0
ijP

t t it jtE V m m+∂ = =    is the expectation of the net present value 

of the firm starting at the immediate next time ( )t t+ ∂  with respect to the probability distribution ijP  for 

itR  and jtR  that is conditioned on the choice to idle the rig ( )* *0, 0it jtm m= = ; r  is a risk-free interest rate; 

and x  is the currents state for itR . 

Conversely, if at time t  the firm reopens the previously idled rig in the original field i , it pays 

the remaining proportion ( )1 α−  of the idling cost, but it is scaled by the revenue at the time of 

reopening, rather than at the time of idling. The value that the firm expects to accumulate from time t  to 

time t T=  in this case is represented with the following Bellman equation: 

( ) ( ) ( )* *1 | 1, 0
ijxyI A x x r t P

t it it i t t it jtV R t R C t e E V m mα γ→ − ∂
+∂= − ∂ + − ∂ + = =   .  (5) 

In Equation 5, iC  is the time-invariant rate of costs the firm would incur per unit of time by drilling in 

fields i ; ( )* *| 1, 0
ijP

t t it jtE V m m+∂ = =    is the expectation for the immediate next value of the firm 

conditioned on the current choice to reopen the rig ( )* *1, 0it jtm m= = . 

If at time t  the previously idled rig continues to be idled, the value that the firm expects to create 

from time t  to time t T=  in this case is specified with the following Bellman equation: 
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( )* *0 | 0, 0
ijxyI r t P

t t t it jtV e E V m m− ∂
+∂= + = =   .  (6) 

Redeployment option 

If the firm redeploys its active rig to the alternative field j , the rate of revenue the firm earns with the rig 

that is withdrawn from the original field i  is lower than the regular rate of revenue jtR  in field j , by 

y
tS , the rate of the redeployment cost. This rate of the redeployment cost the firm would incur per unit of 

time is a product of the marginal redeployment cost s  and the current realization y
jtR  of the rate of 

revenue jtR  on the destination field when that random variable is in state y , thus showing the loss in the 

rate of revenue due to redeployment. Formally, 

( )1, 1jt it t

y y
t jtm m

S sR
−∂= =

= 1 .  (7) 

Term ( )1, 1jt it tm m −∂= =
1  in Equation7 is a dummy that is equal one only when the rig transitions from 

being actively used in field i  at the immediate previous time ( )t t− ∂  to being actively used in field j  at 

the current time t . Equation 7 leads to the following statement of the expected net present value yA R
tV →  

of the firm that redeploys the active rig to field j  at time t : 

( ) ( )* *| 0, 1
jyA R y y r t P y

t t jt j t t it jtV S R C t e E V m m→ − ∂
+∂= − + − ∂ + = =   .  (8) 

In Bellman Equation 8, jC  is the time-invariant rate of costs the firm would incur per unit of time by 

drilling in fields j ; and ( )* *| 0, 1
jP y

t t it jtE V m m+∂ = =    is the expectation with respect to the probability 

distribution jP  that the random variable jtR  follows conditioned on the current choice to redeploy the 

rig. This expectation is assessed when revenue jtR  is in state y . 

If the firm redeploys its idled rig, Equations 7 still holds for y
tS , but the dummy term changes to 

( )1, 0, 0jt it t jt tm m m−∂ −∂= = =
1  (i.e., the rig was idled at time ( )t t− ∂  and is redeployed to field j  at the current time 
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t ). Then, the following Bellman equation summarizes the expected net present value yI R
tV →  of the firm 

that redeploys the idled rig to field j  at time t : 

( ) ( )* *| 0, 1
j

j

yI R y y r t P y
t t jt t t it jtV S R C t e E V m m→ − ∂

+∂= − + − ∂ + = =     (9) 

If the rig was already redeployed to field j  before time t , the following Bellman equation holds 

because no redeployment cost is incurred at the current time t : 

( ) ( )* *| 0, 1
jyR y r t P y

t jt j t t it jtV R C t e E V m m− ∂
+∂= − ∂ + = =   .  (10) 

Finally, if at time t  the rig continues to be active in field i  (i.e., neither idled nor redeployed), the 

following Bellman equation holds for the net present value of the firm: 

( ) ( )* *| 1, 0
ijxyA x r t P

t it i t t it jtV R C t e E V m m− ∂
+∂= − ∂ + = =   .  (11) 

Use of resource allocation options 

Resource idling and resource redeployment are options, rather than obligations, for the firm. Each option 

is exercised by the firm only if doing so makes the firm better off. Formally, 

max if 1, 0

max if 0, 0

if 0, 1it t

xyA
t

xyA I
t it t jt t

yA R
t

xyI
t

xy xyI A
t t it t jt t

yI R
t

yR
t jt t

V
V m m
V

V
V V m m

V

V m m−∂

→
−∂ −∂

→

→
−∂ −∂

→

−∂

= =

= = =

= =

 
 
 
 
 
 
 
 


.  (12) 

In Equation 12, the first three lines represent the situation where the firm enters time t  with the 

rig having been actively used to drill the well in field i . Accordingly, the firm chooses among continuing 

to drill the well in field i  and the respective value xyA
tV  (i.e., Equation 11), starting to idle the rig in field 

i  and the respective value xyA I
tV →  (i.e., Equation 4), and redeploying its rig to the alternative field j  and 
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the respective value yA R
tV →  (i.e., Equation 8). In this setting, idling (i.e., A I→  in tV ) competes with, or 

reduces the use of, redeployment (i.e., A R→  in tV ) as a means for the firm to respond to adverse 

changes in revenue itR  in the original field because both options are more likely to be “in the money” 

when itR  is low. 

The second three lines in Equation 12 capture the situation where the firm enters time t  with the 

rig having been idled in field i . Accordingly, the firm chooses among continuing to idle the rig in field i  

and the respective value xyI
tV  (i.e., Equation 6), reopening the rig in the original field i  and the respective 

value xyI A
tV →  (i.e., Equation 5), and redeploying its rig to the alternative field j  and the respective value 

yI R
tV →  (i.e., Equation 9). In this context, the firm cannot start idling the rig that was idled already; and 

reopening (i.e., I A→  in tV ) does not compete with redeployment (i.e., I R→  in tV ) because they 

diverge in the conditions that make them in the money: the former is in the money with favorable changes 

in itR , whereas the latter is still more likely to be in the money when itR  becomes low. Accordingly, that 

choice of redeployment after idling that is less contested by the alternative option than the choice of 

redeployment without idling should lead to a higher intensity of redeployment. 

Equation 12 can be restated with respect to the current resource allocation choices { }* 0,1itm ∈  

and { }* 0,1jtm ∈  in the following way: 

( ) ( )

( )

( )

( )

,

* *

,

arg max if 1, 0

, , arg max if 0, 0

0,1 if 0, 1

it jt

it jt

xyA
t

xyA I
t it t jt t

m m
yA R

t

xyI
t

xyI A
it jt it t jt t t it t jt t

m m
xyI R

t

it t jt t

V
V m m
V

V
m m m m V m m

V

m m

→
−∂ −∂

→

→
−∂ −∂ −∂ −∂

→

−∂ −∂

= =

= = =

= =

 
 
 
 
 
     
 


.  (13) 
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Because Equations 4-6 and 8-11 are Bellman equations that capture dynamic implications of the current 

choice ( )* *,it jtm m  (i.e., how that choice affects not only the current cash flow represented with the first 

term in each of these equations but also the future cash flows captured with the second term in each of 

these equations), Equations 12 and 13 are also Bellman equations that cast the firm’s resource allocation 

choice ( )* *,it jtm m  as dynamically optimal. The Bellman equations split the problem of resource allocation 

into a sequence of sub-problems that are amenable to a numerical solution. Such dynamically-optimal 

resource allocation choices are expressed in a recursive form that relies on backward induction to derive 

optimal conditional choices ( ) ( )* *, ,it jt it t jt tm m m m−∂ −∂
 
   at all times t  and with all values of ,x

itR  and y
jtR . 

The solution uses the discretization of the continuous-time distribution ijP  specified with Equations 1–3. 

Like Feldman and Sakhartov (2021), this model applies the popular and efficient discretization suggested 

by Boyle, Evnine, and Gibbs (1989) that approximates geometric Brownian motions with a binomial 

lattice having N  time steps. This approach preserves the mean and the variance of the original 

distribution if the time step t T N∂ =  on the lattice is sufficiently short. On the lattice, the next-period 

revenues it tR +∂  and jt tR +∂  represent four nodes and take four respective states: u
it tR +∂  and u

jt tR +∂  with 

probability uuq , u
it tR +∂  and d

jt tR +∂  with probability udq ; d
it tR +∂  and u

jt tR +∂  with probability duq ; or d
it tR +∂  

and d
jt tR +∂  with probability ddq .3 The expectations in Equations 4-6 and 8-11 are estimated as 

xy uu uu ud ud du du dd dd
t t t t t t t t t tE V q V q V q V q V+∂ +∂ +∂ +∂ +∂= + + +   . 

The backward induction procedure starts at the penultimate time t T t= − ∂  with the terminal 

condition 0xy
TV =  suggesting that the rig will have fully exhausted its ability to generate revenues by 

terminal time T . The algorithm proceeds recursively backward in time with a step t∂  until it reaches the 

 
3 Formulas for u

it tR +∂ , u
jt tR +∂ , d

it tR +∂ , d
jt tR +∂ , 

uuq  , 
udq , 

duq , and 
ddq  are given in Feldman and Sakhartov (2021). 
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present time 0t = . In each step going backward in time and for each combination of revenues x
itR  and 

y
jtR , the model derives conditional choices ( ) ( )* *, ,it jt it t jt tm m m m−∂ −∂

 
  . One type of such choices, 

( ) ( )* *0, 1 1, 0it jt it t jt tm m m m−∂ −∂= = = = 
  , represents redeployment of the rig conditioned on that rig 

having been active in the original field in the immediate previous time. Another type, 

( ) ( )* *0, 1 0, 0it jt it t jt tm m m m−∂ −∂= = = = 
  , represents redeployment of the rig conditioned on that rig 

having been idle in the original field in the immediate previous time. Finally, the resulting three-

dimensional matrix (i.e., with t , x , and y  being the three dimensions) generated for the two choices 

enables the following analyses. 

Formal results 

The formal results predict the probability of resource redeployment that is conditioned on either previous 

idling or previous non-idling. Each of these results involves two determinants of resource redeployment. 

The first determinant is the inducement to redeploy the rig from the original field to another field, namely 

whether and to what extent the revenue on the drilling contract would be higher in another field than in 

the original field. The second determinant is the redeployment cost the firm would incur when 

withdrawing the rig from the original field and reallocating it to another field. Accordingly, the formal 

results are visualized in two figures and are summarized with three hypotheses concluding this section. 

Figure 1 displays the effects the inducement has on the use of resource redeployment conditioned 

on the previous idling of the resources (i.e., the broken line) and on the previous non-idling of the 

resources (i.e., the solid line). The vertical axis reflects the probability of resource redeployment that is 

averaged over time, the redeployment cost, and the idling cost in the model.4 The horizontal axis spans 

 
4 The estimation uses the following ranges for the three parameters, over which the estimated probabilities are averaged: 

[ ]0, 1t ∈ , [ ]0,100s ∈ , and [ ]0, 10γ ∈ . The inducement varies within the range ( ) [ ]0 0 0 90%, 90%j i iR R R− ∈ − , which is 
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values of the inducement. The following three results in Figure 1 are noteworthy. First, the broken line is 

above the solid line. This result suggests that the probability of resource redeployment is greater after 

idling than without idling. This monotonic positive effect of resource idling on resource redeployment 

occurs for the following reason. After idling was already undertaken by the firm, it no longer competes 

with redeployment as a means of addressing low revenue in the original field. By contrast, if idling was 

not used, it competes with redeployment to address low revenue in the original field, thus reducing the 

use of resource redeployment. Second, both the solid and the broken lines have robust upward slopes. 

This result suggests that the probability of resource redeployment monotonically increases in the 

inducement, thus validating that the model is consistent with the effect expected for this determinant. 

Third, the elevation of the broken line over the solid line increases monotonically in the direction from the 

left margin to the right margin in Figure 1. This result suggests that the magnitude of the diagnosed 

positive effect of the inducement on the use of resource redeployment increases after the resources were 

idled. This positive moderation takes place because, with the revealed higher intensity of resource 

redeployment after idling, resource redeployment becomes more sensitive to its key determinant—the 

inducement. 

[Insert Figure 1 about here] 

Figure 2 illustrates the effects of the redeployment cost on the use of resource redeployment 

conditioned on the previous idling of the firm’s resources (i.e., the broken line) and on the previous non-

idling of those resources (i.e., the solid line). The vertical axis reflects the probability of resource 

redeployment that is averaged over time, the inducement, and the idling cost.5 The horizontal axis spans 

values of the redeployment cost. The first observation in Figure 2 is that, like in Figure 1, the broken line 

 
provided by fixing 0 0.08iR = and setting the range for [ ]0 0.008, 0.152jR ∈ . Other ancillary parameters in the model take the 

following values: 0.25α = , 0.5
i j

σ σ= = , 0ρ = , 0.07
i j

C C= = , 0.08r = , 1T = , and 200N = . 
5 The estimation uses the following ranges for the three parameters, over which the estimated probabilities are averaged: 

[ ]0, 1t ∈ , [ ]0 0.008, 0.152jR ∈ , and [ ]0, 10γ ∈ . The redeployment cost varies within the range [ ]0,100s ∈ . Other 

ancillary parameters are as follows: 0.25α = , 0 0.08iR = , 0.5
i j

σ σ= = , 0ρ = , 0.07
i j

C C= = , 0.08r = , 1T = , and 

200N = . 
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stays above the solid line. This result validates the conclusion that previous idling of the firm’s resources 

increases the use of resource redeployment. The second noteworthy pattern is that both the solid and the 

broken lines have robust downward slopes. This result suggests that the probability of resource 

redeployment monotonically declines in the redeployment cost, thus confirming that the model is 

consistent with the effect expected for this determinant of resource redeployment. Finally, the elevation of 

the broken line over the solid line declines monotonically in the direction from the left margin to the right 

margin in Figure 2. This result indicates that the negative effect of the redeployment cost on the use of 

resource redeployment becomes stronger after the resources were idled. The negative moderation occurs 

because, with the higher intensity of redeployment after idling, resource redeployment becomes more 

sensitive to its key determinant—the redeployment cost. 

[Insert Figure 2 about here] 

The three novel results that are demonstrated in Figures 1 and 2 can be restated as the following 

three hypotheses, which are then tested empirically. 

Hypothesis 1: Resource idling has a positive effect on resource redeployment. 

Hypothesis 2: The positive effect of the inducement on resource redeployment will be greater for idled 
resources than non-idled resources. 

Hypothesis 3: The negative effect of the redeployment cost on resource redeployment will be greater for 
idled resources than non-idled resources. 

METHODS 

Empirical context: Oil drilling industry 

To empirically examine study resource idling and resource redeployment, this study investigates idling 

and redeployment of drilling rigs in the onshore oil drilling industry. As background information, oil 

reserves are discovered in different geologic formations underground, and the goal of a production 

company owning the site where these reserves are present is to pump the oil from them to process and sell 

it. To achieve this, the producer first contracts with a driller to use its rig, which is a tall derrick run by a 

motor that spins a pipe attached to a drill bit, to crush through layers of rock sediments to reach the 
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pockets of oil and gas reserves deep underground. The industry is vertically disintegrated due to the 

spatial and temporal variation with which producers develop wells (Corts and Singh, 2004). Drilling 

activities fluctuate with the producers successfully finding new fields with oil and with oil prices; and the 

non-specificity of equipment and mobility demanded of rigs favors independent drillers, where their rigs 

are more effective in smoothing out these fluctuations in drilling requirements across different producers 

(Kellogg, 2011). Every oil field can be considered a distinct market from another field because the 

opportunity set can vary depending on how many undrilled wells are available, who the client producers 

are operating there, and what the geological terrain is like to drill (Decaire, Gilje, and Taillard, 2020; 

Kellogg, 2011, 2014). 

This industry is well suited to empirically study resource idling and redeployment for several 

reasons. First, idling rigs is critical for a driller to maintain flexible capacity in response to volatile market 

conditions in the oil industry (Corts, 2008). This empirical context therefore allows this study to observe 

whether rigs are idled. Second, resource redeployment is a critical strategy used by drillers to optimize 

opportunities for their rigs. Drillers are actively looking for new opportunities for their rigs to be put to 

work, and their rigs are often redeployed from previously completed wells to locate next to new wells that 

are opening up for development. By having its rig physically closer to an available well, the driller makes 

itself more attractive to its potential client by minimizing the setup cost and time to commence drilling 

operations compared to other drillers with rigs located further away (Chowdhury, 2016). This empirical 

context allows us to observe whether rigs are redeployed by geospatially tracking their movements, 

especially across oil fields (from a well in its home field to a new well located in an outside field). 

Finally, the important determinants for resource redeployment according to the literature—the 

inducement and the redeployment cost—are key considerations for drillers in making such decisions, and 

this empirical context captures these factors well (Chowdhury, 2016). 

Data and sample 

Our data are collected from the Texas Railroad Commission (TRC), DrillingInfo, RigData, and the 

Energy Information Administration (EIA). TRC is the state regulatory agency that overseas all oil and gas 
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drilling in Texas and records well-level activities. DrillingInfo and RigData are private data providers for 

the oil and gas industry that track drillers, producers, and their activities. EIA the federal agency that 

provides macro-level economic data on the industry. By combining these data sources, we construct a 

unique dataset that allows us to observe characteristics of the drillers, their rigs, their client producers, and 

the revenue prospects of project sites. More importantly, we can observe detailed activities of drillers’ 

rigs, enabling us to determine whether and when they idle their operations, to track their geospatial 

movements when they are redeployed between project sites and markets, and to determine far they travel 

if they have been redeployed. Our sample period is between the years 1991 and 2015. 

The decision problem, resource redeployment, requires structuring the data in the following way. 

A driller’s rig enters the sample when that rig becomes available for possible redeployment. Specifically, 

a rig is observed for every well drilled during our observation period, and after a given well’s completion, 

the driller faces a key decision problem: whether to redeploy to an outside market (or new field) by 

transporting that rig there for work, or to stay in its home market (or home field) by using that rig on a 

project nearby. The driller’s redeployment targets can be any new well located in these outside markets 

that need to be developed at that time. In other words, a driller faces the choice set of potential 

redeployment dyads for its rig, as represented by the original well and all potential redeployment target 

wells. Thus, we structure our data by compiling a set of realized and unrealized dyads between a focal rig 

located at its original well in its home field and every potential new well in alternative outside fields. For 

an available rig, the driller faces another important strategic choice prior to its redeployment decision: 

idling that rig or keeping it online to be fully ready when the next project calls. Based on our theorizing 

and empirical design, we lag this key predictor and our other explanatory variables, which precede the 

redeployment decision by one month. Creating this naturally lagged temporal structure also helps with 

identification and mitigates endogeneity concerns (elaborated below in the section entitled “Analytical 

approach”).  

Following this empirical setup, the final sample used in analyses comprises 1,005,901 total 

observations, which are potential idling and redeployment decisions every month over the 25 years in the 
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sample. In this choice set during the sample period, 63,204 observations are realized dyads in terms of 

instances of redeployment, and the remaining 942,695 observations are unrealized dyads that are 

associated with 3,353 rigs that are owned by 268 drillers that operate purely in the drilling business. In the 

sample, 66% of drillers idle at least one rig in their fleet in a given year. Among these drillers that have 

idled, 52% redeploy at least one rig in their fleet in the same year, while the rest that have idled rig did not 

redeploy any rig. Drillers that did not idle in a given year represented on average 34% of all drillers in the 

sample. Among these non-idled drillers, about 26% redeployed at least one rig in their fleet, while the rest 

did not redeploy any rigs. These patterns overall suggest that idling is an option that the majority of 

drillers exercise in a given year, and among those idling their rigs many redeploy some of those rigs to an 

outside market. 

Variables 

Dependent variable 

The dependent variable Redeployed is a binary measure of whether the drilling rig is moved from the oil 

well in its original home field to a target well in a different oil field (=1), or stays in its home field (=0). 

As explained above, the focal rig’s redeployment choice set of potential target wells includes all available 

wells located outside its original home field. 

Explanatory variables 

The first explanatory variable Idled is measured as a binary indictor of whether the driller idles a given 

rig. A driller’s rig becomes idled, or what is termed “stacked” in the drilling industry, when its drilling 

operations are suspended and its assigned crew members are furloughed. In the extreme case, idling a rig 

entails complete deactivation by disassembling it and placing it into storage, and laying off its crew 

members. A driller can then reactivate its “stacked” rig, which often requires retraining furloughed 

workers or rehiring after layoffs. The reactivation also requires additional investment to refurbish the rig 

due to any physical erosion and even reassemble parts or the entire rig. 
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The second explanatory variable is Inducement, which captures the relative financial advantage of 

the firm’s potential target market relative to its home market. We measure this variable for each dyad 

associated with the rig’s original well site in its home field and the potential target well site in an outside 

field. Specifically, the payment to the driller on the current well is calculated as the price per foot paid to 

the contractor in drilling that well (in hundreds of dollars). Because we cannot observe the actual payment 

for a new well that has not been drilled yet, the expected payment for each potential target well site is 

calculated as the average price per foot drilled paid to drillers for recently-completed nearby wells in the 

same field during the same year as the target well becoming available (in hundreds of dollars). Finally, we 

estimate inducement for each dyad by taking the difference between the potential payment of the target 

well site for redeployment and the payment the contractor received for its rig used on the current well site. 

The third explanatory variable is Redeployment cost, which is the cost for the firm to switch from 

its home market to a new market. This variable is measured as the geographical distance (in miles) 

between the site of the rig’s current well in its home field and the site of the potential well in an outside 

field. A rig traveling a longer distance requires higher transportation cost. For instance, based on 2011 rig 

mobilization data, the trucking fee for transporting a standard drilling rig was about $130,000 for every 25 

miles. Moves for more than 50 miles are often considered long hual moves and typically involve even 

higher mileage rates (Carpenter, 2019). 

Control variables 

We included the following control variables to account for other determinant of redeployment. First, the 

technical complexity of the project can influence redeployment decisions. More technically-complex 

wells pose greater challenges to effectively drill and entail greater risks of accidents occurring. 

Considering a target well that is more complex, all else equal the driller is more likely to seek more 

manageable projects elsewhere. At the same time, a driller that has worked on technically-complex well 

in its home market may seek to leverage that experience for its new wells. We thus control for both Focal 

well complexity and Target well complexity, which we each measure by assigning “0” to a standard 
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vertical well, “1” to a directional well that requires non-vertical and diagonal drilling that is more 

technically complex, and “2” to a horizontal well that requires the most complex drilling maneuver in 

drilling. 

Also, the experience level of the firm and its frontline team can affect redeployment decisions. A 

driller’s rig, and its associated crew, with greater experience in a given field have better knowledge of the 

geological terrain, such as familiarity drilling through the different rock stratifications. In fact, these crew 

members working on a rig usually stay with that rig given the significant rig-specific knowledge and 

training involved. As a result, a rig with more experience in its home field operates more efficiently, such 

as achieving faster completion times while incurring lower costs, and is thus less likely to be redeployed 

elsewhere. Accordingly, we control for Rig field experience by measuring this variable as the number of 

previous wells drilled and completed in the rig’s current field. 

Resources are more likely to be redeployed to a new market when they underperform in the home 

market. The primary metric with which drillers are evaluated in the industry is the drilling speed of its 

rigs in terms of how fast they can complete drilling operations on wells (Kellogg, 2011). We control for 

Rig performance, which is measured following past literature as a rig’s drilling speed is measured as feet 

drilled per day. When under contract, rigs operate continuously, working  24 hours per day and 7 days per 

week, rotating crews in three 8-hour shifts. Specifically, a rig’s performance for a given well is calculated 

by taking the total depth of a given well and then dividing it by the total number of drilling days needed to 

complete the well.6 

 
6 However, there could be systematic differences at the project level that can impact a driller’s drilling speed, such as differences 
in the wells’ characteristics and environmental factor. This means that the realized drilling speed of the well needs to be 
decomposed into the factors intrinsic to the rig and external determinants of such speed. The rig’s intrinsic speed is assessed 
using the approach common in the literature (Hawk, Pacheco-De-Almeida, and Yeung, 2013; Pacheco-de-Almeida, Hawk, and 
Yeung, 2015). Namely, the rig’s observed drilling speed is regressed on a set of project-level factors, and then he residual from 
that regression embodies the remaining rig-specific, idiosyncratic component of the rig’s drilling speed. Specifically, in the first 
stage, the following OLS model is run using the drilling data at the project well level (indexed for well, field, and time): a rig’s 
drilling speed for a given well is regressed on project-level factors. In this regression, the outcome of drilling speed is measured 
as the feet per day drilling rate achieved for the well. The explanatory variables proxying for the systematic determinants are the 
type of well (vertical, directional, or horizontal); the cost of the well in thousands of US dollars; the contract type being either day 
rate or turn key; the demand conditions at the time of the drilling based on oil consumption data from the U.S. Energy 
Information Administration (EIA) in millions of barrels; and a vector of dummies capturing fixed effects for each field (based on 
geography of the drilling), product type (types of crude oil produced), and year. If the residual in that estimation is positive, it 
captures the degree to which the rig realizes a faster than expected drilling rate for the given well. If the residual is negative, it 
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Another important performance consideration for redeployment is how profitable the focal asset 

is in its home market. A rig that has been more profitable at home has less incentives to leave for a new 

market. We thus control for Rig profitability, which is measured as the average profit made for its 

previously drilled wells in its home field in the past year based on the average revenue earned on those 

wells minus the average cost in drilling those wells. 

The intensity of competition that the firm faces in its home market and target markets can also 

affect redeployment decisions. A driller’s rig facing more competitition in its home market can lead it to 

pursue opportunities in other, less competitive locations; whereas a rig facing more competiton in a target 

market can redeployment there less appealing. Thus, we control for Focal competitive density, which is 

measured based on the number of rival drillers operating in the same home field as the focal rig. 

Likewise, we control for Target competitive density, which is measured in a similar way by counting the 

number of rival rigs operating in the same field as the target well site. 

Finally, we control for Uncertainty to capture the degree of unpredictability of revenue generated 

in the potential market for redeployment. We seek to estimate the extent that the realized revenue on a 

target well diverges from the level that would be rationally expected based on available historical 

information. We follow the statistical modeling technique using the conditional variance generated from 

generalized autoregressive conditional heteroskedasticity (GARCH model) to predict uncertainty of asset 

returns (Bollerslev, 1986; Greene, 2003).7 

 
captures the degree to which the rig realizes slower than expected drilling rate for the given well. This residual, then, becomes the 
basis for the measurement of the rig’s intrinsic speed performance. 
7 In particular, we generates time series data for each target well’s return over the sample period by estimating the expected 
revenue for each potential target well in each month, which we derive using the total feet drilled of nearby wells in the same field 
as the target well multiplied by the crude oil price in that period. Using the time series of a target well’s expected revenue as the 
outcome, a GARCH model is run on an autoregressive-moving average process of past variances and disturbances of that well. 
This procedure is done by first regressing the target well’s expected revenue on that well’s expected revenue lagged by one 
month. Then, the conditional variance of the error term is regressed on the first-order lag of the variance itself and the squared 
error term, while controlling for heteroskedasticity in this time series. The estimated conditional variance captures the uncertainty 
that is not predictable about any trend that might exist for each period in the time series. Finally, a series of fixed effects for rig 
and year is added to account for differences across time and rigs. 
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Baseline statistical method 

The analysis needs to accommodate prospective target well sites in outside fields, regardless of whether 

the driller redeployed a rig to a particular site because the driller can redeploy a rig from the current well 

to many others, or not redeploy it at all. Accordingly, dyadic measures for the explanatory variables are 

created for all possible pairs, thus enabling the comparisons that drive the chosen redeployment or the 

lack of thereof. The primary relationship between a focal rig being idled and its likelihood of 

redeployment can be expressed in the following Conditional Probit model: 

, 1 1 , , ,'k t k t k t k tRedeployed Idledβ ε+ = + +Xδ .  (14) 

When the moderating effects are examined, the model becomes as follows: 

, 1 1 , 2 , ,

3 , , , ,

*

* '
k t k t k t k t

k t k t k t k t

Redeployed Idled Idled Inducement

Idled Redeployment cost

β β

β ε
+ = +

+ + +Xδ
,  (15) 

where Redeployed is operationalized as described above and measured at time 1t + , the main predictor is 

whether the focal rig k  is Idled at time t , the moderators are Inducement and Redeployment cost, X  is a 

vector of control variables accounting for other determinants of redeployment that also includes rig and 

year fixed effects, and ε  is the residual error term. The empirical specification above is potentially 

problematic because instances of redeployment can be influenced by endogenous choices of idling made 

by the firm. Showing first the baseline estimation that does not account for self-selection of operating 

mode can highlight how the estimations of 1β , 2β , and 3β  change after accounting for such endogeneity. 

Identification strategies 

The empirical objective is to estimate the effect of the decision to idle a rig on the subsequent likelihood 

of its redeployment. This goal requires an analytic strategy that resolves several challenges such as 

omitted variable bias, selection effects, simultaneity, and reverse causality. Accordingly, several 

identification strategies are used to cope with these empirical challenges. 
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The first identification strategy is via regression analyses, where the goal is to obtain a consistent 

estimate of idling on redeployment by controlling for all other potential factors that influence 

redeployment in a vector of control variables. The use of a fuller set of control variables mitigates omitted 

variable bias, thus providing a consistent estimate. To estimate the likelihood of redeployment when there 

are multiple alternative choices, a conditional logit model is used (McFadden, 1973). The explanatory 

variables also have a lagged temporal structure relative to the decision to redeploy, which reduces 

concerns regarding simultaneity and/or reverse causality. Specifically, the construction of variables of 

Idled, Inducement, and Redeployment costs are based on data observed at least one month before the 

considered redeployment decision. This temporal structure alleviates the concern that one redeployment 

decision of a rig could influence the values of the main explanatory variables. Also, fixed effects 

associated with rig and year minimize omitted variable bias concerns. Including rig-fixed effects accounts 

for any time-invariant rig characteristics that may affect both a rig’s idling and its redeployment. 

Including year-fixed effects accounts for economy-wide factors that could affect both a rig’s idling and its 

redeployment. 

A potential estimation problem in testing Hypothesis 1 is that the decision to idle is likely to be 

influenced by unobserved factors, which creates unobserved interdependency between the decision to idle 

and redeployment. In general, firms can choose a strategy (i.e., idling or not) based on their beliefs that 

such a strategy leads to the best outcome (i.e., related to redeployment). Thus, when firms choose 

strategies, regressing an outcome of that choice on that strategy choice dummy can bias estimations. If 

such endogeneity exists and is not accounted for, the baseline Probit regression model will generate 

biased estimates. Furthermore, when the effect of the endogenous variable (i.e., Idled) is not correctly 

adjusted, the estimation of its interaction effects (with the inducement and the redeployment cost) is also 

biased. To address these concerns, the analysis starts with a two-stage residual inclusion (2SRI) 

estimation model, which is a particularly suitable approach for addressing endogeneity bias in non-linear 

models involving dichotomous outcome variables (Rivers and Vuong, 1988; Terza et al., 2008). The 

2SRI relies on a maximum likelihood (ML) estimator to accommodate the nonlinearity in the dependent 
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variable and the endogeneity of the regressor, which helps mitigate specification error (Nakamura and 

Nakamura, 1998, Wooldridge, 2014). In particular, the 2SRI derives the residual in the first-stage ML 

estimation of the endogenous regressor and includes those estimated residuals in the second stage 

conditional ML estimation of the main outcome of interest (Newey, 1987; Rivers and Vuong, 1988; 

Blundell and Powell, 2004; Terza et al. 2008). The inclusion of the residual from the first stage 

substitutes for unobservable confounds, thus correcting for endogeneity of the regressor (Terza et al. 

2008, Wooldridge 2014). The first stage uses relevant covariates to predict idling with a Probit model: 

*
, , , 1

*
, ,

'

1 if 0, 0 otherwise
k t k t k t

k t k t

Idled

Idled Idled

µ −= +

= >

Wγ
  (16) 

The outcome *

,k tIdled  is a latent measure of idling, where *
, 1k tIdled =  corresponds to the focal rig k  

being idled at time t  and *
, 0k tIdled =  corresponds to the focal rig not being idled at that time. The choice 

variable of *
,k tIdled  can be thought of as the difference in the expected value of idling and the expected 

value of remaining active at time t . This value, and therefore this chosen operational mode, is a function 

of measurable firm attributes and industry conditions that are included in the vector ,k tW . Because 

*
,k tIdled  cannot be observed but the chosen operational mode can (i.e., , 1k tIdled =  if the focal rig is idled 

or , 0k tIdled =  if focal rig remains active), the model diagnoses whether or not *
,k tIdled  is positive or 

negative based on the choice of idling. Vector ,k tW  involves independent covariates at time t  that affect 

the decision to idle at that time, including an instrument. Vector γ  consists of coefficients associated 

with those covariates. The instrument included in ,k tW  is Rivals cold stacking, which likely raises the 

attractiveness of idling to the focal driller because such cold stacking by rivals reduces the prospective 

cost for the focal rig to be reactivated. Specifically, the cold stacking of rigs by rivals is the most extreme 

form of idling, which involves dissembling these rigs, placing them in storage, and laying off the 

associated crew members. Such layoffs, however, increase the available local labor market supply for rig 
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workers, which can benefit a driller reactivating any idled rigs because it can more easily rehire needed 

crew members. Meanwhile, rivals cold stacking rigs is less likely to directly affect redeployment of the 

focal rig, thus satisfying the exclusion restriction of an instrument. Consistent with a Probit specification, 

the error term , 1k tµ −  is assumed to be normally distributed with zero mean. Moreover, , 1k tµ −  captures the 

effects on the outcome of idling choice that cannot be identified or measured in covariates ,k tW . Then, the 

second stage is set up similar to Equation 14 but includes correction for self-selection λ  that represents 

the treatment effect model (Greene, 2003): 

, 1 1 , 2 , 3 ,k t k t k t k tRedeployed Idledβ β λ ε+ = + + +Xβ .  (17) 

Finally, how idling moderates the effects of the inducement and of the redeployment cost on 

redeployment is tested. The challenge is that directly interacting the endogenous variable Idled based on 

Equation 17, even after instrumenting, can still result in biased estimation (Bun and Harrison, 2018). The 

analysis follows the approach of correcting for such self-selection or treatment effects using a switching 

regression model, which separately estimates the likelihood of redeployment for idled rigs in one sample 

and for non-idled rigs in another sample (Hamilton and Nickerson, 2003; Shaver, 1998). The advantage of 

using this switching regression model over the more commonly used treatment model that uses the full 

sample is that the latter approach restricts coefficient estimates for the covariates (i.e., Inducement and 

Redeployment cost) to be the same for both operational modes (i.e., idled and non-idled) and thereby does 

not allow comparisons of the effects between these two operational modes (Shaver, 1998). 

The switching regression model also has two stages. The first stage uses relevant covariates to 

predict resource idling with a Probit model, which is the same as the first-stage instrumental estimation in 

Equation 16. In the second stage, the likelihoods of redeployment for idled rigs and non-idled rigs are 

estimated separately using different subsamples and including a correction for self-selection for each 

sample. These switching models are expressed as follows: 

,, 1 0 , , ,
'E 1 0 E 0k tk t k t k t k tRedeployed Idled Idledε+ = = = + =     Xβ   (18) 
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, 1 , 0 , , ,
'E 1 1 E 1k t k t k t k t k tRedeployed Idled Idledε+ = = = + =      Xβ .  (19) 

The outcomes of ( ), 1 ,1 0k t k tRedeployed Idled+ = =  and ( ), 1 ,1 1k t k tRedeployed Idled+ = =  measure 

whether redeployment occurs for rigs that were previously, non-idled and idled, respectively; ,k tX  is the 

reduced-form vector of exogenous covariates with 0β  being the associated vector of coefficients for the 

given sample. Assuming that these outcome variables are jointly distributed, the above equations 18 and 

19 can be expressed as follows: 

( )
( )

,
, 1 , 0 , 0

,

''E 1 0
'

k t
k t k t k t

k t

Redeployed Idled
φ

σ
Φ+ = = = +  
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γ
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γ
  (20) 
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W
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β

γ
.  (21) 

The ratios in the right side of Equations 20 and 21 are known as the inverse Mills ratio and its 

complement, respectively. They correct for the endogenous self-selection, and their values are derived 

from the first-stage selection model specified with Equation 16. Specifically, the term ( )φ   is the 

probability density function, ( )Φ   is the cumulative distribution function of the standard normal 

distribution, and 0σ  and 1σ  are the associated coefficients to be estimated in this stage. The estimated 

coefficients on the inverse Mills ratio and its complement indicate the bias that would be present in the 

coefficient estimates if the endogeneity were not addressed (Heckman, 1979, Greene, 2003). To be clear, 

because Equation 20 is estimated only for non-idled rigs and Equation 21 is estimated only for idled rigs, 

the variable Idled is not included in either of these two models. The switching regression model still can 

test whether the likelihood of redeployment for idled rigs is higher compared to the likelihood of 

redeployment for non-idled rigs (i.e., Hypothesis 1), which is deduced from the estimates of 0σ  and 1σ . 

Furthermore, because the variable Inducement is in vector ,k tX  of covariates that affect redeployment, the 

model can test whether the effect of the inducement on redeployment is stronger for idled rigs than for 
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non-idled rigs (i.e., Hypothesis 2). Likewise, because the variable Redeployment cost is in vector ,k tX  of 

covariates that affect redeployment, the model enables the test of whether the effect of the redeployment 

cost on redeployment is stronger for idled rigs than for non-idled rigs (i.e., Hypothesis 3). 

RESULTS 

The empirical analysis begins with the descriptive statistics and a correlation table presented in Table 1. 

First, variance inflation factors (VIFs) were checked to ensure that multicollinearity is not a problem. All 

VIFs were below 10 with the mean VIF of 2.09 and a max of 3.55. The correlation matrix in Table 1 

offers some initial evidence that idling is positively correlated with redeployment. In addition, the 

inducement is positively correlated with redeployment, while the redeployment cost is negatively 

correlated with redeployment, consistent with prior theory. 

[Insert Table 1 about here] 

Model 2 in Table 2 tests Hypothesis 1, which predicts the positive effect of idling on 

redeployment, using the specification in Equation 14 that does not account for endogeneity. The 

coefficient for Idled is positive and significant (p=.005). Models 3 and 4 use the 2SRI and report the first-

stage regression expressed in Equation 16 and the second-stage regression expressed in Equation 17, 

respectively. In the first stage regression shown in Model 3, the instrument Rivals cold stacking 

significantly increases the likelihood that the focal rig is idled. The F-statistic of the instrument is 46.1, 

which is well above Staiger and Stock’s (1997) threshold for a strong instrument (F-statistic >10). 

Whether this instrument is correlated with the second-stage outcome of redeployment is also checked, and 

they are unrelated (r=0.02, n.s.). 

[Insert Table 2 about here] 

In the second-stage regression in Model 4 of Table 2, the coefficient for Idled is positive and 

significant (p=.016) and is twice as large as in Model 2. The coefficient for the self-selection correction 

λ  is also significant, thus suggesting that unobserved factors affecting idling could also affect 

redeployment (p=.008). The negative sign of the estimate for λ  suggests a downward estimation bias tha 
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appears in a simpler Model 2 that does not account for endogeneity. In other words, as also evident in the 

difference in estimates for Idled between Models 2 and 4, the model that does not account for endogeneity 

underestimates the effect of idling on redeployment. In particular, the effect of idling on the likelihood of 

redeployment after accounting for endogeneity is over 40% higher than estimating this effect without 

accounting for endogeneity. 

Models 5 and 6 report the second-stage results based on the subsamples of idled and non-idled 

rigs respectively; both estimations correct for self-selection in each subsample using the switching 

regression model. In Model 5, the negative and significant coefficient estimate for λ  (p=.002) indicates 

that the likelihood of redeployment for rigs that choose to be idled is greater than the likelihood of 

redeployment for all rigs with equivalent observable characteristics. This finding is consistent with the 

result in Model 4 involving the full sample. In Model 6, the coefficient estimate for λ  is also negative but 

not significant. 

Turning to Hypothesis 2, Models 5 and 6 together confirm the interaction hypothesized for the 

inducement. Specifically, for idled rigs, the estimated coefficient for Inducement is positive (b=.00198; 

p=.022), which indicates that the likelihood of redeployment for idled rigs increases as the inducement 

increases. For non-idled rigs, the coefficient for Inducement is also positive (b=.00095; p=.011). The 

positive effect that the inducement has on redeployment is stronger for idled rigs than for non-idled rigs: a 

unit increase in the inducement increases the probability of redeployment by about 59 percentage points 

more for idled rigs than for non-idled rigs.8 The statistical significance of this difference in the estimates 

for Inducement between the two samples was tested, and the null hypothesis that these estimates are equal 

was rejected using the suest command in stata based on the nonlinear Wald test (p=.006). 

Models 5 and 6 also provide empirical support for Hypothesis 3 related to the effects of the 

redeployment cost. As shown in Model 5 for idled rigs, the estimated coefficient for Redeployment cost is 

negative (b= -.0018, p=.009), which indicates that the odds of redeployment for idled rigs decrease as the 

 
8 For the average marginal effects of Inducement, a unit increase in this variable raises the probability of 
redeployment by about 0.11% for idled rigs and by about 0.045% for non-idled rigs. 
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redeployment cost increases. In Model 6 for non-idled rigs, the coefficient for Redeployment cost is also 

negative and significant (b= -.0016, p=.016). The negative effect that the redeployment cost has on 

redeployment is stronger for idled rigs than for non-idled rigs: a unit increase in the redeployment cost 

decreases the probability of redeployment by about 41 percentage points more for idled rigs than for non-

idled rigs.9 The coefficient estimates for the redeployment cost are significantly different between the two 

models: the null hypothesis that these estimates are equal was rejected using the suest command in stata 

based on the nonlinear Wald test (p=.001). 

Finally, an additional robustness check was run with regard to the constructed choice set that a 

firm faces, to strengthen confidence in the results and interpretations. For each chosen well, a matched 

sample of unchosen wells with characteristics similar to the selected well was created (matched by their 

size, complexity, and geological formation). Doing this better accommodates any systematic differences 

existing between the selected well and other potential target wells, which can confound our diagnosis of 

our main effects on redeployment. Specifically, the coarsened exact matching (CEM) technique was used 

to match appropriate unselected target wells for each selected target well. Using such a matching 

technique essentially preprocesses the full choice sample by keeping those unrealized target wells that 

match on observable characteristics or dropping from the sample (or prune) those unrealized target wells 

that do not match The remaining data after CEM achieves better ‘balance’ between the treatment and 

control groups, which improves the data and estimation with less model dependence, lower bias, and 

increased efficiency (Iacus, King, & Porro, 2012; King & Zeng, 2006). After implementing this matching 

technique, the new sample consists of the 63,204 observations that were realized redeployment dyads 

(i.e., unchanged from the original sample) and 385,856 unrealized dyads (i.e., pruned from 942,695 in the 

original sample). Then with this retained matched sample using CEM, the main parametric estimation 

 
9 For the average marginal effects of Redeployment cost, a unit increase in this variable decreases the probability of 
redeployment by about 0.098% for idled rigs and by about 0.058% for non-idled rigs. 



FLEXIBLE RESOURCE ALLOCATION STRATEGIES:  
RESOURCE REDEPLOYMENT AND RESOURCE IDLING 

30 

model of choice can be run, which is the conditional Probit model. When the analyses are run using the 

CEM sample, all hypotheses continue to be supported. 

DISCUSSION 

Contributions and implications 

Resource allocation involves firms’ choices to distribute their resources among alternative uses (Bower, 

2016). Such choices are an integral part of the definition of strategy (Chandler, 1962) and are central to 

the fundamental issues in strategy (Maritan and Lee, 2017; Rumelt, Schendel, and Teece, 1994). To 

change allocation of their resources, firms use various real options (Trigeorgis, 1996). This study focuses 

on two resource allocation options considered in the literature, resource redeployment and resource idling. 

While significant research has been carried out in recent years on resource redeployment, far less is 

known about resource idling and how it potentially shapes resource redeployment.  In particular, the 

existing theoretical and empirical study of options such as these was subject to the following general 

limitation that is addressed in this paper. Previous studies considered only one resource allocation option 

at a time. That approach failed to characterize how multiple options, such as resource redeployment and 

resource idling, are used in combination, and how they interact with each other. 

Responding to this shortcoming, this study investigates empirically how resource idling and 

resource redeployment are used together and how they interact with each other. This research question is 

addressed in two steps. In the first step, research hypotheses are built by adding idling to existing formal 

models of redeployment, so that the modeled firm has options to idle and/or to redeploy its resources. The 

model first reveals that redeployment becomes more likely after idling. This increase in the likelihood of 

redeployment after idling also makes the use of redeployment more sensitive to its key determinants 

raised in previous research. In particular, the model derives that the previous idling strengthens both the 

positive effect of the inducement for redeployment and the negative effect of the cost of redeployment on 

the use of redeployment. In the second step, the study collects data on oil wells drilled in Texas over 25 

years. The focal resource in this context is the rig of an oil-drilling firm that can be idled temporarily 
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and/or redeployed to another field. Because resource idling is a choice that can precede and affect 

resource redeployment, a two-stage residual inclusion model controls for such selection into idling. The 

empirical results corroborate the formal predictions. Namely, redeployment of rigs is indeed more likely 

after those rigs were idled. The empirical evidence also indicates that the effect of resource idling is more 

pronounced when the endogenous nature of this resource allocation strategy is accommodated. Moreover, 

the previous idling of rigs increases both the positive effect of the inducement on the rig redeployment 

and the negative effect of the cost of such redeployment on the rig redeployment. The empirically 

confirmed theoretical results are also shown to be economically meaningful. 

The chief contribution of this study is that it clarifies theoretically how two important resource 

allocation options, idling and redeployment, are used together and affect each other. Such clarifications 

have been repeatedly called for (Adner and Levinthal, 2004; Chi et al., 2019; Folta and O’Brien, 2004; 

Trigeorgis and Reuer, 2017; Vassolo, Anand, and Folta, 2004), but have been rarely attempted in existing 

theoretical or empirical research. Modeling option interactions complicates analytical models, and 

empirical investigation of multiple interacting options can also present data limitations that we have been 

able to overcome in this study.  In the end, this paper develops compelling justification for the need to 

consider a portfolio of multiple resource allocation options available to a firm, instead of focusing on a 

single option at a time. The theoretically and empirically diagnosed interaction between idling and 

redeployment suggests that, when resource redeployment is predicted from its known determinants but 

resource idling is ignored, the effect of those determinants are systematically biased, thus providing 

researchers with incorrect estimates of the potency of those determinants. 

Limitations and future research directions 

In addition to the research opportunities identified in the discussion above, several directions exist to 

extend this research and address some of its limitations. To begin with, this study focuses on a bundle of 

resource idling and resource redeployment and, thus, is agnostic with respect to other real options that can 

be present to managers in various combinations. This focus on the two popular options, while abstracting 
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from other combinations, is a pragmatic approach for making the first step to refine the understanding of 

such portfolios of resource allocation options. The formal theory in this study uses the existing model of 

resource redeployment and adds another option, resource idling. This combination is relevant to managers 

and interesting to researchers because idling is a lower-commitment strategy that is a natural precursor to 

the higher-commitment redeployment strategy that entails a bigger change to how the firm uses resources. 

Future research is encouraged to consider other combinations of options through which managers can 

contract, expand, and change the allocation of their firms’ resources across various uses. 

Another limitation is that, although this study expands the predominant focus of existing research 

on the allocation of capital to the consideration of nonfinancial resources, the empirical model directly 

captures the allocation of only one type of physical resources, rigs that firms use to drill oil wells. 

Meanwhile, industry press reports and interviews with executives in oil-drilling firms reveal that rig 

idling and rig redeployment can also involve human resources–crews of rigs that are subjected to such 

resource allocation strategies. It would be interesting and valuable for future resource allocation research 

to unpack the allocation of physical resources and the allocation of human resources. It would also be 

helpful to characterize the interplay of determinants of the allocation of various types of resources with 

each other. 

Finally, the deliberate focus of this study on the development of reliable evidence of instances of 

resource allocation has come at a cost of abstracting from important organizational processes through 

which such allocation unfolds in firms. This study has the limitation of not considering how resource 

allocation choices are proposed and approved by various stakeholders, how features of organization 

design shape such decisions, and how cognitive biases potentially affect managerial choices about what 

resources to allocate and where to allocate them. It would be helpful if future in-depth studies used 

qualitative methods to elaborate such processes. Research in directions such as these could bring new 

insights into firms’ flexible resource allocation strategies and the ways that different options to allocate 

resources are dynamically intertwined.
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Table 1. Correlations and summary statistics 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 
1. Redeployed 1 

            

2. Idled 0.21 1 
           

3. Inducement 0.16 -0.07 1 
          

4. Redeployment cost -0.11 0.03 -0.05 1 
         

5. Uncertainty 0.08 -0.04 0.01 0.01 1 
        

6. Focal well complexity 0.03 0.02 0.03 0.17 0.01 1 
       

7. Target well complexity -0.02 -0.04 -0.01 -0.01 0.02 0.02 1 
      

8. Rig field experience -0.07 -0.03 -0.00 0.02 0.01 0.01 -0.01 1 
     

9. Rig performance -0.05 -0.02 -0.02 -0.01 0.00 -0.25 0.01 0.13 1 
    

10. Rig profitability -0.03 -0.05 -0.03 -0.02 0.02 -0.04 0.02 0.20 0.16 1 
   

11. Focal competitive density 0.04 -0.01 0.02 0.01 0.03 -0.02 0.03 -0.01 0.04 -0.23 1 
  

12. Target competitive density -0.01 0.00 -0.05 0.03 0.01 0.01 0.05 -0.02 0.02 0.01 -0.03 1 
 

13. Rivals cold stacking 0.02 0.28 -0.01 0.04 0.00 0.02 0.00 0.13 -0.03 0.07 -0.04 0.00 1 
VIF (mean VIF = 2.088) 1.38 2.85 1.76 1.89 1.54 3.55 2.32 1.61 1.29 1.82 2.56 2.49 3.12 
mean  0.056 0.21 1.19 218.4 0.502 2.001 1.905 54.12 0.499 17.49 13.05 14.5 87.2 
S.D. 0.091 0.12 1.465 96.58 0.29 0.819 0.786 31.45 3.751 29.4 7.768 8.652 24.79 
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Table 2. Conditional Probit estimation (without and with correcting for endogeneity) 

 CProbit Model (without correcting endogeneity) CProbit Model (correcting endogeneity using 2SRI and switching regression models) 

 
(1) DV: Redeployed (2) DV: Redeployed (3) DV: Idled 

(1st stage) 
(4) DV: Redeployed 

(2nd Stage) 
(5) DV: Redeployed 

(2nd Stage) 
(6) DV: Redeployed 

(2nd Stage) 
                   Idled Sample Non-Idled Sample 
Constant  -2.599 (.036) -2.406 (.033) -0.358 (.279) 0.049 (.421) -1.5904 (.083) -1.969 (.060) 

 (1.240)  (1.127)  (.3303)  (.061)  (.919)  (1.048)  
Rig profitability  -0.00025 (.028) -0.00021 (.032) -0.0040 (.017) -0.0056 (.076) -0.00307 (.080) -0.00214 (.211) 

 (.000112)  (.0001)  (.00168)  (.0031)  (.00175)  (.001713)  
Rig performance -0.00043 (.348) -0.00042 (.359) -0.00108 (.042) -0.00376 (.042) -0.00062 (.243) -0.00044 (.061) 

 (.00046)  (.00046)  (.00053)  (.00185)  (.00053)  (.00023)  
Rig field experience -0.00031 (.003) -0.00027 (.004) 0.00209 (.025) -0.00379 (.004) -0.00477 (.038) -0.00333 (.077) 

 (.0001)  (.00009)  (.00093)  (.00131)  (.0023)  (.00189)  
Target well complexity -0.008 (.058) -0.0071 (.052) -0.00016 (.518) -0.0002 (.065) -0.0022 (.280) -0.0121 (.112) 

 (.0042)  (.0037)  (.0002)  (.0001)  (.0020)  (.0081)  
Focal well complexity 0.0083 (.033) 0.0077 (.027) 0.00026 (.281) 0.0003 (.012) 0.0071 (.008) 0.0060 (.035) 

 (.0039)  (.0035)  (.00024)  (.0001)  (.0030)  (.0031)  
Target competitive density -0.00238 (.531) -0.00082 (.402) -0.00009 (.706) -0.00016 (.091) -0.00071 (.031) -0.00181 (.294) 

 (.00381)  (.00098)  (.00023)  (.0001)  (.00033)  (.00172)  
Focal competitive density 0.00418 (.349) 0.00373 (.341) 0.00006 (.819) 0.00024 (.063) 0.00027 (.285) 0.00049 (.046) 

 (.00447)  (.00392)  (.00026)  (.00013)  (.00025)  (.000245)  
Uncertainty 0.99218 (.025) 0.98292 (.022) -0.00264 (.121) 0.0527 (.131) -1.235 (.353) 2.941 (.175) 

 (.44258)  (.43012)  (.0017)  (.0349)  (1.328)  (2.168)  
Inducement 0.01125 (.005) 0.00997 (.011) -0.0002 (.191) 0.0088 (.016) 0.00198 (.022) 0.00095 (.011) 

 (.00403)  (.00392)  (.0001)  (.0037)  (.0009)  (.00038)  
Redeployment cost -0.01812 (.007) -0.01694 (.010) 0.00031 (.167) -0.0068 (.025) -0.0018 (.009) -0.0016 (.016) 

 (.00671)  (.00655)  (.00022)  (.00303)  (.0007)  (.00065)  
Rivals cold stacking     0.12748 (.002)       
     (.0419)        
λ (correction for self-selection)       -0.0726 (.008) -0.081 (.002) 0.009 (.136) 

       (.02725)  (.0263)  (.0062)  
Predictor:             
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Idled   0.3019 (.005)   0.6128 (.011)     
   (.1081)    (.2423)      
Rig fixed effects Yes  Yes    Yes  Yes  Yes  
Year fixed effects Yes  Yes    Yes  Yes  Yes  
Pseudo/Adj R-squared 0.012  0.0125  0.0125  0.0236  0.0186  0.0280  
N 1,005,901   1,005,901   1,005,901   1,005,901   663,894   342,007   

Notes: Models 1 and 2 are the baseline conditional Probit regressions where the main explanatory variable Idled is not adjusted for endogeneity. Pseudo R-
squared is used here. The subsequent models uses a two-stage residual inclusion (2SRI) estimation approach that accounts for endogeneity for the main 
explanatory variable Idled. Specifically, Model 3 is the first-stage Probit regression that includes the instrumental variable Rivals cold stacking to estimate the 
likelihood that the rig is idled. Adjusted R-squared is used here. Model 4 is the second-stage Probit regression that includes the main explanatory variable Idled 
to estimate its effect on the likelihood of redeployment with the residual correction for self-selection included. Adjusted R-squared is used here. Models 5 and 6 
are alternative second-stage regressions using the subsamples of idled rigs and non-idled rigs, respectively, while correcting for self-selection in each sample 
based on the above first-stage estimation. Pseudo R-squared is used here. All models include rig and year fixed effects. The standard error is in parenthesis below 
each coefficient estimate, and the p-value is in parenthesis italicized to the right of each coefficient
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Figure 1. Effects of inducement on resource redeployment for idled and non-idled resources 

 
FIigure 2. Effects of redeployment cost on resource redeployment for idled and non-idled resources 
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