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Abstract 
Most carbon capture and storage projects do not pass the economic feasibility studies. Often this is 

because their benefits are small due to unattractive value of carbon emission mitigation measures. We 

believe one reason that such measures are currently unattractive is due to a lack of informed 

understanding of the future of this commodity. To address this issue, we conducted a study to develop 

forecasts of carbon allowance prices based on the two-factor stochastic model of Schwartz and Smith 

(2000). We implemented the analytical framework described in Jafarizadeh (2022a, 2022b) using the 

Distribution of Sum Discounted Prices technique. The analysis led to informed forecasts of pessimistic, 

expected, and optimistic carbon prices. We further used these forecasts in economic analysis of a carbon 

storage project. 

INTRODUCTION 
Commodities such as farm produce (wheat, barley, cocoa, sugar cane, etc.), metals (gold, silver, bronze, 

copper, etc.), and other natural resources have been traded for goods or services for centuries. Uncertain 

prices and the need for project valuations have led to the development of a technique for price 

forecasting. These techniques often forecast future prices based on fundamental of the business—

factors such as supply and demand, industry cycles, seasonality, and trends. 

The markets instruments provide significant insight into the expected evolution of prices. Almost two 

decades ago, the European CO2 allowance market was introduced. Trading of carbon allowances began 

on platforms such as the EU-ETS, where carbon emitters trade these allowances to avoid paying 

penalties for excess carbon emissions. Since then, the price of these allowances has fluctuated over 

time, displaying several characteristics like the physical traded commodities.  

Carbon trading, also known as Emission Trading System (ETS) or cap-and-trade system, is part of the 

Carbon Pricing Scheme that aims to provide a market-based approach to reducing greenhouse gas 

emissions. These greenhouse gas emissions are believed to be the major contributor to climate change. 

The goal of carbon trading is to create a financial incentive for companies and countries to reduce their 

greenhouse gas emissions and transition to cleaner forms of energy. The other measure of emission 

mitigation is carbon taxation which involves setting a tax on each unit of emitted carbon dioxide. The 

schemes aim to reduce greenhouse gas emissions by providing financial incentives for companies to 

adopt cleaner forms of energy and reduce their carbon footprint.  

Common carbon trading systems include the European Union Emissions Trading System (EU ETS), 

which was established in 2005 and covers approximately 11,000 power stations and industrial plants 

across the European Union. The United Kingdom exiting the EU led to the creation of a new trading 

scheme called the UK-ETS. In other parts of the world such as the United States, different forms of 

carbon trading schemes exist at state and regional levels, examples are the Regional Greenhouse Gas 

Initiative (RGGI) and the California Carbon Trading Market.  

In a carbon trading system, the total amount of carbon to be emitted is capped by the regulating body 

responsible for greenhouse gas emissions reduction. Companies that emit more carbon than their 

allotted allowance must acquire additional allowances to compensate for their excess emissions or face 

penalties. While those with fewer emissions have the choice to bank their excess allowances or sell 



2 

 

them on a Carbon trading platform. Carbon allowances are issued by regulating bodies to companies 

either for free or sold through auctions annually. The dynamic of the price of these allowances is 

affected by different factors, among which are the market supply and demand, allowances allocated by 

the regulating body, the quantity demanded, regulatory policies such as banking and the overall level 

of greenhouse gas emissions. 

To support valuations and decision making, in this paper we aim to develop forecasts for carbon 

allowance prices. We generate low (pessimistic), expected, and high (optimistic) forecasts using the 

characteristic of a price model calibrated with market information. 

Commodity prices are known to fluctuate over time, and these fluctuations often exhibit various 

patterns. Most price fluctuations have a random and probabilistic element while general trends point to 

mean-reversion as a result of supply and demand forces. Several models have been proposed to reflect 

mean reversion, random walk, and Geometric Brownian Motion (GBM), either individually or in 

combination, to forecast future prices. For example, Pindyck, (1999), Schwartz & Smith (2000), and 

Geman (2007) discuss mean reversion towards an evolving and variable equilibrium level. A two-factor 

model reflects this combination of mean-reverting short term moves along with random walk moves of 

the long-term equilibrium. 

All models are wrong, but some are useful.1 The trade-off between a price model’s simplicity and 

verisimilitude should be based on its usefulness. In this paper, we use the two-factor price model of 

Schwartz and Smith (2000) as we believe it is simple enough to be understood and used and 

sophisticated enough to reflect the key features of the carbon prices. Some examples earlier 

implementations of this model include Jafarizadeh & Bratvold (2012), Bakker et al. (2021), and 

Jafarizadeh (2022a, 2022b). 

This study aims to forecast the future spot prices of EU-ETS carbon allowances using the Short-Term-

Long-Term (STLT) Two-factor price model, which has not been previously utilized for this purpose. 

To accomplish this, we first estimate the parameters for price forecasting using the SLTLT model. Our 

approach involves utilizing futures and options of EU-ETS carbon allowance obtained from the Inter-

Continental Exchange (ICE) and conducting a curve-fitting analysis to calibrate the initial guessed 

parameters to fit the futures prices and implied volatilities.  

Once we calibrate the model, we simulate several price paths and generate a distribution for sum of 

discounted price paths. We use this distribution to establish confidence band for forecasted prices. We 

show the forecast in the context of economic valuation of a project involving the use of carbon. The 

forecasted EU-ETS carbon allowances serve as a proxy price of Carbon in our analysis. Integrating 

carbon price into the economic valuation of a CO2-emitting company aids management in making 

informed decisions on project executions and investments. 

This paper is structured into five sections. Section 2 covers price modelling and parameter estimations, 

while Section 3 discusses the informed sensitivity analysis on the forecasted price. Section 4 presents 

the integrated valuation, and Section 5 concludes the study. 

2. PRICE MODELING  

2.1 The TWO-FACTOR PRICE MODEL 
Schwartz & Smith, (2000) proposed a model for describing the evolution of commodity prices. The 

model considers both short and long-term factors. The short-term factor 𝜒𝑡 is represented by Ornstein-

Uhlenbeck process and the long-term factor by 𝜉𝑡, a Brownian motion. Equation 1 shows that the spot 

price 𝑆𝑡 at time 𝑡 is as the sum of these two factors. 

 
1 This phrase is attributed to George Box. 
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 ln(𝑆𝑡) = 𝜒𝑡 + 𝜉𝑡 1 

The short-term factor, 𝜒𝑡 tends to revert to a the equilibrium, as shown in equation 2.  

 𝑑𝜒𝑡 = −𝜅𝜒𝑡𝑑𝑡 + 𝜎𝜒𝑑𝑧𝜒 2 

On the other hand, the long-term factor, 𝜉𝑡, follows Brownian motion2, and has random moves, as shown 

in equation 3. 

 𝑑𝜉𝑡 = 𝜇𝜉𝑑𝑡 + 𝜎𝜉𝑑𝑧𝜉  3 

The mean reversion coefficient for the short-term factor is denoted by 𝜅, while 𝜇𝜉  is the drift for the 

long-term factor. The standard deviations for the short and long-term factors are 𝜎𝜒 and 𝜎𝜉 , respectively, 

and 𝑑𝑧𝜒 and 𝑑𝑧𝜉  are correlated increments of the standard Brownian motion, with  𝑑𝑧𝜒𝑑𝑧𝜉 = 𝜌𝜒𝜉𝑑𝑡. 

The log of future spot prices yields a normal distribution with an expectation and variance, which can 

be expressed using equations 4 and 5, respectively. 

 𝐸(𝑙𝑛𝑆𝑡) = 𝑒−𝜅𝑡𝜒0 + 𝜉0 + 𝜇𝜉𝑡 4 

 
𝑉𝑎𝑟(𝑙𝑛𝑆𝑡) = (1 − 𝑒−𝜅𝑡)

𝜎𝜒
2

2𝜅
+ 𝜎𝜉

2𝑡 = 2(1 − 𝑒−𝜅𝑡)
𝜌𝜒𝜉𝜎𝜒𝜎𝜉

𝜅
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Equation 6 shows the re-written form of the expectation and variance using the Ito lemma principle, 

ln⁡ 𝐸(𝑆𝑡) = 𝐸(ln 𝑆𝑡) +
1

2
𝑉𝑎𝑟(𝑙𝑛𝑆𝑡) 

 ln 𝐸(𝑆𝑡) = 𝑒−𝜅𝑡𝜒0 + 𝜉0 + 𝜇𝜉𝑡 

+
1

2
((1 − 𝑒−𝜅𝑡)

𝜎𝜒
2

2𝜅
+ 𝜎𝜉

2𝑡 + 2(1 − 𝑒−𝜅𝑡)
𝜌𝜒𝜉𝜎𝜒𝜎𝜉

𝜅
) 
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For the risk-neutral prices, the short and long-term risk premiums represented by 𝜆𝜒 and 𝜆𝜉  can be 

deducted from the expectation. Hence, the expected future spot price of Carbon allowance equals the 

futures prices at the same delivery. Thus, the present-day value of a futures contract ⁡𝐹0,𝑇 for delivery 

at maturity time 𝑇 can be expressed using equation 7; 

 
ln 𝐹0,𝑇 =𝑒−𝜅𝑇𝜒0 + 𝜉0 + (𝜇𝜉 − 𝜆𝜉)𝑇 − (1 − 𝑒−𝜅𝑇)

𝜆𝜒

𝜅
⁡

+
1

2
((1 − 𝑒−𝜅𝑇)

𝜎𝜒
2

2𝜅
+ 𝜎𝜉

2𝑇 + 2(1 − 𝑒−𝜅𝑇)
𝜌𝜒𝜉𝜎𝜒𝜎𝜉

𝜅
) 
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Equation 8 shows the instantaneous variance that represents the volatility of the futures prices of carbon, 

independent of risk premiums. The instantaneous variance is a function of the short and long-term 

factors' standard deviations and correlation, as well as the mean reversion coefficient. 

 𝑉𝑎𝑟⁡(ln 𝐹0,𝑇) = 𝑒−2𝜅𝑇𝜎𝜒
2 + 𝜎𝜉

2 + 2𝑒−𝜅𝑇𝜌𝜒𝜉𝜎𝜒𝜎𝜉  8 

 
2 Brownian motion, also known as Wiener process, is a stochastic process that describes the random movement of particles in a fluid or gas 

due to continuous collision with molecules in the medium. It is named after the botanist Robert Brown who observed the random motion of 

pollen particles suspended in water. The mathematical formulation of Brownian motion is described by a continuous-time stochastic process 

that has independent and identically distributed Gaussian increments with zero mean and variance proportional to the time interval. The path 

of a Brownian motion is continuous but nowhere differentiable, and it has several important properties such as scaling invariance, self-

similarity, and the Markov property. Brownian motion has applications in various fields such as physics, finance, biology, and engineering 
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In summary, the Schwartz and Smith model provides a framework for understanding the factors that 

drive the spot price of carbon allowance. By considering both short and long-term factors, the model 

can provide insights into the behavior of the carbon market and can help forecast future prices. 

2.2 TWO-FACTOR PARAMETER ESTIMATION FOR CARBON 
To forecast carbon prices, it is necessary to estimate various parameters that govern the behavior of the 

carbon market. In this study, we use market information on carbon, such as the EUA futures and Call 

and Put options on EUA futures, to estimate these parameters. The data used in this study were obtained 

from the Intercontinental Exchange (ICE) on the 8th of August 2022. To estimate the parameters, we 

use a curve fitting3 technique that iteratively estimates the parameters from the futures prices and the 

implied volatility of the options. We start by developing a forward curve using equation 7, and then 

assign initial guess values to each parameter to predict the observed futures prices at different maturities. 

Next, we compare the market-implied volatility values with the volatility term curves constructed using 

equation 8. Unlike the futures, the implied volatilities are not observed directly in the market but can 

be obtained using either the Black & Scholes (1973) model or the Schwartz & Smith (2000) approach 

from European options on carbon futures. Here, we use the Schwartz-Smith approach, which suggests 

that the value for a given European Call and Put options, denoted as 𝑐𝑇 and 𝑝𝑇 respectively, can be 

evaluated using equations 9 and 10. 

 𝑐𝑇 = 𝑒−𝑟𝑇 (𝐹0,𝑇𝑁(𝑑) − 𝐾𝑁 (𝑑 − 𝜎𝜑(𝑇))) 
9 

 𝑝𝑇 = 𝑒−𝑟𝑇 (𝐾𝑁(𝜎𝜑(𝑇) − 𝑑) −⁡𝐹0,𝑇𝑁(𝑑)) 10 

Where 𝑟⁡is the risk-free rate, 𝑁(𝑑) is the cumulative probability for the standard normal distribution, 

𝐾⁡is the strike price, 𝑇 is the delivery date (in the analysis, we are assuming that the underlying futures 

and the option expire at the same time) and 𝜎𝜑(𝑇) is the volatility of the futures contract. In Addition 

to that,  𝑑⁡is a function of the futures, strike price and volatility which is expressed as 

 
𝑑 =

𝑙𝑛(𝐹/𝐾)

𝜎𝜑(𝑇)
+
𝜎𝜑(𝑇)

2
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With the aid of a simple computer code, a loop iteration was designed to optimize the parameters such 

that both the estimated futures and option values obtained using equations 7 and 8, and the market 

futures value and the implied volatility values matched with a low sum of square errors. Plots showing 

a good fit between both estimated and market data are presented in Figures 1 and 2, while the estimated 

parameter values are shown in Table 2. 

 
3 Curve fitting is a statistical method used to find the best fit line or curve to a set of data points. It involves selecting a mathematical function 

that best represents the data and finding the parameters of the function that best describe the relationship between the variables. The curve or 

line that is fitted to the data can be used to make predictions or to estimate unknown values. The choice of the technique depends on the nature 

of the data and the relationship between the variables. Iterative curve fitting is a common approach where the parameters of the function are 

estimated using an optimization algorithm that minimizes the difference between the observed data and the fitted curve. 
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Figure 1: Curve Fitting on Market-Observed Options on Carbon Futures 

 

Figure 2: Curve Fitting on Market-Observed Carbon Futures  

The carbon trading market is a relatively new market, and as a result, there is still a lack of 

comprehensive data on carbon futures allowances. Thus, we were only able to obtain a limited number 

of options on carbon futures from the Intercontinental Exchange (ICE) website (ICE, 2022), which 

resulted in an analysis period of about a year and a half. Despite this limitation, we were able to obtain 

a good fit for both the futures prices and the implied volatility of the options, which gives us confidence 

in the reliability of the parameters estimated using our curve fitting technique. 

With the estimated parameters in hand, we can now move forward in developing a carbon price forecast. 

The estimation of these parameters allows us to better understand the behaviour of the carbon market 

and its underlying factors, including supply and demand, regulatory policies, and technological 

advancements. By analysing the trends and patterns in the market and incorporating these factors, we 

can develop a model that will predict future carbon prices with a reasonable level of accuracy. 
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The carbon price forecast can be a valuable tool for various stakeholders, including governments, 

corporations, and investors, as it provides them with insights into the potential future costs of carbon 

emissions. Governments can use this information to design and implement effective carbon pricing 

policies that align with their climate goals. Corporations can use the forecast to plan their investments 

and operations, and investors can use it to inform their investment decisions and manage their risks. 

Overall, the estimation of the parameters from market information on carbon using a curve fitting 

technique has proven to be a reliable approach for forecasting carbon prices. With this method, we can 

derive meaningful insights into the carbon market and its drivers, which can help us to mitigate climate 

change and build a more sustainable future. 

Table 2: Two-factor Carbon price parameters 

 

 

 

 

 

2.3 THE TWO-FACTOR CARBON PRICE FORECAST 
The carbon spot prices forecasted in this study are based on the estimated parameters obtained from the 

options and futures price data, along with the curve fitting technique employed. It is important to note 

that the accuracy of these forecasts is dependent on the reliability of the estimated parameters. The 

carbon market is highly complex, and various factors influence its price, including changes in 

regulations, technological advancements, and geopolitical events. Therefore, any forecast is inherently 

uncertain, and the actual future carbon spot prices may differ from the predictions presented in this 

study. 

To simplify the analysis and reduce the computational power required, the assumption was made that 

the price of carbon only changes once a month. With this assumption, a monthly value is used to 

represent Δ𝑡 when necessary. Utilizing equation 6 and the estimated parameters shown in Table 2, the 

expected future carbon spot prices were derived. These prices are represented in Figure 3, along with 

their corresponding 90% confidence band. 

Parameters Values 

𝛘𝟎 0.342 

𝛏𝟎 4.079 

𝛍 0.051 

𝛔𝛘 0.450 

𝛋 0.612 

𝛔𝛏 0.162 

𝛒𝛘𝛏 0.930 

  



7 

 

 

Figure 3: Two-factor Carbon price model indicating different percentage confidence bands 

Figure 3 provides compelling evidence that both the simulated and expected future spot prices of carbon 

are following a contango curve throughout the forecast years. This suggests that the prices of a unit of 

carbon will likely continue to rise. This trend is supported by several global movements aimed at 

reducing carbon emissions, such as the consistent review of allowances issued to emitters, the 

establishment of deadlines for the importation and manufacture of hydrocarbon cars by European 

countries, and countries proposing to increase their carbon tax, are just a few examples of events that 

could lead to a surge in the demand for carbon allowances in the future. It is conventionally understood 

that an increase in the demand for a commodity leads to undersupply and consequently a rise in price. 

From the historical spot price point of view, it can be observed that the price of carbon has risen by 

about 400% within a span of two years, between 2020 to 2022. These and many other indicators strongly 

suggest that the era of lower carbon prices is long gone. For instance, the confidence bands in Figure 3 

show that the price of carbon emitted in 2028 could be anywhere between $40 to $290, with only about 

a 5% chance both ways of the price going beyond or less than the prices indicated within the confidence 

band. It is important to note that the actual price of carbon could be influenced by various unpredictable 

factors, but the upward trend of carbon prices appears to be consistent with the global push towards 

carbon neutrality and decarbonization. 

3. INFORMED SENSITIVITY ANALYSIS 
Informed sensitivity analysis is a type of sensitivity analysis that involves adjusting input parameters or 

assumptions in a model to assess their impact on the output of the model. Unlike traditional sensitivity 

analysis, informed sensitivity analysis considers the knowledge and expertise of the modelers, as well 

as available data and information on the inputs being tested. In other words, informed sensitivity 

analysis aims to identify the most important and influential factors in a model by testing a range of 

plausible scenarios that reflect real-world conditions and expert judgment. This helps to provide a more 

robust understanding of the model and its outputs, as well as identify areas where additional research 

or data may be needed. 

Sensitivity analysis is a critical tool used in various fields to evaluate how changes in input variables 

can impact output or outcome. These enable one to see and quantify how a deviation from certain 
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variables could affect the entire process4. In this study, we employ the use of sensitivity analysis to 

assess the impact of price changes on the outcome of a carbon emission project. Using a range of prices 

from pessimistic to optimistic, we evaluate how uncertainties in price could significantly affect project 

outcomes. Given that most carbon emission mitigation projects are capital-intensive investments, it is 

paramount to conduct a comprehensive sensitivity analysis before making any decision. Sensitive input 

variables such as the cost of CO2, incentives (where applicable), and capital and operating expenditures 

need to be rigorously analyzed to check the impact of each on the outcome.    

In a traditional sensitivity analysis such as the tornado diagram, input variables are often evaluated 

based on extreme values, without considering the shape of their distribution. For example, the P10 and 

P90 values used to quantify geological reservoirs do not reflect the overall distribution of oil in place, 

which could take any form. Consider two distinct input variables to be used in a sensitivity analysis, 

one having a normal while the other a log-normal distribution. If the range of the two extremes happens 

to be the same, these two distinct variables will be considered the same in such evaluations., but in 

reality, these extremes are differently distributed and hence should be considered differently. When 

deciding on a range of values to be used in sensitivity analysis, the pessimistic and optimistic values 

should not be mere minimum and maximum values rather they should be a meaningful range of values 

that truly represent the input variable5.  

The limitations of traditional sensitivity analysis, such as the inability to test more than one variable at 

a time, have led some researchers to question the efficacy of tools like the tornado diagram. In contrast, 

the approach used in this study is more robust and superior to traditional techniques. By taking into 

account the shape of the distribution of input variables and using a more meaningful range of values, 

this method provides a more accurate and useful assessment of the impact of uncertain carbon prices 

on a carbon emission mitigation project. In short, this approach goes beyond the usual sensitivity 

analysis and represents an improvement in the field.  

3.1 Sum-Discounted Prices 
The uncertainty of future spot prices is described by stochastic models, which provide both an expected 

value and a probability distribution for future spot prices. However, traditional sensitivity analyses do 

not align with such descriptions. Instead, they typically define a range of price forecasts from the most 

optimistic to the most pessimistic, which are entirely disconnected from the stochastic models. As a 

result, these analyses cannot indicate whether the value of a project at the optimistic forecast is the 

maximum possible project value, the highest likely value, or even a rational value at all. To address this 

limitation, this section discusses a method for generating optimistic and pessimistic price forecasts that 

are consistent with stochastic price models 

In order to accurately reflect the uncertainty of future spot prices, it is important to have a range of price 

forecasts that are consistent with the stochastic properties of spot prices, at the same time be useful in 

cash flow models. To address this, we utilize the distribution of sum of discounted prices as a means of 

measuring the impact of prices on project value. This approach, which was introduced by Dixit in 1993, 

allows for the estimation of price forecasts that are consistent with the stochastic process. By using the 

expected forecast, referred to 𝑆𝑡
∗, 0 < 𝑡 < 𝑇 as, we can generate a price scenario that accurately reflects 

the uncertainty of future spot prices. 

 
∫ 𝑆𝑡

∗𝑒−𝑟𝑡𝑑𝑡 = 𝐸 (∫ 𝑆𝑡𝑒
−𝑟𝑡𝑑𝑡

𝑇

0

)
𝑇

0

 
 

12 

Here, 𝑇 represents the forecast time, 𝑟 the discount rate and 𝑒−𝑟𝑡 the discounting factor. 

 
4 Sensitivity analysis can also be used to check the robustness of models. 
5 Historically, the lowest price of oil ever was -$5 (negative five dollar) and the highest is in the axis of $150, this doesn’t mean that when 

deciding for a range of oil price the pessimistic and optimistic values should be -$5 and $150. 
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In most cases, the overall impact of a series of prices over time as well as the decision maker's preferred 

time frame are captured by the sum of discounted prices. Since there is no single price for a lengthy 

project, decision makers instead adopt a series of prices over time. To compare price series, it is simpler 

to consider the summation and/or averages of the prices in the series. The discount factor can be used 

to show the significance of the prices on project years that are sooner versus later. Therefore, sum-

discounted prices may be an effective way to quantify the effect of a series of prices on project value. 

To evaluate both the expected price and any nth percentile of the forecast of prices, we implement the 

use of numerical approximation on equation 6. With then simulate the stochastic spot prices within the 

forecast limit and determine the distribution values of the sum of the discounted prices. Hence, with the 

aid of an optimization model and solver (MS Excel add-in), we developed a forecast that is a replica of 

the distribution of the sum of discounted prices.  

3.2 NUMERICAL PROCESS 
To simulate prices, we discretized equations (2) and (3) to calculate the log of spot price which can be 

re-written as;  

 ln 𝑆𝑡+Δ𝑡 = 𝜉𝑡+Δ𝑡 + 𝜒𝑡+Δ𝑡 13 

 𝜉𝑡+Δ𝑡 = 𝜉𝑡 + 𝜇𝜉Δ𝑡 + 𝜎𝜉𝜀𝜉√Δ𝑡 14 

 

𝜒𝑡+Δ𝑡 = 𝑒−𝜅Δ𝑡𝜒𝑡 − (1 − 𝑒−𝜅Δ𝑡)
𝜆𝜒

𝜅
+ 𝜎𝜒𝜀𝜒√

1 − 𝑒−2𝜅Δ𝑡

2𝜅
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Here all variables have their earlier defined meaning, in addition to Δ𝑡 representing the change in time. 

Also, assuming that 𝜀𝜉  is a standard normal distribution, and 𝜀𝜒 a function of 𝜀𝜉  and 𝜀 (an independent 

normal distribution), a correlation between the simulated factors can be accounted for using; 

 
𝜀𝜒 = 𝜀𝜉𝜌𝜒𝜉 + ⁡𝜀√1 − 𝜌𝜒𝜉

2  
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For a forecast period 0 < 𝑡 < 𝑇, we employ the use of equations 13 through 16 to numerically simulate 

the price path for the two-factor forecast. In addition to that, we implement the Riemann approximation 

on equation 12 to solve for the sum of the discounted prices as shown in equation 17.  

 

∫ 𝑆𝑡𝑒
−𝑟𝑡𝑑𝑡 ≅∑𝑆𝑡𝑒

−𝑟𝑡∆𝑡

𝑇

𝑡=0

𝑇

0
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While simulating the prices paths, we use a monthly time steps (an average tonnage price for a month) 

for the 20 years forecast horizon and calculate the sum-discounted values. A histogram of the 

distribution of sum-discounted prices (DSDP) of carbon is shown in Figure 4. The figure also indicates 

the 10th, expected and the 90th percentile of the distribution. 
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Figure 4: Distribution of Sum-discounted CO2 Prices for 1,000 sSmulated Price Paths 

3.2 OPTIMIZATION 
Now that we have obtained a distribution for sum-discounted prices for the two-factor price forecasts 

of carbon, we assign the 90th and 10th percentile of the distribution to represent the high and low cases. 

Subsequently, we went ahead to simulate a higher and lower cost price forecast to achieve the same 

sum-discounted values as the high and low cases. The optimization equations used to calculate the 

forecast of prices 𝑆𝑡
∗ matching the given percentile of the discounted prices are shown below. 

 

⁡(∑𝑆𝑡
∗𝑒−𝑟𝑡 − 𝑋

𝑇

𝑡=0

)

2

𝜆𝜉
𝑚𝑖𝑛  

 

 s.t  

 

𝑃 (∑𝑆𝑡
∗𝑒−𝑟𝑡 < 𝑋

𝑇

𝑡=0

) =
𝑝

100
 

 

     

Here, 𝑡 represents the discretized time steps from 0, Δ𝑡, … . . 𝑇, whereas 𝑋 is an internal variable defined 

to calculate the percentiles. 

We employed Microsoft Excel solver to determine the short-term premium 𝜆𝜒 in equation 7, which 

optimizes the sum-discounted simulated prices of the expected, and the 90th and 10th percentiles to 

match the sum-discounted monthly prices generated earlier. The results are displayed in Figure 5, which 

shows the 90th, expected, and 10th percentile prices derived from the distribution of the sum-discounted 

technique. 

 

It's worth noting that the forecast obtained from the distribution of sum-discounted technique is distinct 

from the conventional percentiles that are obtained usually by multiplying the expected price with a 

certain positive and negative fraction. Instead, the forecast obtained from DSDP is a representation of 

all the thousand sample price paths simulated instead of just one. Furthermore, the optimized sum-

discounted simulated prices allow for a more accurate representation of the possible price scenarios. 
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This means that decision-makers can have a better understanding of the range of potential outcomes 

and the associated risks. 

In summary, by employing numerical approximations, simulation, and optimization models, we were 

able to obtain an accurate representation of the expected price and percentile forecasts for carbon prices. 

The DSDP method provides an alternative approach that incorporates all the possible outcomes into the 

forecast, thus making it a more realistic representation of future price scenarios. 

 

Figure 5: Expected and pessimistic price forecasts of Carbon  

To better understand the distinction between the two forecasted prices - the conventional forecast in 

Figure 3 and the DSDP forecast in Figure 5- we conducted a detailed comparison. This comparison is 

discussed in the conventional vs DSDP forecast section. 

4. CONVENTIONAL Vs DSDP FORECAST 
Figure 6 is a comparison between two different techniques used for forecasting prices. One technique 

is the conventional method, while the other technique is DSDP (Distribution of Sum-Discounted 

Prices). The figure also shows the confidence bands of prices for both techniques. The comparison 

between the conventional and DSDP techniques in forecasting the expected and percentiles of prices 

for carbon has revealed a clear distinction between the two methods. The results indicate that the 

conventional method has overestimated the 90th and expected price values while underestimating the 

P10 values when compared to the DSDP method. 

The conventional method relies on the multiplication of the expected price by a certain positive and 

negative fraction to obtain the high and low cases, respectively. This approach ignores the potential 

variability and uncertainty of the underlying factors affecting the prices, resulting in an overestimation 

of the expected and 90th percentile prices. Conversely, the P10 value is often underestimated since the 

conventional method assumes that the distribution of prices follows a symmetrical pattern, which is not 

always the case in reality. 

The DSDP technique overcomes the limitations of the conventional method by using a distribution of 

simulated prices to calculate the expected and percentile prices. The distribution accounts for the 

variability and uncertainty of the underlying factors affecting the prices, resulting in a more accurate 
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representation of the prices. The DSDP approach is particularly useful in highly volatile and uncertain 

markets, such as the carbon market. The significance of these findings extends beyond the carbon 

market as it highlights the limitations of the conventional approach in accurately predicting prices in 

uncertain markets. The DSDP approach can be applied to other markets such as energy, commodities, 

and financial markets, where volatility and uncertainty are prevalent. 

 

Figure 6: Comparison between Percentile of Expected prices and that of Distribution of Sum-

Discounted Prices 

The 90th and 10th percentile values obtained from the DSDP forecast are more reliable, as they are 

based on the actual distribution of simulated prices, rather than being derived from a simple 

multiplication of the expected price. Overall, our comparison showed that the DSDP forecast provides 

a more comprehensive and reliable representation of the range of possible outcomes and is therefore a 

more suitable approach for forecasting future prices. Hence, in our next section - the integrated 

economic valuation- we will be utilizing the DSDP forecasted values of P90, expected, and P10 to 

evaluate a project that involves the use of CO2 to enhance hydrocarbon production from a depleting 

reservoir. 

5.0 INTEGRATED ECONOMIC VALUATION 
In this section, we demonstrate how to use the forecasted carbon price to construct a reliable cash flow. 

However, it is important to note that conducting a detailed and complex analysis may require significant 

computational time and power, at the same time analyzing the significance of each input variable on 

the project's profitability is paramount. Researchers must reflect on the implications of conducting an 

overly complex analysis. Before making an analysis too cumbersome, it is always a good practice to 

compare the distinctions between the results of the complex and simplified analysis. If the results show 

little to no substantial variations between the two, it is preferred to keep the analysis simple, informed, 

and useful. 

To achieve the desired goal of having a realistic cash flow analysis while considering the constraints 

mentioned above, we run a simple sensitivity analysis to assess the impact of the input variables on the 

result. Our finding suggests that the production rates of Oil, Water and CO2 as well as, oil price, CO2 

cost, and CAPEX are crucial to the outcome of the cash flow analysis. For other input variables that are 
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less sensitive, we use fixed rates. We also use yearly oil and CO2 rate obtained by averaging the monthly 

prices. This is on the assumption that the prices of oil and carbon remains constant throughout the year. 

By employing this simplified approach, we construct a cash flow that provides a reliable representation 

of the project's profitability. However, it is important to note that even though this approach may not 

capture all the complexities and risks associated with the project, the findings are dependable when 

making decision.  

Example: 

This example presents a case study on the valuation of an oil-producing field owned by Alpha Company 

Limited. The field is expected to have a lifespan of 20 years, as estimated by the Reservoir Engineering 

department using simulation techniques. Production data for oil, water, and CO2 are illustrated in Figure 

7. Alpha must decide whether to invest in a Carbon Capture and Storage (CCS) project or pay a fine for 

emitting CO2, given that the produced oil contains a high percentage of CO2. Investing in CCS will 

require an additional expenditure of $120 million on a carbon capture facility, CO2 injector well drilling 

and completion, compressor pump, and other equipment. Alternatively, if Alpha decides to continue 

with business as usual and pay the emission fine, the forecasted Carbon price will be used to evaluate 

the emission cost. 

Information obtained from nearby fields suggests that the Unit operating cost of the region is 

approximately $13 per barrel of oil produced without CCS, and $18 per barrel oil produced with carbon 

storage in a nearby aquifer. In addition, Alpha must pay a 30% royalty and a 40% corporation tax to the 

government. To discount the cash flow, Alpha uses a risk-free rate of 4% since both CO2 cost and oil 

prices were obtained from a forecast, and market price uncertainties are hedged. The prices of oil used 

in this analysis (shown in Table A1 of the appendix) were obtained from (Jafarizadeh, 2022b), with 

minor adjustments made to extend the forecast duration. 

 

Figure 7: Reservoir Simulation Showing Oil, Water and CO2 production data 

0

5

10

15

20

25

30

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
O

2
 (

*1
0

4
 t

o
n

s)
w

at
er

 (
*1

0
6
 b

b
l)

O
il 

(*
1

0
6
 b

b
l)

Production Profile

Produced Oil Water Produced CO2 Produced



14 

 

The primary variables used for the cash flow analysis can be found in the Appendix. These include the 

annual rates of oil, water, and CO2, the selling price of a barrel of oil, and the cost of a ton of CO2. 

Since there are three forecasted oil prices and three carbon costs, the cash flow analysis will comprise 

of more than a single Net Present Values (NPVs). First, If Alpha decides not to invest in CCS, there 

will be nine different NPVs based on price and cost combinations. Alternatively, if Alpha decides to 

invest in CCS, there will only be three outcomes purely depending on the range of oil prices. Table 3 

below shows the NPV outcomes of the scenario where Alpha decides not to invest in CCS. It should be 

noted that none of the outcomes indicate a loss (negative NPV); however, the best outcome is 

approximately two orders of magnitude better than the least case. This is because the best outcome was 

obtained using an optimistic oil price and a lower cost of carbon, while the least case resulted from a 

pessimistic oil price and a higher cost of carbon. 

Table 3: Different NPVs for Project without CCS having different Oil and CO2 Prices  

 High CO2 Cost 

forecast 

Expected CO2 Cost 

forecast 

Low CO2 Cost forecast 

Optimistic Oil 

forecast 

$690.00 x106 $862.70 x106 $953.16 x106 

Expected Oil 

forecast 

$298.60 x106 $497.60 x106 $593.10 x106 

Pessimistic Oil 

forecast 

$-75.5 x106 $148.60 x106 $266.4 x106 

In the scenario where Alpha invests in CCS, the cost of producing a barrel of oil is assumed to be $8 to 

account for the additional expenses related to CO2 storage. The results of the cash flow analysis for this 

scenario are shown in Table 4 below 

Table 4: Different NPVs for Project involving CCS having different oil prices 

 NPV (Million $) 

Optimistic Oil Price $860.51 x106 

Expected Oil Price $500.44 x106 

Pessimistic Oil Price $174.42 x106 

 

To effectively compare the two scenarios where Alpha invests in CCS or not, it is important to estimate 

the Expected Monetary Value (EMV) for each decision outcome. The EMV is a valuable tool used in 

decision-making, particularly when assessing multiple decision outcomes, by assigning probability 

values to each potential outcome. To illustrate this, a decision tree can be used to visually represent the 

potential outcomes and their associated probabilities. The outcome with the highest EMV is typically 

the preferred option. It is worth noting that if the EMV is negative, it is usually recommended to avoid 

that decision, , but if other desired non-monetary values are to derived (e.g valuable information) from 

executing the project, it may be worthwhile even if the EMV is negative. 

In our analysis, we use Swanson’s Rule6 to assign probability values to the oil prices and the cost of 

Carbon. This rule assumes a 30% chance of the best-case scenario, a 40% chance of the most likely 

outcome, and a 30% chance of the worst-case scenario. Figure 8 below presents a decision tree that 

 
6 Swanson's rule is a commonly used method to assign probability values in decision-making situations where there is a lack of historical data 

or other sources of information. The rule suggests assigning a probability of 30% to the worst-case scenario, 40% to the most likely scenario, 

and 30% to the best-case scenario. This method is often used in risk management and decision analysis to estimate probabilities when there is 

uncertainty about future events. However, it is important to note that Swanson's rule is a heuristic and should not be used as a substitute for 

more rigorous statistical methods when such methods are available and appropriate. 
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combines the results from Tables 3 and 4. It illustrates the potential outcomes of both scenarios along 

with their associated probabilities. This allows us to determine the EMV before making decision. By 

considering the decision tree and the EMV, Alpha can make an informed decision on whether to invest 

in CCS or not based on the potential outcomes and their likelihoods. 

 

 

Figure 8: Decision Tree showing the NPVs, assign probabilities and EMV 

The decision tree provides a clear representation of the financial outcomes of different investment 

options and highlights the value of investing in Carbon Capture and Storage (CCS). It shows that by 

investing in CCS, Alpha can potentially generate $510.65 million, which is significantly more than the 

other options available. This figure is arrived at by calculating the Expected Monetary Value (EMV) of 

each option based on assigned probability values. The result also demonstrates that not investing in 

CCS not only yields lower financial returns (EMV=$473.04 million) but also contributes to the ongoing 

challenge of global warming. Given the increasing global concern about climate change and the need 

for more sustainable practices in various industries, investing in CCS can be seen as a responsible and 

ethical decision by Alpha. By reducing the amount of CO2 emissions, they Alpha can help mitigate the 

impact of climate change and contribute to a more sustainable future. In the event that the management 

of Alpha decides to walk away and not pursue either of the two options, they will not only end up with 

nothing but also miss out on the opportunity to create greater value for their shareholders. Therefore, it 

is crucial to carefully evaluate the potential benefits and risks associated with both investment options 

and make a well-informed decision that aligns with the company's long-term goals and values. By 

choosing to invest in CCS, the company can not only generate significant financial returns but also 

demonstrate its commitment to sustainable development and reducing its environmental impact. 
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In addition to evaluating the expected monetary values of the two scenarios, we conducted a sensitivity 

analysis using goal seeks to determine the capital expenditure cost at which the two scenarios would 

have similar values. The results indicate that at the same operating expenditure of $18/bbl for the case 

involving CCS and $13/bbl for the case without CCS, the EMV of the two scenarios will only be equal 

when the CAPEX of the project with CCS is above $175 million or when the unit operating cost 

increases to $20.3/bbl. This means that until the CAPEX for installing CCS facilities costs $50 million 

more than the current value used in the analysis, investing in CCS will always be the most suitable 

course of action. 

Moreover, investing in CCS offers the potential to improve the project revenue stream. This can be 

achieved through the utilization and storage of captured CO2 via techniques used in the oil and gas 

industry, such as CO2 Enhanced Oil Recovery (CO2-EOR) or CO2 Water Alternating Gas Recovery 

(CO2-WAGR), which can result in an increase in cumulative oil production. When CO2 is injected into 

a hydrocarbon-bearing reservoir, it increases the mobility of hydrocarbons, either by pushing them away 

from the injector well to the producer well or by dissolving in hydrocarbons, making them lighter and 

easier to flow. 

Overall, it is evident that investing in CCS is the best decision to improve shareholder value and mitigate 

the impact of CO2 emissions on global warming. This example demonstrates how accounting for the 

cost of emissions in a company's economic valuation can make it easier for management to decide on 

the best course of action. By considering the long-term benefits of investing in CCS, companies can not 

only create greater value for their shareholders but also contribute to a sustainable future. 

Conclusion 
In conclusion, this research work has used advanced forecasting techniques, such as the two-factor price 

model and the Distribution of sum Discounted price approach (DSDP), to predict the future spot prices 

of carbon. Our analysis suggests a contango situation for the future spot prices of carbon, and we have 

shown that the DSDP approach provides more accurate price forecasts than the conventional approach. 

Furthermore, this research has explored the potential benefits of investing in Carbon Capture and 

Storage (CCS) technology for an oil and gas company, Alpha. Through the use of financial analysis 

techniques such as Net Present Value (NPV), Expected Monetary Value (EMV), and decision tree 

analysis, we have shown that investing in CCS can create significant value for the company and its 

shareholders. Our sensitivity analysis also indicates that until the CAPEX of investing in CCS increases 

by approximately $50 million, the preferred decision will always be to invest in CCS. 

Overall, this research highlights the importance of considering the cost of emissions in a company's 

economic valuation and exploring the potential benefits of investing in CCS technology. By making 

use of advanced financial analysis and forecasting techniques, companies can make informed decisions 

that create value for their shareholders while also reducing their impact on the environment. 
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Nomenclature 

EU-ETS  = European Union Emission Trading Scheme 

UK-ETS  = United Kingdom Emission Trading Scheme 

RGGI  =Reginal Greenhouse Gas Initiative 

STLT  = Short-Term-Long-Term 

EUA  = European Union Allowance 

CO2  =Carbon dioxide 

CCS  = Carbon Capture and Storage 

CO2-EOR = Carbon dioxide Enhanced Oil Recovery 

CO2-WAGR = Carbon dioxide Water Alternating Gas Recovery 

NPV  = Net Present Value 

CAPEX  = Capital Expenditures 

EMV  = Expected Monitory Value 

DSDP  = Distribution of Sum Discounted Price 

GBM  = Geometric Brownian Motion 

MA  = Moving Average 

AR  = Arithmetic Mean 

ARIMA  = Autoregressive Integrated Moving Average 

ARCH  = Autoregressive Conditional Heteroskedasticity 

GARCH  = Generalized Autoregressive Conditional Heteroskedasticity   



18 

 

REFERENCES 
Arouri, M. E. H., Jawadi, F., & Nguyen, D. K. (2012). Nonlinearities in carbon spot-futures price 

relationships during Phase II of the EU ETS. Economic Modelling, 29(3), 884–892. 

https://doi.org/10.1016/j.econmod.2011.11.003 

Bakker, S. J., Kleiven, A., Fleten, S. E., & Tomasgard, A. (2021). Mature offshore oil field development: 

Solving a real options problem using stochastic dual dynamic integer programming. Computers and 

Operations Research, 136. https://doi.org/10.1016/j.cor.2021.105480 

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Source: Journal of 

Political Economy, 81(3), 637–654. 

Chai, S., Du, M., Chen, X., Chu, W., & Yu, W. (2020). A Hybrid Forecasting Model for Nonstationary and 

Nonlinear Time Series in the Stochastic Process of CO2Emission Trading Price Fluctuation. 

Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/8978504 

Chevallier, J. (2011). Detecting instability in the volatility of carbon prices. Energy Economics, 33(1), 99–

110. https://doi.org/10.1016/j.eneco.2010.09.006 

Dixit, A. (1993). The Art of Smooth Pasting (Fundamentals of Pure and Applied Economics). 

Geman, H. (2007). Mean reversion vs. random walk in oil and natural gas prices. In Advances in 

Mathematical Finance (Birkhauser, Boston). 

ICE. (2022). The Intercontinental Exchange. www.Theice.Com/Marketdat/Reports/159. 

Jafarizadeh, B. (2022a). Economic Decision Analysis: For Project Feasibility Studies. Springer. 

Jafarizadeh, B. (2022b). Forecasts of Prices and Informed Sensitivity Analysis : Applications in Project 

Valuations. 1–18. 

Jafarizadeh, B., & Bratvold, R. B. (2012). Two-Factor oil-price model and real option valuation: An example 

of oilfield abandonment. SPE Economics and Management, 4(3), 158–170. 

https://doi.org/10.2118/162862-PA 

Parsons, J. E., Ellerman, A. D., & Feilhauer, S. (2009). Designing a U.S. Market for CO 2 . Journal of Applied 

Corporate Finance, 21(1), 79–86. https://doi.org/10.1111/j.1745-6622.2009.00218.x 

Pindyck, R. S. (1999). The Long-Run Evolution of Energy Prices. The Energy Journal, 20. 

Schwartz, E., & Smith, J. E. (2000). Short-Term Variations and Long-Tern Dynamics in Commodity Prices. 

Management Science, 46, 893–911. 

Xe.com. (2022, August 31). Xe: Currency Exchange. www.xe.com 

  

  

  

http://www.theice.com/Marketdat/Reports/159


19 

 

Appendix 

Table A1: Simulation data for CO2-WAG EOR and waterflooding along with price forecast data. 

 

 
7,8,9 The price of carbon estimated is in Euros/ton which needs to be converted to $/ton. As of the time of writing this report, $1 = £1 (Xe.com, 2022) 

 

 

 

 YEARS 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

OIL, WATER AND CO2 DATA FROM SIMULATION 

Oil Prod (bbl) x106  3.09 2.63 2.46 2.61 2.58 2.70 2.54 2.28 2.08 1.89 1.79 1.62 1.45 1.29 1.23 1.13 1.05 0.98 0.94 0.90 

Water Prd  (bbl) x106  8.6 8.06 8.44 9.01 8.74 8.44 9.15 9.94 10.52 10.77 11.09 11.44 12.05 12.07 12.15 12.36 12.49 12.48 12.55 12.58 

CO2 (tons)  x103  2.56 2.32 3.13 17.9 37.43 82.15 117.80 142.85 167.90 178.0 193.76 206.83 224.28 227.09 236.06 246.40 254.92 257.14 260.21 265.21 

CAPEX (Million$) -200                     

FORECAST DATA 

Exp Oil forecast 

$/bbl 

 69.31 71.23 72.62 73.72 76.46 75.53 76.35 77.15 77.95 78.74 79.54 80.34 81.15 81.97 82.8 83.63 84.47 85.32 86.10 86.75 

Optimistic Oil 

forecast $/bbl 

 92.55 98.18 101.9 104.4 106.27 107.8 109.15 110.39 111.58 112.75 113.91 115.07 116.23 117.4 118.59 119.78 120.99 122.2 123.38 124.26 

Pessimistic Oil 

forecast $/bbl 

 46.85 46.25 46.13 46.26 46.54 46.91 47.32 47.77 48.23 48.71 49.19 49.68 50.18 50.68 51.19 51.71 52.23 52.75 53.26 53.26 

7High CO2 Cost 

forecast $/ton 

 92.62 113.91 131.98 145.90 158.23 170.14 182.23 194.76 207.92 221.84 236.65 252.39 269.14 286.98 306.05 326.34 347.96 371.02 395.66 421.88 

8Expected CO2 Cost 

forecast $/ton 

 83.19 82.13 81.57 82.95 85.97 90.20 95.33 101.15 107.56 114.52 122.03 130.06 138.64 147.81 157.62 168.06 179.19 191.06 203.74 217.25 

9Low CO2 Cost 

forecast $/ton 

 73.15 54.80 44.72 40.91 40.06 40.75 42.35 44.53 47.13 50.04 53.24 56.71 60.42 64.40 68.67 73.21 78.06 83.22 88.75 94.63 


