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1 Introduction

This paper aims to investigate the investment in public transport infrastructure and

service under the allocation of the road capacity dedicated to buses. Cities face

transportation problems like congestion, which causes poor public transport service

quality, and high impact on local and global emissions. One answer is the provision

of dedicated bus lanes, which the local authority did, for example, at the Columbia

street corridor in Seattle in early 2020. Such a policy results in a smoother and faster

commute by offering more reliable trips. Several groups have analyzed and mod-

eled the effect that the implementation of bus lanes would result into. Basso and

Silva (2014) investigated the effect of the implementation of a dedicated bus lane

for London, UK and Santiago, Chile. Their results indicate that bus lanes improve

service levels and decrease fare. Börjesson et al. (2017) have analyzed the situa-

tion in Stockholm, where bus lanes are already implemented. They concluded that,

in presence of car congestion, providing the cars with more road space is welfare-

improving. None of the two mentioned studies considered the time component in

their analysis. Saphores and Boarnet (2006) optimized the time of congestion relief

investment under population uncertainty. The outcome of their study is that the op-

timal timing increases with the population volatility, and that ignoring uncertainty

leads to investing prematurely.

In our study, we have built a strategic real options game to analyze the effect of

relieving the congestion for the public transport service. To do so, the model of CITE

was used. The model consists in constructing a Stackelberg game in which two

firms compete, and determining the optimal timings and investment size. In our

case, two decision makers were also considered. Opposite to the case of CITE, these

two agents interact positively. These decision makers are the service provider (SP),

which invests in the bus frequency, and the infrastructure manager (IM), who builds

1



a dedicated bus lane. The infrastructure manager increases the SP’s current profit

by relieving the congestion, while the SP’s bus frequency investment increases the

social surplus. The SP’s objective function is to maximize profit, whereas the IM’s

maximizes the social surplus. The aim of this study is to find the optimal investment

timing in the bus lane, which reliefs the congestion, and the optimal timing and size

of the bus frequency offered under demand uncertainty.

The rest of the paper is structured as follows. Section 2 presents and discusses the

utilized real option model. Section 3 focuses on the analytical solution of the model

and section 4 illustrates the results numerically. Section 5 concludes.

2 Model

We consider two decision markers in the transport market: the first one is the in-

frastructure manager (IM), who holds the option to invest in a dedicated bus lane.

The second one is the public transport service provider(SP), who holds the option

to invest in frequency. Both face irreversible investment costs and uncertain trans-

port demand. They interact with each other in a Stackelberg Game. The IM, e.g. the

government, decides about the timing of investment in a bus lane first and then the

SP, e.g. the public transport operator, can either invest immediately or wait until she

expands her bus frequency offered. Figure 1 describes the relationships between the

different actors in the public transport market.

The transport demand is characterized by the monetary cost of a trip and non-

monetary costs of a trip, called the generalized travel time. Here, we explicitly

model the congestion costs. The government influences the transport demand posi-

tively. By introducing a dedicated bus lane, the IM dissolves the congestion problem

for the bus users. This investment leads to a reduction in the cost of the trip for the
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Figure 1 Overview of the relationships in the public transport market
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The generalized user costs of a trip equal:

g(p, f ) = p +
α

2 f
+ νa + νb( f θ + Qc) (1)

where p is the bus fare, f is the frequency, α is the Value of Waiting Time (VoWT), ν

is he Value of in-vehilce Time (VoT), a is the free flow time, b is the extra congestion

costs per car-vehicle, θ is the car-equivalence factor, and Qc is the fixed total car

demand. The first term represents the monetary cost of a trip and the last terms

stand for the travel time costs. It is assumed that the users are arriving randomly

at the station and, hence, the average waiting time costs ( α
2 f ) reduces to half the

headway times the VoWT. The in-vehicle travel time costs consits of two parts the

first one describes the average in-vehicle travel time costs at the free-flow time (νa),

and the last term reflects the extra congestion costs per car of the in-vehicle travel

time costs as cars interact with buses on the road (νb( f θ + Qc)) and, therefore, both,

cars and buses, delay the arrivals of the service.
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Taking a linear demand function Q = A− bGP and the fact that in equilibrium the

generalized user cost equals the generalized price (g = GP), one obtains the inverse

demand expression

p = Aη − ηq f − α
1

2 f
− υa− υb( f θ + Qc) (2)

where η = b−1.

One needs to distinguish three different demand situations: the first one, e.g. mixed

traffic with the initial bus service, under which the government and the public trans-

port operator have not invested yet, here, the initial buses share the road with the

cars. The second one, e.g. dedicated bus lane with the initial bus service, in which

the government has undertaken the investment, and the service provider has not

invested yet, so the buses ride on their lane and congestion dissolves for them. The

last one, e.g. dedicated bus lane with the bus service expansion, in which the service

provider has undertaken his investment in the growth of the bus service.

The stochastic inverse demand for public transport in the case of shared road capac-

ity is described in the following:

pMT
f0

= Xt

[
Aη − ηq f0 − α

1
2 f0
− υa− υb( f0θ + Qc)

]
(3)

After the infrastructure manager undertakes her investment, the congestion is re-

lieved and the stochastic inverse demand under dedicated bus lanes can be de-

scribed as:

pBL
f0

= Xt

[
Aη − ηq f0 − α

1
2 f0
− υa

]
(4)

After the service provider undertakes her investment in the bus service expansion

as well, the stochastic inverse demand under dedicated bus lanes can be described
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as:

pBL
fE

= Xt

[
Aη − ηq( f0 + fE)− α

1
2( f0 + fE)

− υa
]

(5)

The stochastic demand shifter (Xt) follows a geometric Brownian Motion (gBm).

The gBm is modelled as follows:

dXt = µXtdt + σXtdWt, (6)

in which µ is the drift rate, σ > 0 is the implied volatility, and dWt is the increment

of a Wiener process.

Here, we are modelling a simple network which is characterized by a one mode

bus route, a homogeneous group of users, fixed car demand and considering the

peak-period.

In the following, we will obtain the analytical solution for two cases: (i) the vertically

integrated case which one decision-maker has the option to invest simultaneously

in bus frequency and bus lane and (ii) the vertically separated case which is charac-

terized by the Stackelberg game. Here, the infrastructure manager (IM) is the leader

and decides about the investment timing in a dedicated bus lane first. Whereas,

the service provider (SP) is the follower and holds the option to invest in the bus

frequency expansion.

In the former case, the decision maker has one objective function, and this is to

maximize the social welfare
(∫ Q

0
p dQ

)
1. In the latter case, there are two actors.

The infrastructure manager maximizes the social welfare, while the service provider

maximizes the profit (π = p q f ).

1Q equals qf
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3 Analytical Solution

3.1 Vertically Integrated Case

Following Kort et al. (2010), the decision maker can either invest simultaneously

in the bus lane and the bus frequency expansion (lumpy investment) or can split

the investment, first invest in the bus lane and then in the bus frequency expansion

(stepwise investment). In the former, {V}lumpy
SW denotes the project’s value of the

government’s optimal investment decision in the lumpy investment case

V lumpy
SW = max

T≥0; fE≥0
E
[ ∫ T

t=0
e−rtXtSWMT

f0
dt

+
∫ ∞

t=T
e−rtXtSWBL

fE
dt− e−rTF(δBL + δ f fE)

∣∣∣∣X0 = X
] (7)

The value consists of three terms: the first describes the social welfare under the

mixed traffic condition wih the initial bus frequency, the second describes the social

welfare after both investment has been taken place, and the last term summarizes

both investment costs in the dedicated bus lane and the bus service expansion.

In the latter, {V}step
SW denotes the project’s value of the government’s optimal invest-

ment decision in the stepwise investment case

Vstep
SW = max

TBL≥0;TF≥0; fE≥0
E
[ ∫ TBL

t=0
e−rtXtSWMT

f0
dt

+
∫ TF

t=TBL

e−rtXtSWBL
f0

dt− e−rTBL δBL

+
∫ ∞

t=TF

e−rtXtSWBL
fE

dt− e−rTF δ f fE

∣∣∣∣X0 = X
] (8)

The value consists of five terms: the first describes the social welfare under the

mixed traffic condition with the initial bus frequency, the second and third describe
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the social welfare and their costs after the investment in the dedicated bus lane, and

the last two terms describe the social welfare and their costs after the investment in

the bus service expansion. The investment problem is solved as an optimal stop-

ping problem in dynamic programming. Three conditions are applied, the optimal

frequency ( ∂V
∂ f = 0), smooth pasting, and value matching condition to obtain the

optimal thresholds and optimal bus frequency expansion.

Proposition 1 The optimal investment threshold X∗ and the optimal bus frequency expan-

sion f ∗E of the social welfare maximizing operator with dedicated bus lanes for the lumpy

investment case are given by

X∗ =
β1

(β1 − 1)
(r− µ)(δ f f ∗E + δBL)[

SWBL
fE
− SWBL

f0

]
+
[
SWBL

f0
− SWMT

f0

] , (9)

f ∗E =
1

ηq

[
Aη − υa−

δ f (r− µ)

X∗q

]
− f0 (10)

Proposition 2 The optimal investment thresholds X∗BL, X∗F and the optimal bus frequency

expansion f ∗E of the social welfare maximizing operator with dedicated bus lanes for the

stepwise investment case are given by

X∗BL =
β1

(β1 − 1)
(r− µ)δBL[

SWBL
f0
− SWMT

f0

] , (11)

X∗F =
β1

(β1 − 1)
(r− µ)δ f f ∗E[

SWBL
fE
− SWBL

f0

] , (12)

f ∗E =
1

ηq

[
Aη − υa−

δ f (r− µ)

X∗Fq

]
− f0 (13)

1.
[
SWBL

fE
− SWBL

f0

]
reflects the benefits of the bus frequency expansion, while

δ f fE(r− µ) reflects the associated costs.

2.
[
SWBL

f0
− SWMT

f0

]
reflects the benefits of the introduction of a dedicated bus
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lane, while δBL(r− µ) reflects the associated costs.

8



3.2 Vertically Separated Case

Figure 2 Timing decision’s in the vertically separated case

MTf0 BL f0 BL fEtraffic:

No investment Bus laneIM :

No Investment Bus frequencySP :

TSPTIM

In the vertically separated case the investments in either the bus lane and the bus

frequency expansion are undertaking by itself by two single actors. The problem is

solved as a Stackelberg game. The infrastructure manager (IM) decides about the

investment timing in dedicated bus lane first, then the service provider (SP) holds

the option to invest in the service expansion. The IM maximizes the social welfare,

while the SP maximizes profits.

Value of the IM (leader)

VIM = max
TIM≥0

E
[ ∫ TIM

t=0
e−rtXtSWMT

f0
dt

+
∫ TSP

t=TIM

e−rtXtSWBL
f0

dt +
∫ ∞

t=TSP

e−rtXtSWBL
fE

dt

− e−rTIM δBL

∣∣∣∣X0 = X
] (14)

The value of the IM consists of four terms: i) the social benefit of the initial bus

frequency without any investment, ii) the social benefit of the introduction of the

bus lane after the investment of the IM, iii) the social benefit of the bus frequency

expansion with the dedciated bus lane in place, and iv) the investment costs for the

bus lane at the IM’s investment timing.
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Value of the SP (follower)

VSP = max
TSP≥0, fE≥0

E
[ ∫ TIM

t=0
e−rtXtπ

MT
f0

dt +
∫ TSP

t=TIM

e−rtXtπ
BL
f0

dt

+
∫ ∞

t=TSP

e−rtXtπ
BL
fE

dt

− e−rTSP δ f f
∣∣∣∣X0 = X

] (15)

The value of the SP consists of four terms: i) the profit of the initial bus frequency

without any investment, ii) the profit of the introduction of the bus lane after the in-

vestment of the IM, iii) the profit of the bus frequency expansion with the dedciated

bus lane in place, and iv) the investment costs for the bus frequency expansion at

the SP’s investment timing.

By applying Bellman equation and Ito’s lemma one gets the value in the stopping and

continuation region for the IM and SP.

Value of the IM (leader)

FIM(X) =



SWMT
f0

(r−µ)
X + AIM;1Xβ1 if X∗IM > X

SWBL
f0

(r−µ)
X− δBL +

[
X

X∗SP

]β1

[
SWBL

fE
−SWBL

f0

]
X∗SP

(r−µ)
if X∗SP > X ≥ X∗IM

SWBL
fE

(r−µ)
X− δBL if X ≥ X∗SP.

(16)

Three regions can be distinguished. The first one is the continuation region which is

characterized by the social benefit under the mixed traffic situation with the initial

bus frequency in place and the option value to invest in the dedicated bus lane. The

second one is the value after the investment of the IM and before the investment of

the SP. Here the value consists of three terms: i) the social benefit with the initial

frequency and the bus lane, ii) the investment costs of the bus lane itself, and iii) the

discounted extra social benefit of the bus frequency expansion of the SP, which posi-
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tively influences the value. Two situations can accur either the public transport firm,

who is here the follower, can either invest at the same time as the IM or later. The

first one is referred to the simultaneous policy and the latter one to the sequential

investment policy. The SP’s optimal investment timing (X∗SP) is the upper boundary

of the sequential region and the lower boundary of the simultaneous region.

Value of the SP (follower)

FIM(X) =



πMT
f0

(r−µ)
X if X∗IM > X

πBL
f0

(r−µ)
X + ASP;1Xβ1 if X∗SP > X ≥ X∗IM.

πBL
fE

(r−µ)
X− δ f fE if X ≥ X∗SP.

(17)

Three regions can be distinguished. The first one is the continuation region which

is characterized by the profit under the mixed traffic situation with the initial bus

frequency in place and the option value to invest in the dedicated bus lane. The

second one is the value after the investment of the IM and before the investment of

the SP. Here the value consists of two terms: i) the profit with the initial frequency

and the bus lane, and ii) the option value of the bus frequency expansion of the SP.

The last region is the value after investment if the SP.

Proposition 3 The optimal investment threshold X∗ and the optimal bus frequency expan-

sion f ∗E of the service provider are given by

X∗SP =
β1

(β1 − 1)
(r− µ)δ f f ∗E[
πBL

fE
− πBL

f0

] , (18)

f ∗E =
1

2ηq

[
Aη − υa−

δ f (r− µ)

X∗SPq

]
− f0 (19)

1.
[
πBL

fE
− πBL

f0

]
reflects the benefits of the bus frequency expansion, while

11



δ f fE(r− µ) reflects the associated costs.

Proposition 4 The optimal investment threshold X∗ of the infrastructure manager under

the sequential investment policy

XSEQ
OPT =

β1

(β1 − 1)
(r− µ)δBL[

SWBL
f0
− SWMT

f0

] (20)

Proposition 5 The optimal investment threshold X∗ of the infrastructure manager under

the simultaneous investment policy

XSIM
OPT =

β1

(β1 − 1)
(r− µ)δBL[

SWBL
f0
− SWMT

f0

]
+
[
SWBL

fE
− SWBL

f0

] (21)

When does the sequential strategy occur?

X∗SP > XSEQ
OPT

β1

(β1 − 1)
(r− µ)δ f f ∗E[
πBL

fE
− πBL

f0

] > β1

(β1 − 1)
(r− µ)δBL[

SWBL
f0
− SWMT

f0

]
[
SWBL

f0
− SWMT

f0

]
δBL

>

[
πBL

fE
− πBL

f0

]
δ f f ∗E

BCRBL > BCR fE

Result 1 If the Benefit-Cost-Ratio of the dedicated bus lane (BCRBL) is larger than the

Benefit-Cost-Ratio of the bus frequency expansion (BCR fE), than the sequential strategy

occurs. Otherwise, the optimal strategy is that both decision makers invest at the same point

in time. If the optimal strategy is that both invest at the same time, the largest optimal

investment threshold, e.g. the later point in time, of the two agents under the simultaneous

investment is taken.

12



4 Numerical results

A numerical exercise illustrates the obtained results.

Table 1 Parameter Values

r discount rate 0.07
µ drift GBM 0.015
σ volatility GBM 0.1

Q0 number of trips per hour 1000 trips
hour

q bus capacity 100 pax
bus

QC 100
Investment costs
δ f frequency’s investment costs 84 $

h
δBL bus lane’s investment costs 10000 $

h
User costs

p0 fare (per trip) 60 g
trip

α Value of the Waiting Time 15 $
hour

υ Value of the In-vehicle Time 10 $
hour

f0 inital frequency (per hour) 10 bus
hour

θ car-equivalence factor 2 car
bus

a free flow speed time 0.5 hour
b extra time per car 0.5 min

car
Demand parameters
εGP,0 elasticity of trip wtr GP −2.2
η inverse of the demand slope 0.0074
A constant linear demand 3200
β1 2.87
X0 starting value 1
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4.1 Optimal Solution

Table 2 Optimal Solution

market investment case goal X∗ f ∗ welfare

vertically integrated lumpy BL & F SW 0.72 14 319118

stepwise
BL SW 1.21 14.53 233327
F SW 0.12 7.89 -

vertically separated IM-Seq BL SW 1.21 - -
IM-Sim BL SW 1.15 2.25 164111

SP F profit 0.35 1.36 -

x0 = 1 and f0 = 10 ; BL - bus lane and F - frequency

4.2 changing Parameter

In the following, we will investigate the effect on the optimal results of changing

the bus investment costs, the congestion costs, Value of Time (VoT), and the bus

capacity. First, the vertically integrated decision is derived (Figure 3-6). It turns out

that lumpy investment is always preferable. And in a second step compared to the

vertically separated investment decision (Figure 7-10).

Figures 3-6 show the results for optimal frequency, optimal threshold, and welfare

in the vertically integrated case for the lumpy and stepwise investment. The so-

cial welfare maximizing decision in the lumpy investment case is illustrated in the

squared-solid line (lump), while for the stepwise case the investment in the bus lane

by the circular-solid line (BL) and the investment decisions in the bus frequency

by the triangular-dashed line (F). The lumpy investment is always preferable to the

stepwise investment decision.

Figures 3-6 show the results for optimal frequency, optimal threshold, and welfare

in the vertically separated case and compare them to the lumpy investment deci-
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sion of the vertically integrated firm. The dashed line represents the threshold of

the service provider (SP.OPT), the squared-solid line represents the optimal thresh-

old of the infrastructure manager for the sequential strategy (IM.SeqOpt), and the

triangular-solid line represents the optimal threshold of the infrastructure manager

for the simultaneous strategy (IM.SimOpt). The two policy areas can be depicted: If

IM’s sequential investment threshold is smaller than the SP’s investment threshold,

then the sequential strategy (red area) occurs between these two results. Otherwise,

the simultaneous policy (blue area) is optimal, of which the timing is depicted by

the larger investment threshold between the IM’s simultaneous or the SP’s thresh-

old. If the level of X is lower than for the two possible policies, the best what the

decision makers can do is to wait. The resulting optimal bus frequency expansion

is illustrated in the middle graph. Thereby, the SP’s frequency (dashed line) is com-

pared to the resulting frequency of simultaneous strategy (triangular-dashed line).

The solution of the vertically integrated case is illustrated by the circular-solid line.

The vertical integrated case is always preferable to the vertically separated decision.
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Figure 3 VI - bus investment costs
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Figure 4 VI - congestion costs
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Figure 5 VI - Value of Time

●

●

●

●
●

●
●

● ● ● ● ● ● ● ●

0

2

4

6

5 10
nu

va
lu

e

Policy

Inac

Sequ

Sim

model

● BL

F

lump

Threshold

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

10

15

20

5 10
nu

va
lu

e

model

● BL

F

lump

Frequency

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ●

3e+05

4e+05

5e+05

5 10
nu

va
lu

e

welfare

●

lump

step

Welfare

Changing nu

18



Figure 6 VI - bus capacity
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Figure 7 VS - bus investment costs
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The higher the investment’s cost of the SP is, the higher becomes the sequential

policy region. The reason is the following, the optimal investment timing of the SP

increases with higher costs in the bus frequency, while the optimal thresholds of

the IM are unaffected. For low investment costs, the simultaneous strategy occurs,

which implies that the service provider invests not at her optimal threshold, e.g.

she must wait. Therefore, the optimal frequency under the simultaneous policy is

higher as desired from the transit firm alone. Conversely, for high investment costs,

the infrastructure manager invests earlier, and the service provider can invest at her

wanted timing. This results in the optimal frequency of the transit firm.
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Figure 8 VS - congestion costs
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The higher the congestion cost of the users are, the higher becomes the sequential

policy region. The reason is the following, the optimal investment timings of the

IM decreases with higher congestions costs because the benefit of introducing the

bus lane increases thereby, while the optimal threshold of the SP is unaffected. For

low congestion costs, the simultaneous strategy occurs, which implies that the ser-

vice provider invests not at her optimal threshold, e.g. she must wait. Therefore,

the optimal frequency under the simultaneous policy is higher as desired from the

transit firm alone. Conversely, for high congestion costs, the infrastructure manager

invests earlier, and the service provider can invest at her wanted timing. This results

in the optimal frequency of the transit firm.
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Figure 9 VS - Value of Time
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The higher the value of in-vehicle time (VoT) is, the higher becomes the sequential

policy region. The reason is the following, the optimal investment timing of the

SP increases with VoT as the free-flow time is valued higher. In contrast, the opti-

mal thresholds of the IM decreases as the benefit of investing becomes larger. For

low investment costs, the simultaneous strategy occurs, which implies that the ser-

vice provider invests not at her optimal threshold, e.g. she must wait. Therefore,

the optimal frequency for low VoT is higher as desired from the transit firm alone.

Conversely, for high VoT, the infrastructure manager invests earlier, and the service

provider can invest at her wanted timing. This results in the optimal frequency of

the transit firm.
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Figure 10 VS - bus capacity
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5 Conclusion
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