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Abstract

We analyze the interaction between firms’ payout policies and their decisions in product markets

in a continuous-time stochastic game between two firms. One of these is financially constrained,

whereas the other is not. Contrary to the standard literature we allow firms to choose production

and payout strategies, and focus on the effect of predation incentives on both. We find that

predation induces fewer dividend payouts. Furthermore, the liquidity position of the constrained

firm has an economically significant effect on the production choices of both firms and, thus, on

the evolution of profits, cash holdings and stock returns.

“In this race the horse with the poorest record, or no record, must carry the greatest

weight.”

— J. K. Galbraith, American Capitalism (1952)
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1 Introduction

The elaboration of the reasons behind exceptionally large cash balances in U.S. firms has received

considerable attention in the corporate finance literature (Cole, 2014; Pinkowitz et al., 2015). The

classical precautionary motive, introduced by Keynes (1936), has been broadly acknowledged as an

important factor in explaining this phenomenon. According to this view, cash holdings are more

valuable for financially weak firms since they can be used as a safety cushion against bad times

in the future. This is supported by empirical evidence, which shows that financially constrained

firms have a propensity to hoard more cash than their unconstrained rivals (Almeida et al., 2004;

Campello et al., 2010; Denis and Sibilkov, 2010; Faulkender and Wang, 2006).

Recent significant increases in corporate cash holdings can be attributed, among other things,

to increased riskiness of cash flows (Bates et al., 2018, 2009; Hugonnier et al., 2014). The probabil-

ity of default increases with cash flow volatility, thereby strengthening the precautionary motive.

Empirical evidence also suggests that the intensity of competition in product markets creates a

strategic motive for cash hoarding. This suggests that firms hold cash as a “war chest” against

competitors (Fresard, 2010; Hoberg et al., 2014; Lyandres and Palazzo, 2016). This effect is typically

more pronounced in the presence of predatory threats (Alimov, 2014; Chi and Su, 2016; Haushalter

et al., 2007). Intuitively, there exists an important economic feedback between cash flow volatility

and the aggressiveness of competition in product markets. Larger cash flow volatility of financially

constrained firms increases their bankruptcy probabilities. This implies that these firms are more

likely to become prey in the product market. In turn, this increases their riskiness. Therefore, the

effect of predation can be amplified by increased volatility. However, the literature looks at these

effects in isolation.

In this paper, we investigate corporate cash management decisions in a dynamic continuous-

time game between two firms who maximize the present value of expected dividend flows. We

focus on the incentives of firms to engage in anti-competitive practices in the product markets

and the consequences of these decisions for their optimal dividend payout policies. In our model,

these incentives are driven by an asymmetry in firms’ financial strengths. This is relevant for

markets that are dominated by large and financially strong firms who are in competition with

smaller firms with weaker financial positions. In order isolate the effect of predation, we consider

the simplest case possible where this asymmetry is extreme, so that the roles of predator and prey

are predetermined. More specifically, in our model, one firm is assumed to operate under financial

constraints (the prey), whereas its rival (the predator) does not face liquidity concerns and, thus,

is not subject to default risk.

Our model combines aspects of both industrial organization and finance. Firms dynamically

choose both their production quantities (à la Cournot) and dividend payouts in order to maximize

the expected value of discounted future dividends. The constrained firm’s cash pile is assumed

to be subject to stochastic shocks, which are observed by both firms, so that our model exhibits

symmetric but imperfect information. The randomness of the shocks adds an element of unpre-

dictability that allows the unconstrained firm to try to load the dice in its favor by producing
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more than the (static) Cournot quantity. In our model, such an action reduces the drift of the

constrained firm’s cash process. Negative stochastic shocks may then reduce the constrained firm’s

stock of cash and, eventually, force this firm out of business. At that point, the unconstrained firm

becomes a monopolist. In this way, strategic motives for cash hoarding of the constrained firm

add market share considerations to the classical tradeoff between survival (accumulating cash) and

maximization of the shareholder value (paying out dividends). We find that the liquidity position

of the financially constrained firm has an important effect on the production choices of both firms

and, thus, on the evolution of, e.g., consumer surplus and profits.

The conclusions derived from our model offer several contributions to both the financial and

industrial organization literature. First, we characterize the optimal payout policy of a financially

constrained firm in the presence of predation in the product market. In our model’s equilibrium,

the constrained firm’s dividend policy takes the form of a reflecting barrier. For low levels of cash,

the firm should not pay out any dividends, whereas the firm should pay out all its earnings as soon

as its cash pile reaches a certain cash target.

In our model, a necessary condition for the possibility of predation arising as an equilibrium

phenomenon is that at least one firm is financially constrained. In addition, predation can only take

place while one such firm does not pay out dividends. If neither firm has any problem in accessing

external financing, or if the cash constrained firm chooses to pay out all its profits always, then the

equilibrium in our model is for both firms to produce the (static) Cournot quantity in every period.

Second, we find that predation in product markets has an effect on the optimal dividend policy,

and vice versa. The desire to pay out dividends limits the extent to which firms will engage in

predation. On the contrary, the imperative to keep the firm liquid makes the constrained firm

more cautious in paying out dividends. More specifically, our model suggests that as the intensity

of predation in the product market and/or the cash flow volatility increase, the constrained firm

raises its cash target and postpones dividends payouts. These results are pertinent in view of recent

empirical literature, which suggests that cash flow volatility has significant explanatory power for

the observed increase in firms’ cash holdings (Bates et al., 2009) and that firms in more competitive

industries with larger predatory threats hoard more cash and pay lower dividends (Hoberg et al.,

2014). The new insight provided by our model is that there is an inherent connection between these

effects. The precautionary effect, resulting from increased volatility, is amplified by the presence of

predation. Larger cash flow volatility leads to more aggressive competition, which in turn affects

the expected cash flow growth of the constrained firm, thereby inducing a higher cash target. This

emphasizes an important role in the setting of optimal dividend policies for the decisions of firms

in their product markets.

Third, our model suggests that under certain conditions, the marginal value of cash for the

constrained firm is non-monotonic in its cash position. Previous studies have found significant

differences between financially constrained and unconstrained firms, with the marginal value of

cash being higher for the latter (Almeida et al., 2004; Faulkender and Wang, 2006). Faulkender

and Wang (2006) also consider the implications for within-firm variation in cash. They find that,

3



on average, the marginal value of cash declines with firms’ cash holdings. This is consistent with

predictions of theoretical models with structures similar to ours, such as Décamps et al. (2011);

Jeanblanc-Picqué and Shiryaev (1995) that disregard product market competition. However, we

find a qualitatively different result, that is, the marginal value of cash of a financially constrained

firm increases for intermediate levels of cash reserves due to aggressive competition. This occurs

particularly when the risk-adjusted discount rate is relatively low, that is, when the unconstrained

firm has stronger incentives to fight for the possibility of a future monopoly position. This result

leads to the testable hypothesis that the marginal value of cash for firms in different financial

positions may respond differently to an increase in cash in the presence of predation threat. In

addition, this suggests that OLS estimates might not capture the potential non-monotonicity and

that the use of quantile regression may be more suitable to verify if there are significant differences

in marginal values of cash for different quantiles.

Fourth, our model provides several testable implications for the effect of cash hoarding on re-

turn dynamics in the presence of aggressive competition. The result that the financial policy of

competitors influences the cash position of its rivals is not new. Our model, however, allows us to

establish the effect of the liquidity position of the constrained firm on the volatility of stock returns

for both firms. Consistent with Décamps et al. (2011), in our model the financial position of the

constrained firm negatively affects the volatility of its own stock returns. The novel implication is

that the liquidity position of the financially constrained firm negatively affects the return volatility

of its competitor. This effect arises due to aggressive competition in the product market, implying

that predation creates a channel through which the competitive interactions of firms in the product

market feed through into financial markets. In particular, the unconstrained firm is able to manip-

ulate the rate of cash accumulation by its rival. As a result, the idiosyncratic cash flow volatility of

the constrained firm becomes a factor in the unconstrained firm’s return dynamics. The presence of

predation also implies that there is a jump in the volatility of the financially unconstrained firm’s

returns at the moment its financially constrained rival leaves the market. This effect can only

occur in the presence of predatory behavior, because otherwise the volatility of the unconstrained

firm’s returns is not affected by its competitor’s liquidity position. Thus, our model allows for the

identification of aggressive competition as a potential source for volatility jumps.

These findings are related to empirical observations of a substantial increase in idiosyncratic

return volatility in recent years presented by Irvine and Pontiff (2008), who attribute this increase

to intensified competition. Our model, however, provides a cautionary tale about the dynamic

relationship between idiosyncratic volatility and the competitive environment. A large idiosyncratic

volatility implies more competition in the short-run in our model. This competition, however, is of

a predatory kind, which in the long-run may very well lead to less competition as the predator is

able to achieve a monopoly position. Our main insight here is that high levels of competition may

not be sustainable in the long-run. This would be consistent with a stream of literature, recently

excellently contextualized by Philippon (2019), which argues that the intensity of (product-market)

competition has been reducing in the US in the 21st century, mainly due to increased market
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concentration. This phenomenon was already observed by Galbraith (1952), who, as the quote

at the top of the paper shows, was concerned about the future of US capitalism in light of the

competitive advantages of financial strength bestowed upon (large and powerful) conglomerates.

Methodologically, our paper is closely related to the stream of literature on dynamic liquid-

ity management and optimal payout policy under financial constraints. The seminal theoretical

contributions in this area, such as Jeanblanc-Picqué and Shiryaev (1995) and Radner and Shepp

(1996), support the precautionary motive as a main driver of cash hoarding. In these models, the

accumulated cash process is modeled as a Brownian motion with a constant drift that triggers the

bankruptcy of the firm once depleted to zero. They find that the firm pays out dividends once

the firm’s cash reserves reach a certain target. A number of extensions of these early models have

been developed to account for various issues such as random interest rates, issuance costs, and

risk management (Akyildirim et al., 2014; Décamps et al., 2011; Højgaard and Taksar, 1999). Our

study is another step in this direction, which focuses on the effect of aggressive competition in

product markets. The unique feature of our model is that the cash-flow growth of a liquidity con-

strained firm is determined endogenously though the feedback effect of competition in the product

markets on its liquidity position. Among the studies that also relax the assumption of constant

drift is Décamps and Villeneuve (2007), who consider a setting in which a firm can undertake an

irreversible investment to boost the growth prospects of its cash process. Gryglewicz (2011) adds

an element of randomness to the drift of the Brownian motion by assuming that the cash flows

are subject to long-term uncertainty. Jiang and Pistorius (2012) incorporate the regime switch in

the drift of the cash process. In our model, the drift of the cash process is continuously controlled

by firms because of competitive interaction in the product markets. In this setting, we obtain

qualitatively different results from the existing literature.

Our paper is also related to the stream of literature that considers the impact of product market

competition on the nexus between firms’ investments and stock returns. Grenadier (2002) derives

the equilibrium investment strategies in an oligopolistic industry where each firm holds a sequence

of capacity expansion options. Aguerrevere (2009) extends Grenadier (2002) by allowing firms to

change their capacity utilization and concludes that the impact of the intensity of product market

competition on return dynamics varies depending on current demand. Recently, Morellec and

Zhdanov (2019) have built on these contributions and discovered that product market competition

leads to a negative volatility skew in option prices. Gu (2016) studies the interaction effect between

R&D investment and product market competition. They find that this effect is positively related to

expected stock returns. All these studies, however, disregard the effect of financial constraints and,

thus, the possibility of market exit. In our model, the possibility of bankruptcy of the financially

constrained firm creates incentives for its financially strong rival to engage in aggressive competition

in the product market to drive the constrained firm out of the market. This results in novel

implications for the return dynamics where the ability of the financially strong firm to manipulate

the volatility of the competitor affects its own return volatility. In this way, an exogenous cash flow

shock of a financially constrained firm is endogenized in the return volatility of its rival.
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Several studies explicitly consider exit decisions in a framework that combines capital structure

decisions and industry dynamics. Kovenock and Phillips (1997) empirically show that firms with

high leverage in highly concentrated industries are more likely to close plants and less likely to

undertake new investments. In an empirical investigation of trucking companies, Zingales (1998)

emphasizes the negative effect of leverage and, thus, insufficient financial strength (fatness) on the

likelihood of firm survival. Lambrecht (2001) provides a theoretical contribution by studying the

impact of capital structure on the entry and exit decisions in a duopoly. Unlike our paper, they

focus on the relationship between firms’ financing decisions on industry dynamics, rather than their

production policies, and thus, ignore the effect of predation. The interaction between financing and

production decisions is investigated by Miao (2005), who focuses on the costs and benefits of the

debt issue. However, that model focuses on a perfectly competitive market in which firms cannot

exert influence over their competitors’ cash flows. In our paper, we take the opposite view and

ignore the effect of external financing to study imperfect competition.

Among the studies that specifically consider cash hoarding of financially constrained firms under

different market structures are Della Seta (2011); Morellec et al. (2014); Povel and Raith (2004).

Apart from Povel and Raith (2004), however, these contributions typically overlook the context of

predation. Unlike Povel and Raith (2004), we are able to separate predation incentives and purely

competitive effects. This is because in our model, in the absence of financial constraints, firms would

always choose the static Cournot production strategy. On the contrary, financial constraints do not

affect the optimal production strategy in the monopoly case, because the monopoly profits maximize

the drift of the firm’s cash stock process. Therefore, the monopoly quantity also maximizes the

survival probability. Thus, the only reason for a firm to depart from its usual static strategy is to

predate its rival.

The idea that firms use their financial strength to engage in anti-competitive behavior is not

new and dates back to the early literature on predatory pricing and, in particular, the deep pocket

argument, introduced by McGee (1958), and later studied by Telser (1966) and Benoit (1983). In

their models a more resourceful incumbent could potentially drive a financially constrained entrant

out of the market by means of aggressive pricing. The main conclusion of this stream of literature

is, however, that under perfect information no price war will be observed in equilibrium due to

the temporary nature of price cuts. The modern view on predatory pricing does not support

these early conclusions. However, more recent models strongly rely on asymmetric information in

explaining anti-competitive behavior (Bonatti et al., 2016). We show that predation can also be

an equilibrium phenomenon also in environments without information asymmetries. In particular,

we go back to a complete information setting and the traditional “deep pockets” hypothesis. We

investigate whether the results from the early literature that suggest the irrationality of predation

still hold in a dynamic setting where at least one firm is capital constrained and firms’ profits

are subject to stochastic shocks. Unlike the Chicago school, we show that predation is not a rare

event but results from rational behavior. Quite remarkably, we can demonstrate this by solving an

optimal control problem with a relatively simple structure.
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At the same time, our model differs from the literature, such as Bolton and Scharfstein (1990),

which explains predation by agency conflicts in environments where firms are cash constrained.

Such models essentially add noise to the profits that are observed by shareholders so that they

cannot establish their actual values. Managers, on the contrary, have prefect foresight. In contrast,

our results do not hinge on the presence of private information. Instead, in our model information

is symmetric in the sense that all agents are exposed to uncertainty in the same way and, as thus,

none of them have the prefect foresight about the future. In fact, even in the presence of perfect

monitoring by shareholders of managers one cannot avoid predation in our model. The primary

drivers of predatory behavior are cash flow volatility and financial constraints. This point of view

is supported by Bates et al. (2009) who empirically study increases in US firms’ cash balances

and conclude that these increases are primarily attributed to cash flow risk rather than to agency

conflicts.

The remainder of the paper is organized as follows. Section 2 presents the model setup. Section

3 introduces the benchmark model in which the firms behave myopically in the product market.

In Section 4 we derive optimal production profiles and payout strategies and characterize the

equilibrium policies. Section 5 analyzes model implications for financial and product markets.

Section 6 provides some conclusions.

2 The Model

In this section we introduce a continuously-repeated dynamic stochastic game between two

firms that choose their quantity and dividend policies. In our model the firms are symmetric in the

product market, while asymmetric in terms of their financial strength. One firm (Firm 2) operates

under a liquidity constraint, and goes bankrupt if its cash reserves fall below zero. Its competitor

(Firm 1) is an unconstrained firm in the sense that it is not subject to liquidity default.

In the product market, firms compete à la Cournot, i.e. they choose quantities at every point

in time. Unconstrained Firm 1 pays out these profits as dividends. The financially constrained

Firm 2 adds profits to its cash reserve, which is subject to a (white noise) liquidity shock. It then

decides, in addition, how much of its cash reserve to pay out to shareholders as dividends.

The inverse demand in the product market is given by the function P : R+ → R+, with P ′ ≤ 0.

The (identical) production technology is represented by a cost function C : R+ → R+, which is

continuous on (0,∞), with C ′ > 0, C ′′ ≥ 0, and C(0) = 0. The profit of firm i, i = 1, 2, is

π(qi, qj) = P (qi + qj)qi−C(qi). We assume that there is a unique quantity qM > 0 that maximizes

P (q)q − C(q) and that πM , P (qM )qM − C(qM ) ∈ (0,∞). The values qM and πM are the

monopoly quantity and profit, respectively. Furthermore, we assume that the Cournot quantity is

unique and well-defined. That is, we assume that there is a unique maximizer, qD, of the mapping

q 7→ P (q + qD)q − C(q), which is the Cournot quantity. We further denote the Cournot profit by

πD , P (2qD)qD − C(qD). Note that per-period profits are bounded above by πM .1

1Sufficient conditions for qM and qD to be well-defined are
∂2π(qi,qj)

(∂qi)2
+

∣∣∣∣ ∂2π(qi,qj)

∂qi∂qj

∣∣∣∣ < 0 or equivalently

7



Uncertainty over the liquidity position of the constrained firm is driven by a standard Brownian

motion B = (B(t))t≥0, which is defined on a canonical probability space (Ω,F ,P). Let F =

(F (t))t≥0 be the filtration generated by B. Let T be the set of F-adapted stopping times. A

firm’s operational activities, i.e. production, lead to a stream of profits.

DEFINITION 1. A production policy is an F-adapted and non-negative process q = (q(t))t≥0.

The set of production policies is denoted by Q. Any part of profits that is not paid out as

dividends by Firm 2 is assumed to be added to its cash reserve.

DEFINITION 2. A dividend policy is an F-adapted, non-negative, and non-decreasing process

Z = (Z(t))t≥0.

The set of dividend policies is denoted by D . A strategy ξ = (q, Z) ∈ Q×D for a firm consists

of a production policy q ∈ Q and a dividend policy Z ∈ D .

Since the constrained firm can use its instantaneous profits either to pay out dividends, or to

accumulate cash reserves, it can exert control over its free cash process through its production

policy and through its choice of dividend policy. Through the Cournot assumption in the product

market, the unconstrained firm’s production policy also influences the constrained firm’s free cash

process.

The crucial ingredient of our model is that Firm 2’s cash reserves are subject to liquidity shocks,

driven by the Brownian motion B. For a pair of strategies ξ := (ξ1, ξ2), the controlled cash process

(CCP) of Firm 2 is the process Xξ, which, for all t ≥ 0, is defined by

Xξ(t) , X(0) +

∫ t

0+
π(q2(s), q1(s))ds+ σB(t)− Z2(t), X(0) > 0. (1)

Since Firm 2 is financially constrained, a series of negative shocks to profits can drive the firm

into bankruptcy when its cash reserves are depleted. Its bankruptcy time is given by the stopping

time

τ , inf { t ≥ 0 | Xξ(t) ≤ 0 } .

We need to ensure that Firm 2 no longer produces anything nor pays out dividends after it has

gone bankrupt and that Firm 1 acts as a monopolist after Firm 2’s bankruptcy.

DEFINITION 3. The pair of strategies ξ = (ξ1, ξ2) is admissible if on { t ≥ τ } it holds that

1. q1(t) = qM ,

2. q2(t) = 0, and

3. Z2 is a constant process.

The sets of admissible production and dividend policies for Firm i are denoted by Qi and Di,

respectively. Finally, let Ξ , Ξ1 × Ξ2 , (Q1 × D1) × (Q2 × D2) denote the set of all pairs of

admissible strategies.

2P ′ + qiP
′′ +

∣∣P ′ + qiP
′′∣∣ < C′′ (?). In the case of affine demand, P (q) = a − bq and linear production costs, cq

this condition reduces to b > 0.
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The unconstrained firm in this setting chooses its optimal quantity policy by maximizing the

present value of its expected future profits. This is because in the absence of a liquidity constraint,

its value does not depend on the the ability to build reserves. Thus, its cash policy is irrelevant.

This is in line with the empirical results that cash flow sensitivity of cash is not statistically different

from zero for financially unconstrained firms Almeida et al. (2004).

For a pair of strategies ξ ∈ Ξ, we define the value of Firm i as:

Vi(x; ξ) , Ex
[ ∫ ∞

0
e−ρsdZi(s)

]
. (2)

Here ρ > 0 denotes the risk-adjusted discount rate and Ex denotes the expectation operator

associated with P under the condition that X(0) = x, P-a.s.

Note that firms face the following tradeoff. When earning positive profits, it may have incentives

to transfer them to cash reserves to avoid bankruptcy in the future. This, in turn, comes at a cost

of paying out less dividends to shareholders. Since we assumed that Firm 1 is not financially

constrained it has no incentive to build up cash reserves, but may have an incentive to use its

financial strength to drive the competitor out of the market.

3 The Benchmark

Before considering how interactions in the product market affect the payout policy of Firm 2,

we present a benchmark in which we ignore Firm 1’s dividend policy and assume that the quantity

choice of each firm is fixed. Under this assumption, the drift of process X is constant and the

solution to Firm 2’s optimal dividend problem is well known from the literature, see, e.g., Jeanblanc-

Picqué and Shiryaev (1995) and Radner and Shepp (1996). In this case the optimal dividend policy

is given by the local time of process Xξ at an endogenously determined boundary; see Proposition 1.

After bankruptcy of For (q1, q2) ∈ R2
+ with P (q1 + q2) > c, and some admissible dividend policy

(Z2(t))t≥0, we define the constant production policies q̃i ∈ Qi, i = 1, 2, to be the (admissible)

production policies for all t ≥ 0,

q̃1(t) =

q1 if t < τ

qM if t ≥ τ
, and q̃2(t) =

q2 if t < τ

0 if t ≥ τ
. (3)

For these policies, the per-period profits (on {t < τ}) are

π1 , π(q1, q2), and π2 , π(q2, q1). (4)

For any admissible dividend policy Z̃2 ∈ D2, the controlled cash process then is

Xξ̃(t) = X(0) + π2t+ σB(t)− Z̃2(t), t ≥ 0,
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where ξ̃ = (q̃1, (q̃2, Z̃2)).

PROPOSITION 1. For the production policies in (3), with per-period profits as in (4) the optimal

cash target of Firm 2, denoted by x̃q, is equal to

x̃q =
1

2∆2
ln

(
σ2∆2

2 + ∆2π2 − ρ
σ2∆2

2 −∆2π2 − ρ

)
, (5)

where ∆2 =
√(

π2
σ2

)2
+ 2ρ

σ2 . Furthermore, the value functions of Firms 1 and 2 are

v1(x) =



πM
ρ if x ≤ 0,

π1
ρ + e−

π2
σ2 x

(πM−π1)
(

∆2 cosh (∆2(x−x̃q))+π2
σ2 sinh (∆2(x−x̃q))

)
ρ
(

∆2 cosh (∆2x̃q)−π2
σ2 sinh (∆2x̃q)

) if 0 < x < x̃q,

π1
ρ + e−

π2
σ2 x̃q ∆2(πM−π1)

ρ
(

∆2 cosh (∆2x̃q)−π2
σ2 sinh (∆2x̃q)

) if x ≥ x̃q,

(6)

and

v2(x) =


0 if x ≤ 0,

e−
π2
σ2 (x−x̃q) sinh (∆2x)

∆2 cosh (∆2x̃q)−π2
σ2 sinh (∆2x̃q)

if 0 < x < x̃q,

(x− x̃q) + π2
ρ if x ≥ x̃q,

(7)

respectively, where v′1 ≤ 0, v′′1 ≥ 0, v′2 ≥ 0, and v′′2 ≤ 0 on (0, x̃q).

Proposition 1 implies that the financially constrained firm’s dividend policy takes the form of a

reflected Brownian motion. For low levels of cash the firm should not pay out any dividends, while

for large levels, the firm should pay out all its earnings. In this setting, the motives for building

a cash reserve are purely precautionary and are reflected by the fact that the firm only pays out

dividends once its cash reserve reaches the cash target, x̃q. This cash target, in turn, reflects a

balancing of current dividends against future dividends, the latter being conditional on the survival

of the firm and, thus, on the firm’s cash reserve.

The value function of Firm 2 is increasing and concave in x. For x ≤ 0, the firm goes bankrupt

and its value is equal to zero. For 0 < x < x̃q, the value function is equal to the discounted value of

future dividends after reaching the payout region. For x > x̃q, the firm pays out the instantaneous

dividend x− x̃q and then follows the reflecting barrier policy from the cash level x̃q. Thus, its value

in this case is equal to the sum of an instantaneous dividend at t = 0 and the present value of future

duopoly profits. The structure of our solution in (7) is similar to Jeanblanc-Picqué and Shiryaev

(1995). The difference is that the boundary between the dividend-paying and non-dividend-paying

regions, x̃q, is now linked to the product market through the firms’ production policies. In the

special case where both firms choose to produce the static Cournot quantity, qD, in each period,

we denote Firm 2’s cash target by x̃D.
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The value of Firm 1 is decreasing and convex in x. As soon as Xξ(t) hits zero, Firm 1 becomes

a monopolist in the market and its value is equal to the discounted monopoly profits. Thus, the

large cash reserves of the financially constrained competitor adversely affect the value of Firm 1

due to the decreased bankruptcy probability of Firm 2. For x > 0, its value function consists of the

perpetual stream of duopoly profits and a correction term. For 0 < x < x̃q, this correction term

accounts for the possibility of Firm 2’s bankruptcy. For x > x̃q, the correction term reflects the

fact that Firm 2 may eventually leave its payout region and go bankrupt in the future.

A novel and interesting result here is that the value of the unconstrained firm is affected by the

financial position of its rival, emphasizing the important interaction between financial and product

markets. The channel for this interaction is corporate cash hoarding of the financially constrained

firm. This result occurs even in this myopic model where firms choose a constant production policy.

Notably, if Firm 2 is a monopolist, it is in fact optimal to choose the static monopoly quantity,

qM , in each period, leading to a cash target denoted by x̃M . Intuitively, in this case, by choosing

the quantity that maximizes profits for each period the firm can accomplish two goals at once: to

maximize the expected present value of future dividends and to increase the probability of survival.

This result, however, does not hold when we introduce competition, as we demonstrate in Section 4.

4 The production–dividend game

We extend the analysis in Section 3 by allowing firms to compete in the product market. To

summarize the discussion in Section 2, our production–dividend game is a tuple

Γ = 〈{1, 2}, (Qi ×Di, Vi)i=1,2〉 .

In our equilibrium construction we will focus on Markovian production policies, that is, we will

look (with some abuse of notation) at production policies of the form q(t) = q(X(t)), t ≥ 0, for

some continuous function q, with the property that q(x) ≥ 0, all x ∈ R. We call this function

q a quantity function. Continuity of the quantity functions ensures that the instantaneous profit

function x 7→ π(q2(x), q1(x)) is continuous, which, in turn, means that process X is well-defined.

The set of continuous quantity functions q with the property that q(0) = 0 is denoted by M2,

whereas the set of continuous quantity functions with the property that q(0) = qM is denoted by

M1. The set of strategies is denoted by Z , Z1 ×Z2, where Zi ,Mi ×Di. With every ζi ∈ Zi

we associate the strategy ξζii = (qζii , Zi) ∈ Q ×D , where for all t ≥ 0 we define

qζii (t) ,


qi(X(t)) if t < τ,

qM if t ≥ τ and i = 1,

0 if t ≥ τ and i = 2.

DEFINITION 4. A collection of strategies ζ̄ = (ζ̄1, ζ̄2) ∈ Z is a Nash equilibrium in Markovian

quantity strategies (NMS) in the production–dividend game Γ if for every i ∈ {1, 2}, ζi ∈ Zi, and
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x ≥ 0, it holds that

V1(x; ξζ̄i , ξζ̄j ) ≥ V1

(
x; ξζi , ξζ̄j

)
.

It is obvious that for Firm 1 it is a dominant strategy to pay out any positive profits as dividends,

because this firm never has an incentive to hoard cash. So, in what follows, we will focus on the

equilibrium dividend policy of Firm 2.

Consider an interval E = (0, x̄) and a pair of admissible quantity functions q = (q1, q2) ∈
M1 ×M2, such that P (q1(x) + q2(x)) > 0 for all x ∈ E.2 The characteristic operator on the set of

twice differentiable functions on E, C2(E), is given by

L qϕ(x) ,
1

2
σ2ϕ′′(x) + π(q2(x), q1(x))ϕ′(x)− ρϕ(x), x ∈ E. (8)

The characteristic operator captures several drivers of the firms’ value dynamics. The first term

represents the noise related to market uncertainty. The second term captures the effect of product

market competition in the presence of a liquidity constraint. If the constrained firm had unlimited

access to outside capital this term would be zero, because there would be no incentives to hoard

cash. The second term can also be interpreted as the value of predation for the unconstrained firm,

since in the absence of predatory incentives, the value function would not be affected by the change

in its rival’s cash stock.

The Hamilton-Jacobi-Bellman (HJB) equations for the firms are defined on C2(E) as

H q2
1 ϕ(x) , sup

q1≥0
{L q1,q2ϕ(x) + π(q1, q2(x)) } = 0, x ∈ E, and (9)

H q1
2 ϕ(x) , max

{
sup
q2≥0

L q1,q2ϕ(x), 1− ϕ′(x)

}
= 0, (10)

respectively.

With every ϕ ∈ C2 that satisfies (10), we associate the continuation region,i.e. the region where

Firm 2 does not pay out dividends,

C q1,ϕ
2 =

{
x > 0

∣∣∣∣∣ sup
q2≥0

L q1,q2ϕ(x) = 0 and ϕ′(x) > 1

}
, (11)

and its complement, where Firm 2 pays out dividends,

S q1,ϕ
2 =

{
x > 0

∣∣∣∣∣ sup
q2≥0

L q1,q2ϕ(x) < 0 and ϕ′(x) = 1

}
. (12)

Note that

C q,ϕ
2 ∪S q,ϕ

2 = (0,∞) and C q,ϕ
2 ∩S q,ϕ

2 = ∅.
2Here x̄ is going to play the role of the constrained firm’s cash target.
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Furthermore, for any ζ ∈ Z , we define the process Xζ , by

Xζ(t) ,X(0) +

∫ t

0
π
(
q2(Xζ(s)), q1(Xζ(s))

)
ds

+ σB(t)− Z(t), t ≥ 0,

(13)

with bankruptcy time

τ ζ , inf
{
t ≥ 0

∣∣∣ Xζ(t) ≤ 0
}
.

DEFINITION 5. Let q = (q1, q2) ∈ M1 ×M2 be a pair of admissible quantity functions and

assume that ϕ ∈ C2 is such that H q1
2 ϕ = 0. The dividend process associated with q and ϕ is an

F-adapted, non-negative, and non-decreasing process Z ∈ D such that,

1. Xq,Z(t) ∈ C̄ q,ϕ
2 , on

{
t < τ q,Z

}
, and

2.
∫ τq,Z

0 1Xq,Z(t)∈C q,ϕ2
dZ(t) = 0.

We denote the dividend process associated with q and ϕ by Zq,ϕ. The first condition ensures

that Zq,ϕ is such that the closure of the continuation region is never exited. The second condition

ensures that Zq,ϕ only has local time on the boundary of C q,ϕ
2 , that is, that dividends are only paid

on ∂C q,ϕ
2 . That is, Zq,ϕ makes Xq,Z a reflected Brownian motion.

In the remainder of the paper we will focus on a market with a linear inverse demand function,

P (q) = a− bq and linear cost function C(q) = cq, for 0 < c < a and b > 0. For a function ϕ1 ∈ C2,

we define, on {x > 0|ϕ′1(x) < 3}, mappings x 7→ q̄1(x) and x 7→ q̄2(x) by

q̄1(x) ,
a− c
b

1− ϕ′1(x)

3− ϕ′1(x)
, and

q̄2(x) ,
a− c
b

1

3− ϕ′1(x)
,

(14)

respectively.

These functions describe the instantaneous quantity choices in (Cournot) equilibrium. They

follow from the best-response equations

q1 =
a− c

2b
− 1

2
(1 + ϕ′1(x))q2, and

q2 =
a− c

2b
− 1

2
q1,

respectively. Note here that the reaction curve of Firm 2 is of the same form as in the static Cournot

model. This is the case because this firm has no strategic power in this game. Thus, Firm 2 acts as

a prey and simply best-responds to the actions of Firm 1, who acts as the predator. The predator’s

reaction curve is now affected by the sensitivity of its value to changes in the prey’s cash reserves.

Thus, ϕ′1(x) acts as a measure of the aggressiveness of competition: the larger it is in absolute

value, the greater the incentive to the predator of deviating from the static Cournot best response.

The following proposition gives a verification result for the construction of an NMS.
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PROPOSITION 2. Suppose that there exist

1. a constant x̄ > 0, and

2. functions ϕ1, ϕ2 ∈ C2 on (0, x̄), with ϕ′2 > 1 on (0, x̄),

such that

1a) ϕ1(0) = πM/ρ 1b) ϕ2(0) = 0,

2a) L q̄1,q̄2ϕ1 + π(q̄1, q̄2) = 0 on (0, x̄) 2b) L q̄1,q̄2ϕ2 = 0 on (0, x̄),

3a) ϕ′1(x̄−) = 0 3b) ϕ′2(x̄−) = 1,

4b) ϕ′′2(x̄−) = 0,

Then the pair of strategies ζ̄ = (q̄i, Z̄i)i=1,2, with (q̄1, q̄2) as in (14),

dZ̄1(t) = 1X(t)>0π(q̄1(x), q̄2(x))dt+ 1X(t)≤0πMdt, and

Z̄2(t) = 1t<τ q̄,Z̄2
Z q̄,ϕ2(t) + 1t≥τ q̄,Z̄2

Z q̄,ϕ2(τ q̄,Z̄2),

is an NMS of the production–dividend game Γ. The value functions of the firms in this equilibrium

are

V1(x) =


πM
ρ if x ≤ 0

ϕ1(x) if 0 < x < x̄

ϕ(x̄) if x ≥ x̄,

and

V2(x) =


0 if x ≤ 0

ϕ2(x) if 0 < x < x̄

(x− x̄) + ϕ2(x̄) if x ≥ x̄,

respectively.

An equilibrium constructed in this way, assuming it exists, implies that, similar to the monopoly

case, Firm 2’s dividend policy is defined by a reflecting a barrier, x̄, on its cash process. The

new result now is that in the region where the constrained firm does not pay out dividends, the

unconstrained firm has an incentive to engage in aggressive competition in the product market.

In equilibrium, the dividend-paying region and the region of aggressive competition are sepa-

rated by the cash target, x̄. This implies that predation only occurs when the financially constrained

firm (the prey) does not pay out dividends. This result is intuitively clear because the only channel

through which the unconstrained firm (the predator) can accelerate the bankruptcy time of the prey

is the rate at which the latter accumulates cash. By lowering the profits of the prey, the predator

lowers the drift of the prey’s cash process, thereby increasing the probability of bankruptcy. How-

ever, once the prey starts paying out dividends it stops accumulating cash reserves. Although the
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drift of its cash process at x̄ is equal to the (static) Cournot profit, its effective drift is zero because

any positive profit is paid out in dividends. In our setting, firms can guarantee non-negative ex-

pected profits each period (because there are no fixed production costs). Therefore, in expectation,

the predator is no longer able to affect the bankruptcy probability of the prey. Hence, the game

ends up in the (static) Cournot equilibrium at x̄.

An important question is whether the existence of an equilibrium in the production–dividend

game is guaranteed. The following proposition answers in the affirmative and, in fact, proves the

uniqueness of equilibria that can be constructed using Proposition 2.

PROPOSITION 3. There exist unique functions ϕ1 and ϕ2 and a unique threshold x̄ > 0 that

satisfy the conditions of Proposition 2.

Throughout the remainder of this paper, we will refer to the equilibrium constructed in this

way as the predation equilibrium. In this equilibrium, the financially unconstrained firm acts as the

predator, whereas the financially constrained firm acts as the prey.

5 Results

The distinctive feature of our model is that the expected cash flow growth of the constrained firm

is not exogenous. Rather, it is controlled by both firms. In particular, free cash flows depend on their

production decisions in the product market. Notably, in a duopoly setting without profitability

shocks the growth rate of the free cash flow is constant in equilibrium. In this case, firms can

perfectly predict their future operational profits, leading to the result that it is always optimal for

firms to choose (static) Cournot quantities. Our model accommodates a more general situation

where the presence of profitability shocks causes deviations from this equilibrium. We can generate

such deviations without imposing a complex dynamics on the cash process by simply assuming that

disturbances in realized profits are white noise.

In this section, we present the implications of this feature for the firms’ value functions, stock

returns, production strategies and payout policies.

5.1 Value functions and product market effects

In our production–dividend game, continuous usage of quantity as a strategic instrument by

Firm 1 in manipulating the competitor’s liquidity position affects the value functions of both firms.

Proposition 4 summarizes the main properties of the equilibrium value functions.

PROPOSITION 4. The equilibrium value function of the unconstrained firm, V1, is a decreasing

and convex function of the level of cash reserves of the constrained firm, x.

The equilibrium value function of the constrained firm, V2, is increasing in its cash reserves and

is concave for values of x close to zero as well as for values of x close to the cash target, x̄.

Figure 1 presents a numerical illustration of the equilibrium value functions. In the following

examples, we use a linear inverse demand curve P (q) = a − bq and constant marginal production
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costs, C(q) = cq, for 0 < c < a and b > 0. Because in an arithmetic model, the drift and volatility

terms measure absolute rather than relative quantities, the volatility parameter is not scale-free.

We, therefore, introduce the scale-free parameter φ to determine appropriate volatility levels. For

a given value of φ ∈ (0, 1), we find the volatility level σ which gives (1− φ)πD as the lower bound

in a 95% confidence interval of one-period profit deviation from the static Cournot profit, πD.

V1(x)

V2(x)

0 1 2 3 4 x
0

50

πD
ρ

150

200

πM
ρ

x

Figure 1: The value functions for different level of the cash reserves for the following set of parameter
values: (a− c) = 5, b = 0.5, ρ = 0.05, and φ = 0.3 (which gives σ = 0.8503).

Note that once the cash target is reached, the equilibrium value function of Firm 2 is equal to

the discounted value of an infinite stream of (deterministic) Cournot profits. However, Firm 1’s

equilibrium value function is somewhat higher: V1(x̄) > V2(x̄) = πD/ρ. To interpret this result,

recall that the optimal strategy of the constrained firm is to pay out all cash above x̄, and not to

distribute anything to the shareholders otherwise. Thus, from the moment its cash reserves hit

x̄ for the first time, the constrained firm expects to earn the discounted value of its deterministic

profits. In addition, this means that the cash reserves of Firm 2 remain constant in expectation

(the cash process is now a martingale). For the unconstrained firm, this implies that its value does

not change with x, and the optimal production strategy is to maximize its per-period profits, which

leads to static Cournot quantities in equilibrium for both firms. However, similar to our benchmark

case, there is still a positive probability that Firm 2 goes bankrupt leading to the monopoly position

for Firm 1. Hence, the equilibrium value function of Firm 1 is strictly larger than that of Firm 2

at x̄.

Another important observation here is that in comparison to the myopic strategy of producing

static Cournot quantities, the shareholders of the predator gain value, whereas the shareholders of

the prey lose value due to aggressive competition in the product markets. Proposition 5 compares

the values of the firms in the predation equilibrium and under the myopic strategy identified in our

benchmark model.

PROPOSITION 5. In the predation equilibrium, the value of Firm 1 is at least as large as under

the myopic strategy, that is, V1 ≥ v1. The equilibrium value of Firm 2 does not exceed its value
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under the myopic strategy, that is, V2 ≤ v2.

Thus, predation in the product markets results in value transfer from the shareholders of the

prey and to the shareholders of the predator. In other words, there is a positive strategic externality

for the unconstrained firm and a negative strategic externality for the constrained firm.

We now illustrate how the financial market effects feed through into the product market in our

game’s equilibrium. Figure 2 shows the firms’ (instantaneous) equilibrium quantities, q̄1 and q̄2, as

well as the (instantaneous) market price, in equilibrium, P̄ , as functions of the constrained firm’s

cash reserves.
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(a) The equilibrium quantities
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(b) The equilibrium price

Figure 2: The equilibrium quantities and price for different level of the cash reserves for the following
set of parameter values: (a− c) = 5, b = 0.5, ρ = 0.05, and φ = 0.3, (so that σ = 0.8503).

The dividend policy of the constrained firm creates a reflecting barrier on its cash process at x̄, so

that it pays out all cash in excess of this cash target. As seen in Figure 2(a), the unconstrained firm

behaves as a predator in the product market, by increasing its quantity and thus indirectly lowering

the price, in the region (0, x̄) where the constrained firm does not pay out dividends. This affects

the quantity choice of the constrained firm, which is forced to downscale its production to avoid

bankruptcy because output choices are strategic substitutes. This results in a lower equilibrium

price than one would obtain if firms would choose static Cournot quantities in every period, as

is evident from Figure 2(b). However, if the constrained firm starts out with large enough cash

reserves, in particular if they exceed the cash target x̄, it immediately pays out dividends and the

quantities equal the static Cournot equilibrium quantities.

This leads to the important result that the drift of the cash process of the constrained firm

is not always constant when we allow for stochastic shocks, as illustrated in Figure 3. The first

observation here is that the drift of the cash process of the cash-constrained firm is always weakly

lower than in the situation without predation, where it always grows at a rate equal to the static

Cournot duopoly profit. Another interesting effect illustrated in Figure 3 is that the instantaneous
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Figure 3: The instantaneous equilibrium profits for different level of the cash reserves for the
following set of parameter values: (a− c) = 5, b = 0.5, ρ = 0.05, and φ = 0.3 (so that σ = 0.8503).

profit of Firm 1 is a non-monotonic function of x. Notably, the aggressive behavior in the product

market may even lead to a higher per-period profit than in a static Cournot equilibrium.

The non-monotonic behavior of the instantaneous profit function of Firm 1 is driven by the fact

that when it is making its quantity choice, it balances the future and instantaneous benefits and

costs of overproduction (compared to the static Cournot quantity). For low values of x, the cash-

constrained firm is likely to go bankrupt. Then the primary driver for the aggressive pricing policy

of Firm 1 is to ensure a future monopoly position. In particular, it sacrifices immediate profits

in order to increase the bankruptcy probability of the constrained firm and drive the competitor

out of the market. The main implication here is that our model generates predation according to

the classical definition (Joskow and Klevorick, 1979). Namely, the unconstrained firm resorts to

aggressive pricing to increase the likelihood of bankruptcy for the competitor. The instantaneous

profit then increases with x, since Firm 1 has less incentive to predate and, thus, to sacrifice

immediate profits, when facing a financially stronger competitor.

In addition, we can identify another type of predatory behavior that does not lead to a decline

in the instantaneous profits. This result is summarized in the following proposition.

PROPOSITION 6. In our setting with affine demand and linear marginal costs, it holds that if

V ′1(x) > −3, it holds that the instantaneous equilibrium profit of the unconstrained firm is larger

than the static Cournot profit.

For larger values of x, Firm 1 still overproduces, but bankruptcy of the competitor becomes less

likely. The primary driver of overproduction is the ability to capture larger instantaneous profits

by inducing the other firm to downscale its production. The constrained firm will do so, because

it still cares about building up cash rather than paying out dividends.
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5.2 Cash target

Our model also allows for an analysis in the other direction, that is, of how predation in product

markets affects the dividend payout policy of the constrained firm. The key insight here is that, in

the presence of predatory behavior, the financially constrained firm postpones its dividend payouts

and builds up cash instead. This result is summarized in the following proposition, which compares

the cash target in our predatory equilibrium to the (myopic) scenario where both firms always

produce the static Cournot quantities that we analyzed in Section 3.

PROPOSITION 7. The cash target in equilibrium in the production–dividend game is always

higher than under the (myopic) strategy of always producing static Cournot quantities, that is,

x̄ > x̃D.

Thus, we identify strategic interactions as an additional channel through which profit shocks

and product market characteristics affect the optimal dividend policy. Figures 4 and 5 illustrate

this effect by comparing two different cases: our predation equilibrium and the (myopic) strategy

of always producing (static) Cournot quantities, as established in Proposition 1.
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Figure 4: The cash targets in equilibrium duopoly, x̄, and myopic duopoly, x̃D, for the following
set of parameter values: b = 0.5, (a− c) = 5, ρ = 0.05 and different values of σ.

Figure 4 depicts the effect of changes in the cash target resulting from an increase in volatility. If

the constrained firm faces higher cash flow volatility, then the cash target, x̄, increases. This is due

to a classical precautionary effect that is also present if we do not take product market competition

into account. In our model, this precautionary effect is amplified by a strategic effect. The closer

the constrained firm is to bankruptcy, the further the equilibrium quantities will deviate from the

static Cournot equilibrium quantities, causing the constrained firm to downscale its production.

This results in a lower drift of its cash process, which, in turn, implies a larger cash target.

As a result, although dividend-paying and predation are mutually exclusive events, there exists

an important feedback between them through the cash target. This target, x̄, acts as the boundary

between the dividend-paying and non-dividend-paying regions and is determined endogenously. It
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is affected by the presence of cash flow shocks both directly and indirectly. The direct (precaution-

ary motive) and indirect (strategic effect, aggressiveness of competition) effects work in the same

direction and increase the bankruptcy probability of the constrained firm. In turn, this leads to a

higher cash target for this firm’s dividend payouts. Thus, for larger values of cash flow volatility

the difference between accommodating and predatory cash targets increases.

Note that in this model, for the limiting case where σ = 0, the optimal strategy of the firms

would be to choose static Cournot quantities at every time t ≥ 0 if the initial cash reserves of the

constrained firm are positive. This is because, in the absence of shocks, the constrained firm can

guarantee non-negative profits for each period, which can only increase its cash reserves over time.

This, in turn, ensures that the constrained firm never goes bankrupt, so that the unconstrained

firm has no incentive to engage in predatory pricing. Therefore, the optimal dynamic strategy for

both firms is to maximize their instantaneous profits in every period, leading to the static Cournot

equilibrium in every period.

Figure 5 illustrates the changes in the cash target as a result of an increase in the intercept of

the inverse demand function, a, and the discount rate, ρ.
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(a) For ρ = 0.05 and different values of (a− c).
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(b) For (a− c) = 5 and different values of ρ.

Figure 5: The equilibrium and myopic cash targets, x̄ and x̃D, respectively, for the parameter
values: b = 0.5, and φ = 0.3 (and, thus, σ = 0.8503).

First, consider the effect of a change in (a− c) in Figure 5(a). Here, a can be interpreted as the

maximum willingness to pay (by consumers) in the product market and c is the marginal production

cost. The first interesting feature here is that the cash target is non-monotonic in (a− c) in both

the predatory and accommodating scenarios. This is because a higher value of (a− c) increases the

drift of the cash flow process. On the one hand, if the firm’s cash flow grows faster (in expectation),

it can afford to be “safer” once it starts paying out dividends by postponing the payout decision.

On the other hand, a larger drift implies a smaller bankruptcy probability, which means that the

constrained firm can afford an earlier payout. The value of the additional safety decreases with

(a− c), implying that the latter effect dominates for large values of (a− c).
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Another observation is that the largest difference between the predatory and accommodating

scenarios is observed for intermediate values of (a− c). This is because, on the one hand, for small

values of (a− c), the drift of the cash process of the constrained firm is small and the probability

of bankruptcy is, consequently, large. Hence, predatory pricing does not contribute much to the

resulting increase in the cash target. On the other hand, if (a−c) becomes very large the predation

incentive decreases, because the prey’s cash reserves accumulate faster. This implies a larger impact

of predation on the cash target for intermediate values of (a− c).
From Figure 5(b) it is evident that an increase in the discount rate results in earlier dividend

payouts as the firm becomes more impatient. The difference between the predatory and accommo-

dating scenarios becomes smaller for large values of ρ as the incentive for aggressive competition is

weakened by both sooner dividend payouts and more heavily discounted future monopoly gains.

5.3 Marginal value of cash

We now investigate the effect of product market competition on the marginal value of cash.

Previous studies generally show that the value of every additional unit of cash for a constrained

firm declines with an increase in its cash reserves (Décamps et al., 2011; Faulkender and Wang,

2006). Here we show that this result does not always hold in the presence of predation.

Figure 6(a) depicts the marginal (equilibrium) value of the rival’s cash for the unconstrained

firm.
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Figure 6: The marginal value of Firm 2’s cash for different level of the cash reserves for the following
set of parameter values: (a− c) = 5, b = 0.5, ρ = 0.05, and φ = 0.3 (which gives σ = 0.8503).

From (14), V ′1 represents the deviation from the static Cournot model and, thus, can be inter-

preted as a measure of the aggressiveness of competition in the product market. A larger value for

V ′1 implies a larger effect of predation on the equilibrium quantity choices at cash level x. First,

as expected, V ′1 is negative and approaches zero as the liquidity position of the constrained firm

approaches its cash target. This reflects that the financial strength of the constrained firm has a
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negative impact on the value of the unconstrained firm. From Proposition 4, V ′′1 > 0, which implies

that the biggest incentive to predate occurs for small values of x, that is, when the cash-constrained

firm is in a weak financial position. This is because acting aggressively increases the probability of

bankruptcy of the constrained firm, which leads to a swift monopoly position for the unconstrained

firm. Once the constrained firm starts paying out dividends, the unconstrained firm’s incentives to

predate disappear, as manipulating the drift of the constrained firm will not lead to an economically

significant increase in the latter’s bankruptcy probability.

The results of Proposition 4 also imply that the marginal value of cash for the constrained firm

may exhibit non-monotonic behavior. This effect arises due to the aggressive behavior of Firm 1

in the product market, because if the firms do not deviate from the static Cournot quantities, the

marginal value of cash of Firm 2 declines, as follows from Proposition 1. If there exist cash levels

for which the impact of product market competition is large relative to the overall (equilibrium)

value, then the marginal value of cash for Firm 2 may increase in our model. We illustrate this

situation in Figure 6(b).

Thus, whereas the literature predicts that the marginal value of cash is decreasing, our model

predicts that the marginal value of cash can be increasing for intermediate values of the constrained

firm’s cash reserves. This is because in our model there are two opposing effects on firm value as

the result of an additional unit of cash. On the one hand, there are the usual decreasing returns

to investors’ decreasing marginal utility of consumption. On the other hand, the marginal value

of cash increases because it lowers the predatory threat and, thus, increases the constrained firm’s

chances of survival. The main empirical implication of our result is that the marginal value of cash

is time varying and is affected by the firm’s financial strength.

In what follows, we numerically investigate how these results depend on the underlying param-

eters. In particular, we find that the effect of predation leading to a non-monotonic marginal value

of cash is strongest in environments with lower volatility, more profitable product markets and a

smaller discount rate.

Figure 7 illustrates the marginal values of Firm 2’s cash for different level of φ and, thus, σ.

An increase in φ (and, thus, in σ) has an ambiguous effect on the aggressiveness of product

market competition represented by V ′1 . Notably, the highest cash flow volatility does not always

directly translate into the fiercest predation for all cash levels. Instead, the contribution of the

cash flow volatility of Firm 2 to Firm 1’s predatory incentives is the largest for intermediate levels

of cash reserves of the constrained firm. Intuitively, an increase in the cash flow volatility of the

constrained firm has two effects on the incentives for aggressive competition. On the one hand, it

increases the bankruptcy probability of Firm 2, thereby reducing the incentive to predate. On the

other hand, the constrained firm postpones its dividend payouts, and thus, is exposed to predation

even for larger cash balances. The former effect dominates for low values of x, when Firm 2 is the

most vulnerable. Furthermore, we observe that in a more volatile environment the marginal value

of cash for Firm 2 is strictly declining. This is because for high volatility, the contribution of an

additional unit of cash to the probability of survival is relatively small.
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(b) For Firm 2.

Figure 7: Marginal firm values as functions of Firm 2’s cash reserves for the following set of
parameter values: (a− c) = 5, b = 0.5, ρ = 0.1, and different values of φ (and, thus, σ).

Figure 8 illustrates the sensitivity of the marginal values to changes in the discount rate, ρ.
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(a) For Firm 1.
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(b) For Firm 2.

Figure 8: The marginal value of Firm 2’s cash for different level of the cash reserves for the following
set of parameter values: (a − c) = 5, b = 0.5, and φ = 0.3 (which gives σ = 0.8503), and different
values of ρ.

As Figure 8 shows, the incentives to predate are lowest for environments with larger discount

rates. This is because in such cases Firm 1 discounts its future payoffs more heavily, and thus, is less

willing to sacrifice its immediate profits for a future monopoly position by engaging in predation.

Figure 9 depicts how the marginal value of the constrained firm’s cash to both firms is affected

by the demand intercept, a. We observe that for larger demand intercepts the predator behaves

more aggressively. This is driven by the fact that, for larger a, the prospect of a future monopoly

becomes more attractive. However, at the same time the competitor accumulates cash reserves

23



a=3

a=2

a=1

0 1 2 3 4 5 6
-30

-25

-20

-15

-10

-5

0

x

V1


(a) For Firm 1.

a=3

a=2

a=1

0 1 2 3 4 5 6
0

2

4

6

8

10

x

V2


(b) For Firm 2.

Figure 9: The marginal value of Firm 2’s cash for different level of the cash reserves for the following
set of parameter values: c = 0, b = 0.5, ρ = 0.05, and φ = 0.3 (which gives σ = 0.8503), and different
values of a.

faster (in expectation) so that more effort is required to increase the probability of bankruptcy.

As x increases and the bankruptcy of Firm 2 becomes less likely, the unconstrained firm has fewer

incentives to predate because the duopoly profits also increase for larger values of a. The results

for x close to the value of x̄ are also driven by the non-monotonic effect of a change in a on the

cash target of the constrained firm.

5.4 Stock return dynamics

We now derive pricing formulas for the stocks of both firms. In the absence of arbitrage

opportunities, the stock price must be equal to the expected present value of future dividends.

Given the equilibrium strategies from Proposition 2, the equilibrium stock price dynamics for

Firms 1 and 2 are given by the equations

S1(t) = E
[ ∫ ∞

t
e−ρ(s−t)π(q̄1(s), q̄2(s))ds

∣∣∣Ft

]
, t ≥ 0, (15)

S2(t) = E
[ ∫ ∞

t
e−ρ(s−t)dZ̄2(s)

∣∣∣Ft

]
, t ≥ 0, (16)

respectively.

This implies that the stock prices at any time t ≥ 0 are functions of the current cash position

of the constrained firm. Using the fact that the value functions satisfy the HJB equations, a
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straightforward application of Itō’s lemma shows that

dS1(t)

S1(t)
= ρdt− σ1(S(t))dB(t), (17)

dS2(t)

S2(t)
= ρdt+ σ2(S(t))dB(t) (18)

where the stock return volatility of Firm i is denoted by σi(v) =
∣∣∣σ V ′i (V −1

i (v))
v

∣∣∣ for i = 1, 2.

Evidently, the volatility of the stock returns of both firms is heteroskedastic. For the prey, this

result is in line with Décamps et al. (2011), although here it is due to the presence of predation. An

interesting and novel result in our model is that the predator’s returns are also heteroskedastic even

though the predator is not directly affected by the stochastic shocks to the prey’s cash hoard. This is

because the stochastic process that drives liquidity in our model is not exogenously given, and thus

the liquidity of the constrained firm becomes a risk factor affecting the value of the unconstrained

firm. A financially strong firm is in a position to manipulate the idiosyncratic volatility of its

competitor, and it is in the interest of the shareholders to accept this higher volatility due to the

upside for Firm 1 to become a monopolist. Thus, the private risk of a cash constrained firm has

an effect on the other firm’s stock return dynamics through the actions of the latter in the product

markets. While we analyze the issue at the industry level, a recent paper by Babenko et al. (2016),

which makes a similar point about a link between idiosyncratic risk to systematic risk.

Proposition 8 identifies the effect of an increase in the cash hoard of Firm 2 on the stock return

volatility for both firms. It states that stock return volatility is higher when the constrained firm is

in a financially weaker position. Thus, in the context of our model, high stock return volatility is a

symptom of high levels of predation and, thus, of a high likelihood of the emergence of a monopoly

in the product market.

PROPOSITION 8. The stock return volatility of both firms declines with the cash position of the

constrained firm, σ′2(x) < 0, and σ′1(x) < 0.

Figure 10 illustrates the volatility of returns for each firm as a function of the level of cash

reserves of the constrained firm.

When the cash reserves of Firm 2 are close to zero, Firm 1 engages in the most aggressive

competition, increasing the probability of Firm 2’s bankruptcy and, thus, making a monopoly

scenario highly likely. If, however, the constrained firm is strong enough, the unconstrained firm

does not have incentives to behave aggressively, thereby increasing the likelihood of a duopoly

scenario. The largest volatility of stock returns is attained under fiercest predation.

The stock return volatility of the constrained firm is not only time varying but also discontinuous

at 0. This discontinuity occurs because of the interaction between the product and financial markets.

In the absence of competition, the return volatility of the unconstrained firm is not affected by

changes in its rival’s cash position. In our model, however, the unconstrained firm becomes a

monopolist and will, consequently, give up its aggressive strategy in the product market at the

moment its opponent leaves the market. This causes a jump in the unconstrained firm’s return
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Figure 10: The volatility of stock returns for different level of the cash reserves of Firm 2 for the
following set of parameter values: (a− c) = 5, b = 0.5, ρ = 0.05, and φ = 0.3 (so that σ = 0.8503).

volatility. The model, therefore, allows us to identify an additional factor that may cause jumps in

return volatility: industry structure dynamics.

Although we do not explicitly incorporate the possibility of entry, our model has direct implica-

tions for entry decisions in concentrated markets dominated by a financially strong incumbent. Our

results suggest that to withstand aggressive competition an entrant must secure a cash buffer well

in excess of the entry cost. Aggressive competition in product markets increases the bankruptcy

probability for the cash constrained firm, creating entry barriers and, thus, increasing the risk of a

firm’s cash flows leading to an increased cost of financing. This is consistent with the empirical find-

ings of Hou and Robinson (2006) that firms in highly concentrated industries earn lower returns.

Our model predicts that firms in such markets command lower stock returns due to aggressive

competition in product markets.

5.5 Sensitivity of the value functions and quantities

To illustrate some additional features of our model, we consider the changes in quantities and

equilibrium value functions as a result of an increase in financial and product market parameters. In

Figures 11, 12 and 13 the black curves correspond to the values and quantities of the unconstrained

firm, whereas the gray curves represent the ones for the constrained firm. Consider the effect of

the increased volatility shown in Figure 11(a).
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Figure 11: The equilibrium value functions V = (V1, V2) and quantities q = (q̄1(x), q̄2(x)) for the
following set of parameter values: a = 5, b = 0.5, c = 0, ρ = 0.05 and different values of φ (and,
thus, σ).

When cash flow volatility of the constrained firm increases, we observe an increase in the cash

target, and thus, a longer period of aggressive competition. This implies that both equilibrium

value functions react monotonically to an increase in σ with V1 increasing, and V2 decreasing.

However, the effect of volatility on equilibrium quantities is, however, non-monotonic. This directly

follows from our results on V ′1 . For low x, the unconstrained firm overproduces less for higher

levels of volatility because negative cash flow shocks in this case already ensure a sufficiently large

bankruptcy probability. As the cash reserve of Firm 2 increases, much effort is required by the

unconstrained firm to exploit the constrained firm’s financial weakness, which leads to a decline in

predation intensity.

Figure 12 depicts the value functions and quantities for different values of the discount rate ρ.
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Figure 12: The equilibrium value functions V = (V1, V2) and quantities q = (q̄1(x), q̄2(x)) for the
following set of parameter values: σ = 0.8503, b = 0.5, (a− c) = 5, and different values of ρ.

A higher discount rate decreases the values of both firms as well as their equilibrium quantities.

This is because both the cash target and incentives to predate decrease with ρ.

Figure 13 illustrates the effect of an increase in the intercept of the inverse demand function.
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Figure 13: The equilibrium value functions V = (V1, V2) and quantities q = (q̄1(x), q̄2(x)) for the
following set of parameter values: σ = 0.8503, b = 0.5, c = 0, ρ = 0.05 and different values of a.

A large intercept increases the value of the constrained firm as it implies that its cash reserves

accumulate at a faster rate. It also increases future profits in both monopoly and duopoly. As

discussed earlier, in this case the attractiveness of the monopoly position for the unconstrained

firm increases, thereby inducing more intensive predation for low values of x. In addition, for a

large a, it becomes harder for the unconstrained firm to induce the bankruptcy of the constrained
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firm for a fixed level of financial strength. For larger x, the predation intensity declines, implying

that the unconstrained firm has less incentive to overproduce for large values of a. This leads to a

non-monotonic effect on the quantity policy of Firm 2.

Our model also allows for an investigation of the effects of financial constraints and market

uncertainty on the (expected) consumer surplus. The expected present value of the consumer

surplus in our model is equal to

CS(x; ξ) , Ex
[ ∫ ∞

0
e−ρs

b

2
(q1(s) + q2(s))2ds

]
, t ≥ 0. (19)

For x ∈ (0, x̄) the expected consumer surplus satisfies the following HJB equation

1

2
σ2CS′′(x) + π̄2(x)CS′(x)− ρCS(x) +

b

2
(q̄1(x) + q̄2(x))2 = 0. (20)

The required boundary conditions are CS(0) = (a−c)2

8br and CS(x̄−) = 2(a−c)2

9br , so that when Firm 2

goes bankrupt the consumer surplus is equal to that of a monopoly, whereas as soon as it starts

paying out dividends the consumer surplus is equal to that of the Cournot duopoly (i.e., myopic

benchmark). Figure 14 illustrates the consumer surplus as a function of the constrained firm’s cash

reserves for different values of volatility.
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Figure 14: Expected consumer surplus for the following set of parameter values: b = 0.5, (a−c) = 5,
ρ = 0.05 and different values of φ (and, thus, σ).

There are two opposing effects of predation on consumer welfare. On the one hand, predation

leads to lower prices in the short run, which benefits consumers. On the other hand, predation

makes it more likely that a monopoly emerges in the longer run, which lowers consumer welfare.

We find that either of these effects can be dominant, depending on the firms’ cash positions. In

particular, there exists a “sweet spot” where cash hoards are low enough to lead to price reductions

due to predation, but high enough to ensure the survival of firms for some time.
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5.6 Implications for bankruptcy probabilities

To illustrate how market uncertainty affects industry dynamics and dividend policy, we simulate

the probabilities of the constrained firm ever paying out dividends, before going bankrupt, for

different levels of cash reserves. These are reported in Tables 1 and 2, respectively. We compare

these with the corresponding probabilities in the accommodating scenario, where the firms always

produce Cournot equilibrium quantities. In each table, the values on the diagonal represent the

probabilities for the initial cash reserve, which is equal to 50% of the equilibrium cash target.

Table 1: Payout probability.a

Initial cash level, x
Volatility, σ 0.0659 0.3428 0.7129 1.5180 2.3956 3.3331 Cash target, x̄

0.0283 57.123% 100 % 100 % 100 % 100 % 100 % 0.0318
0.1417 20.746% 89.362% 100 % 100 % 100 % 100 % 0.6855
0.2834 15.718% 67.973% 98.207% 100 % 100 % 100 % 1.4257
0.5669 11.856% 49.058% 84.305% 99.960% 100 % 100 % 3.0360
0.8503 10.356% 40.110% 72.369% 98.707% 99.997% 100 % 4.7911
1.1338 9.448% 34.800% 63.964% 95.683% 99.952% 100 % 6.6662

a Probabilities of the constrained firm to reach the pay out region before going bankrupt based on 100,000
simulation runs for the following set of the parameter values: a = 5, b = 0.5, c = 0, ρ = 0.05.

Table 1 illustrates the simulated probabilities for the cash constrained firm to reach the payout

region. The main implication here is that for a given value of initial cash reserves, larger cash

flow uncertainty decreases the payout probability. This is due to both an increased cash target,

and a larger likelihood that negative shocks will drive the firm into bankruptcy before reaching

the payout region. As we increase the initial cash reserves, we observe the opposite effect. The

closer the constrained firm is to its cash target, the more likely it is to start paying out dividends.

Looking at the diagonal, where the firm always starts with the cash stock halfway from its cash

target, we observe that the payout probability increases with volatility. This indicates that the

effect of initial cash reserves is more pronounced than the increase in volatility.

Table 2 illustrates the simulated bankruptcy probabilities.

Table 2: Bankruptcy probability.b

Initial cash level, x
Volatility, σ 0.0659 0.3428 0.7129 1.5180 2.3956 3.3331 Cash target, x̄

0.0283 19.946% 0.023% 0.035% 0.026% 0.023% 0.021% 0.0132
0.1417 75.281% 7.431% 0 % 0 % 0 % 0 % 0.6855
0.2834 83.585% 30.259% 1.548 % 0 % 0 % 0 % 1.4257
0.5669 88.110% 50.797% 15.557% 0.040% 0 % 0 % 3.0360
0.8503 89.639% 59.878% 27.609% 1.288% 0.003% 0 % 4.7911
1.1338 90.552% 65.198% 36.034% 4.316% 0.048% 0 % 6.6662

b Bankruptcy probabilities of the constrained firm based on 100,000 simulation runs for the following set of
the parameter values: a = 5, b = 0.5, c = 0, ρ = 0.05.
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Here, we observe a non-monotonic effect of volatility on the bankruptcy probability of the

constrained firm. This is because the probability of going bankrupt before the cash target x̄ is

reached, is affected both directly (through change in volatility) and indirectly (through the resulting

increase in cash target). A larger value of σ implies both larger shocks as well as a higher cash

target that is farther away from the initial cash reserves level. Therefore, for a given initial cash

reserve level, the probability that the negative shocks will drive the firm into bankruptcy before x̄

is reached becomes larger. On the contrary, once the firm reaches its cash target, its probability of

going bankrupt is primarily affected by an indirect effect of an increase in cash target, implying a

lower bankruptcy probability. However, on the diagonal the bankruptcy probability decreases with

σ. This indicates that the effect of increased volatility is dominated by the increased cash target,

which is further away from zero.

6 Conclusion

This paper presents a dynamic model of liquidity management that integrates the effect of

product market competition between two firms that are symmetric in the product market, but are

asymmetric in terms of their financial strength. We focus on the incentives of the financially strong

firm to engage in predation in the product market and analyze the impact of such predatory behavior

on dividend payouts, production strategies, dynamics of cash reserves and stock returns. Our

model provides a theoretical link between observed empirical phenomena that have been discussed

in isolation in the finance literature.

We explain the rationale behind cash hoarding by the presence of uncertainty over future profits,

which supports the precautionary motive, and the possibility of predation, which adds a strategic

“deep pockets” dimension to the problem. When profits evolve stochastically, a negative liquidity

shock can lead a cash-constrained firm to bankruptcy. In this setting, a financially strong firm

may have an incentive to engage in aggressive competition that could drive the opponent out of

the market. This effect further increases the incentives to accumulate cash and postpone dividend

payouts. This predatory effect has several interesting implications for both the product and financial

markets. First, we find that the level of predation is time varying (through the predator’s quantity

policy’s dependence on the prey’s cash level) and heavily dependent on market conditions. Second,

our model predicts that stock return volatility is time varying for both firms, and is discontinuous

for the predator. Third, in our model, the marginal value of cash also varies over time for the

constrained firm, depending on its financial position, and can exhibit non-monotonic behavior.

Our model provides several promising directions for future research. One potential extension is

to consider a setting with two financially constrained firms and to investigate the conditions under

which predation is optimal. Another possibility is to allow for the opportunity to invest and (or)

raise debt financing, and investigate how these affect the problem. Lastly, it would be interesting

to incorporate the financiers’ perspective into the framework in which they can optimally choose

which firm to inject their capital into. This could add to the literature on capital structure decisions
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of firms with limited financial resources, which explicitly considers the optimal contract provided

by financiers to the firm (Biais et al., 2007; DeMarzo and Sannikov, 2006; Miao and Rivera, 2016).

Our model is a first step in this direction since it offers insights into the consequences of financiers

choice to support only one firm.
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A Proofs of propositions

Proof of Proposition 1. The derivations of the optimal cash target x̃q, as well as the value

function, v2, directly follow from Jeanblanc-Picqué and Shiryaev (1995).

The value function v1 can be derived by using the fact that in the payout region, Firm 2’s cash

reserves stay constant in expectation, implying that for x > x̃q, it holds that v′1(x) = 0. Furthermore,

for x ≤ 0, Firm 1 becomes a monopolist, which yields a payoff of πM
ρ .

Thus, on (0, x̃q), v1 is the solution of the ODE

1

2
σ2v′′1 + π2v

′
1 − ρv1 + π1 = 0, (21)

with the boundary conditions v′1(x̃−) = 0 and v1(0+) = πM
ρ .

Let ∆2 =
√(

π2
σ2

)2
+ 2ρ

σ2 . Then the general solution of (21) is given by A1e
−
(
π2
σ2 +∆2

)
x

+

A2e
−
(
π2
σ2−∆2

)
x

+ π1
ρ where A1 and A2 are constants determined by the following system of equations:

A1 +A2 + π1
ρ = πM

ρ

−
(
π2
σ2 + ∆2

)
A1e

−
(
π2
σ2 +∆2

)
x̃q −

(
π2
σ2 −∆2

)
A2e

−
(
π2
σ2−∆2

)
x̃q = 0.

(22)

A particular solution is given by π1/ρ, so that the resulting value function is given by

v1(x) =



πM
ρ if x ≤ 0

π1
ρ + e−

π2
σ2 x

(πM−π1)
(

∆2 cosh (∆2(x−x̃q))+π2
σ2 sinh (∆2(x−x̃q))

)
ρ
(

∆2 cosh (∆2x̃q)−π2
σ2 sinh (∆2x̃q)

) if 0 < x < x̃q

π1
ρ + e−

π2
σ2 x̃q ∆2(πM−π1)

ρ
(

∆2 cosh (∆2x̃q)−π2
σ2 sinh (∆2x̃q)

) if x ≥ x̃q.

(23)

Note that for 0 < x < x̃q, it holds that sinh (∆2(x− x̃q)) < 0, which together with the fact that
π2
σ2<∆2, yields

v′1(x) = e−
π2
σ2 x

(πM−π1)
(
−π2
σ2 +∆2

)(
π2
σ2 +∆2

)
sinh (∆2(x−x̃q))

ρ
(

∆2 cosh (∆2x̃q)−π2
σ2 sinh (∆2x̃q)

) < 0, and (24)

v′′1(x) = e−
π2
σ2 x

(πM−π1)
(
−π2
σ2 +∆2

)(
π2
σ2 +∆2

)(
∆2 cosh (∆2(x−x̃q))−π2

σ2 sinh (∆2(x−x̃q))
)

ρ
(

∆2 cosh (∆2x̃q)−π2
σ2 sinh (∆2x̃q)

) > 0. (25)

�

Proof of Proposition 2. The proof proceeds in several steps. First, we verify that the functions q̄1

and q̄2 solve supq1∈M1
L q1,q̄2 and supq2∈M2

L q̄1,q2, respectively. Then we show that our conditions

on ϕ1 and ϕ2 imply that H q̄2
1 ϕ1 = H q̄1

2 ϕ2 = 0, after which we show that q̄1 is a best response to

(q̄2, Z̄2) and vice versa.
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In the remainder, for any ζ = (qi, Zi)i=1,2 ∈ Z and x > 0 , define

τ(0,x) , inf
{
t ≥ 0

∣∣∣ Xζ(t) 6∈ (0, x)
}
.

1. First note that

q̄1(x) = arg supq1≥0

{
L q1,q̄2ϕ1(x) + π(q1, q̄2(x))

}
, and

q̄2(x) = arg supq2≥0

{
L q̄1,q2ϕ1(x)

}
.

Since ϕ1 is C2 on (0, x̄) it holds that q̄1 and q̄2 are, indeed, continuous functions. Furthermore,

on (0, x̄) it holds that ϕ′1 < 0 and ϕ′′1 > 0. [This is the case, because if ϕ′1 ≥ 0, then the

(static) profit of Firm 2 is larger than the static Cournot profit, while Firm 1’s profit is

smaller than the static Cournot profit. This cannot be an equilibrium since the unconstrained

firm can always get higher instantaneous profits, which reduce the instantaneous profits of the

constraint firm and its survival probability. Hence, ϕ′1 < 0. It then follows from the HJB

equation that ϕ′′1 > 0.] Also, since ϕ′1(x̄) = 0, it holds that q̄1(x̄) = q̄2(x̄) = qD, i.e., at x̄

firms produce the Cournot quantity. In addition, since ϕ′′2(x̄−) = 0, we know from the HJB

equation that

ϕ2(x̄) =
πD
ρ
.

Finally, it is easily seen that πD/ρ ≤ ϕ1(x̄) ≤ πM/ρ.

2. Next we show that H q̄2
1 ϕ1 = H q̄1

2 ϕ2 = 0. The fact that H q̄2
1 ϕ1 = 0 follows from the previous

step and condition 2(a). As Z̄2 imposes a reflecting barrier of X ζ̄ at x̄, it holds, in combination

with condition 3(b), that ϕ′2 = 1 on [x̄,∞). Together with condition 4(b) this implies that

ϕ′′2 = 0. Given q̄1 and q̄2 and ϕ′1(x̄) = 0, we know that π(·) = πD on [x̄,∞). This implies

that on [x̄,∞) it holds that

L q̄1,q̄2ϕ2(x) =
1

2
σ2ϕ′′2(x) + π(q̄2(x), q̄1(x))ϕ′2(x)− ρϕ2(x)

=
1

2
σ2ϕ′′2(x) + πDϕ

′
2(x)− ρϕ2(x)

= πDϕ
′
2(x)− ρ[(x− x̄) + ϕ2(x̄)

= ρ

[
πD
ρ
− (x− x̄) +

πD
ρ

]
≤ 0.

Together with the assumption that ϕ′2 > 1 on (0, x̄), we see that

H q̄1ϕ2 = max{ sup
q2∈M2

L q̄1,q2ϕ2, 1− ϕ′2} = 0.

3. We now show that ζ̄1 is a best response to ζ̄2. It is easily seen that Z̄1 is a dominant dividend

policy for Firm 1, because it has no incentive to hoard cash. So, in what follows we always

assume that Z1 = Z̄1. Given (q̄2, Z̄2) ∈ M2 × D2, the process Xζ1,ζ̄2 has a reflecting barrier
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at x̄, for any q1 ∈ M1. Let q̄ζ̄i1 ∈ Qi be the admissible quantity policy associated with the

quantity function q̄i, i = 1, 2. Note that P(τ(0,x̄) <∞) = 1. Applying Ito’s lemma and taking

expectations gives3

ϕ1(x) =Ex
[
e−ρτ(0,x̄)ϕ1(X ζ̄(τ(0,x̄)))

]
− Ex

[∫ τ(0,x̄)

0
L q̄1,q̄2ϕ1(X ζ̄(t))dt

]
=Ex

[
e−ρτ(0,x̄)ϕ1(X ζ̄(τ(0,x̄)))

]
+ Ex

[∫ τ(0,x̄)

0
π
(
q̄1(X ζ̄(t)), q̄2(X ζ̄(t))

)
dt

]
− Ex

[∫ τ(0,x̄)

0

(
L q̄1,q̄2ϕ1(X ζ̄(t)) + π

(
q̄1(X ζ̄(t)), q̄2(X ζ̄(t))

))
dt

]
=Ex

[
e−ρτ(0,x̄) , X ζ̄(τ(0,x̄))) = 0

] πM
ρ

+ Ex
[
e−ρτ(0,x̄) , X ζ̄(τ(0,x̄))) = x̄

]
ϕ1(x̄)

+ Ex

[∫ τ(0,x̄)

0
π
(
q̄1(X ζ̄(t)), q̄2(X ζ̄(t))

)
dt

]
=V1(x; ξζ̄11 , ξ

ζ̄2
2 ).

Now let ζ1 = (q1, Z̄1), where q1 ∈ M1 is an arbitrary quantity function with corresponding

admissible quantity process qζ11 ∈ Q1. Applying Ito’s lemma and taking expectations gives that

V1(x; ξζ̄11 , ξ
ζ̄2
2 ) =ϕ1(x)

≥Ex
[
e−ρτ(0,x̄)ϕ1(Xζ1,ζ̄2(τ(0,x̄)))

]
+ Ex

[∫ τ(0,x̄)

0
π
(
q1(Xζ1,ζ̄2(t)), q̄2(Xζ1,ζ̄2(t))

)
dt

]
− Ex

[∫ τ(0,x̄)

0

(
L q1,q̄2ϕ1(Xζ1,ζ̄2(t))

+π
(
q1(Xζ1,ζ̄2(t)), q̄2(Xζ1,ζ̄2(t))

))
dt
]

=Ex
[
e−ρτ(0,x̄)ϕ1(Xζ1,ζ̄2(τ(0,x̄)))

]
+ Ex

[∫ τ(0,x̄)

0
π
(
q1(Xζ1,ζ̄2(t)), q̄2(Xζ1,ζ̄2(t))

)
dt

]
=Ex

[
e−ρτ(0,x̄) , Xζ1,ζ̄2(τ(0,x̄))) = 0

] πM
ρ

+ Ex
[
e−ρτ(0,x̄) , Xζ1,ζ̄2(τ(0,x̄))) = x̄

]
ϕ1(x̄)

+ Ex

[∫ τ(0,x̄)

0
π
(
q1(Xζ1,ζ̄2(t)), q̄2(Xζ1,ζ̄2(t))

)
dt

]
=V1(x; ξζ11 , ξ

ζ̄2
2 ).

3Henceforth, for a random variable X and event A ∈ F , we denote E[X,A] , E[X|A]P (A).
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4. Finally, we show that ζ̄2 is a best response to ζ̄1. The strategy (q̄2, Z̄2) ∈M2×D2 ensures that

that the process Xζ1,ζ̄2 has a reflecting barrier at x̄ for any ζ1 ∈ Z1. Applying Ito’s lemma

and taking expectations, we find that

ϕ2(x) = Ex
[
e−ρτ(0,x̄)ϕ2(X ζ̄1,ζ̄2(τ(0,x̄)))

]
− Ex

[∫ τ(0,x̄)

0
L q̄1,q̄2ϕ2(X ζ̄1,ζ̄2(t))dt

]
= Ex

[
e−ρτ(0,x̄)ϕ2(X ζ̄1,ζ̄2(τ(0,x̄)))

]
= Ex

[
e−ρτ(0,x̄) , X q̄1,q̄2,Z̄2(τ(0,x̄))) = x̄

] πD
ρ

= V1(x; ξζ̄11 , ξ
ζ̄2
2 ).

Now let ζ2(q2, Z2) ∈M2×D2 be an arbitrary admissible strategy with corresponding admissible

quantity process qζ22 ∈ Q2. Let Zc2 denote the continuous part of Z2. Fix T > 0 and define

τ , T ∧ τ(0,∞). Since L q̄1,q2ϕ2 ≤ 0 and ϕ′2 ≥ 1, it follows from Ito’s lemma and after taking

expectations that for all x > 0

Ex
[
e−ρτϕ2(X q̄1,q2,Z2(τ))

]
=ϕ2(x) + Ex

[∫ τ

0
e−ρtL q̄1,q2ϕ2

(
X ζ̄1,ζ2(t)

)
dt

]
− Ex

[∫ τ

0
e−ρtϕ′2

(
X ζ̄1,ζ2(t)

)
dZc2(t)

]

− Ex

 ∑
0≤t≤τ

{
ϕ2

(
X ζ̄1,ζ2(t+)

)
− ϕ2

(
X ζ̄1,ζ2(t)

)}
≤ϕ2(x)− Ex

[∫ τ

0
e−ρtdZc2(t)

]

− Ex

 ∑
0≤t≤τ

{
ϕ2

(
X ζ̄1,ζ2(t+)

)
− ϕ2

(
X ζ̄1,ζ2(t)

)}
=ϕ2(x)− Ex

[∫ τ

0
e−ρtdZ2(t)

]
.

Note that

Ex
[
e−ρτϕ2(X ζ̄1,ζ2(τ))

]
= Ex

[
e−ρτϕ2(X ζ̄1,ζ2(τ)), T > τ(0,∞)

]
→ 0, as T →∞.

So,

V2(x; ξζ̄11 , ξ
ζ2
2 ) = Ex

[∫ τ

0
e−ρtdZ2(t)

]
≤ ϕ2(x) = V2(x; ξζ̄11 , ξ

ζ̄2
2 ).

�

Proof of Proposition 3. For ϕ1 ∈ C1, with ϕ′1 6= 3, and x̄ > 0 define the functions π̄i : (0, x̄)→ R,
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i = 1, 2, by

π̄1(x) ,
(a− c)2

b

1− ϕ′1(x)

(3− ϕ′1(x))2
, and π̄2(x) ,

(a− c)2

b

1

(3− ϕ′1(x))2
.

1. Note that for any x̄ > 0 the HJB equation of Firm 1 on (0, x̄) can be written as

1

2
σ2ϕ′′1(x) + π̄2(x)ϕ′1(x)− ρϕ1(x) + π̄1(x) = 0

⇐⇒ [
1

2
σ2ϕ′′1(x)− ρϕ1(x)][3− ϕ′1(x)]2 +

(a− c)2

b
= 0.

The required boundary conditions are ϕ′1(x̄−) = ϕ′′1(x̄−) = 0. By defining

ψ1 , (3− ϕ′1)2, and ν1 , ϕ
′
1,

This can be written as 
1
2σ

2ν ′1ψ1 − ρϕ1ψ1 + (a−c)2

b , ϕ1(0) = πM
ρ

ψ1 = (3− ϕ′1)2, ψ1(x̄) = 9

ν1 = ϕ′1, ν1(x̄) = 0

,

which has a unique solution on [0, x̄]. Furthermore, note that ϕ1 ≥ πD/ρ, because Firm 1 can

always guarantee to earn πD by producing the Cournot quantity qD. Since ϕ′1 < 0 and π̄2(·) ≤ πD

for the same reason, it follows from the HJB equation that ϕ′′1 ≥ 0.

2. For any x̃ > 0 there exists a unique solution to the Neumann problem

1

2
σ2ϕ′′2(x) + π2(x)ϕ′2(x)− ρϕ2(x) = 0, ϕ2(0) = 0, ϕ2(x̃) =

πD
ρ
.

Since πD/ρ > 0, it holds for x̃ small enough that ϕ′2(x̃) > 1 on (0, x̃). By increasing x̃ there will

be a unique x̄ for which the Neumann problem has a solution with ϕ′2(x̄) = 1 and ϕ′2 > 1 on (0, x̄).

At x̄ it then holds that ϕ′′2(x̄) = 0 and, thus, that ϕ′′2(x̄−) = 0. �

Proof of Proposition 4. Recall from the proof of Proposition 2 that Firm 1’s value function is

decreasing. Then from the HJB it follows that ϕ′′1 > 0.

For the constrained firm, ϕ′2 > 1 by the definition of the continuation region. The sign of ϕ′′2 is

ambiguous. Specifically, ϕ′′2 > 0 if and only if

1

2
σ2ϕ′′2(x) = −π(q2(x), q1(x))ϕ′2(x) + ρϕ2(x) > 0. (26)

This leads to the following condition for the convexity of ϕ2(x)

π(q2(x), q1(x))ϕ′2(x) < ρϕ2(x). (27)

This inequality holds in a neighborhood of 0 and a neighborhood of x̄, implying that ϕ2 is concave
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in these regions. Note that there may be regions away from 0 and x̄ where ϕ2 is convex. �

Proof of Proposition 5. For Firm 1, because the myopic strategy is admissible, its value can

never exceed the equilibrium value, V1 ≥ v1.

For Firm 2, note that in the continuation region it holds that

1

2
σ2ϕ′′2(x) +

(a− c)2

b(3− ϕ′1(x))2
ϕ′2(x)− ρϕ2(x) = 0. (28)

Let ν(x) satisfy

1

2
σ2ν ′′(x) + πDν

′(x)− ρν(x) = 0. (29)

Then

1

2
σ2ν ′′(x) +

(a− c)2

b(3− ϕ′1(x))2
ν ′(x) + ρν(x) < 0, all 0 < x < x̄. (30)

Note that ν is supermartingale, since

Ex [ν(xτ )] = ν(x) + Ex

[∫ τ

0
(L2ν(X(t))− ρν(X(t))) dt

]
≤ ν(x). (31)

Thus for all x ∈ (0, x̄) it holds that ϕ2(x) < ν(x). Recall that the cash target under myopic

strategy given by

x̃D =
1

2∆D
ln

(
σ2∆2

D + ∆DπD − ρ
σ2∆2

D −∆DπD − ρ

)
, with ∆D =

√(πD
σ2

)2
+

2ρ

σ2
;

cf. Proposition 1. Then it directly follows that ϕ2(x̃D) < ν(x̃D) = πD
ρ = ϕ2(x̄) and x̃D < x̄. This

also implies that for x ∈ (0, x̄) it holds that ϕ2(x) < v2(x), where v2(x) is Firm 2’s value function

of the myopic strategy and, thus, satisfies (29).

As V2(x̄) = v2(x̃D), it holds that V2(x) ≤ v2(x). �

Proof of Proposition 6. Comparing the equilibrium profit for the unconstrained firm,

π̄1(x) =
(a− c)2 (1− ϕ′1(x))

b (3− ϕ′1(x))2 ,

to πD = (a−c)2

9b , it is easy to obtain that π̃1(x)− πD > 0 if and only if −3 < ϕ′1(x) < 0. �

Proof of Proposition 7. See the proof of Proposition 5.

Proof of Proposition 8. The return volatilities can be expressed as

σi(x) =

∣∣∣∣σV ′i (x)

Vi(x)

∣∣∣∣ (32)
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for i = 1, 2.

Differentiating w.r.t. x, for x > 0 yields

σ′i(x) = σ
V ′′i (x)Vi(x)− (V ′i (x))2

(Vi(x))2

σi(x)

|σi(x)|
(33)

1. First, we prove that σ′2(x) < 0.

For Firm 2, it holds that V ′2(x) > 0 and σ
V ′2(x)
V2(x) > 0, so that

σ′2(x) = σ
V ′′2 (x)V2(x)− (V ′2(x))2

(V2(x))2
. (34)

From the HJB equation for Firm 2, it holds that

1

2
σ2V ′′2 (x) + π̄2(x)V ′2(x)− ρV2(x) = 0, 0 < x < x̄, (35)

(recall that π̄2(x) = (a−c)2

b(3−V ′1(x))2 ), and V ′′2 (x) can be expressed as

V ′′2 (x) =
2

σ2

(
ρV2(x)− π̄2(x)V ′2(x)

)
(36)

Then, we can write the following

V ′′2 (x)V2(x)− (V ′2(x))2 =
2ρ

σ2
(V2(x))2 − 2π̄2(x)

σ2
V2(x)V ′2(x)− (V ′2(x))2 (37)

=
2ρ

σ2

(
V2(x) + V ′2(x)

−π̄2(x) +
√
π̄2(x)2 + 2ρσ2

2ρ

)(
V2(x)− V ′2(x)

π̄2(x) +
√
π̄2(x)2 + 2ρσ2

2ρ

)

The first term in (37) is positive, as V ′2(x) > 0. Then

sign(σ′2(x)) = sign

(
V2(x)− V ′2(x)

π̄2(x) +
√
π̄2(x)2 + 2ρσ2

2ρ

)
. (38)

Define f2 : (0, x̄)→ R by

f2(x) =
2ρσ

π̄2(x) +
√
π̄2(x)2 + 2ρσ2

.

Then

V2(x)− V ′2(x)
π̄2(x) +

√
π̄2(x)2 + 2ρσ2

2ρ
= V2(x)− V ′2(x)

σ

f2(x)

=
1

f2(x)
V2(x)

(
f2(x)− σV

′
2(x)

V2(x)

)
=

1

f2(x)
V2(x) (f2(x)− σ2(x)) . (39)
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We, therefore, find that:

• for x ∈ (0+, x̄) such that f2(x) > σ2(x), it holds that σ′2(x) > 0, and

• for x ∈ (0+, x̄) such that f2(x) < σ2(x), it holds that σ′2(x) < 0.

Note that f2(0) =
√

2ρ > 0 and f ′2(x) < 0 as π̄′2(x) > 0. In addition, σ2(x̄) = 2ρ
πD
σ >

2ρσ

πD+
√
π2
D+2ρσ2

= f2(x̄). Lastly, σ2(0+) = +∞, as V2(0+) = 0 and 1 < V ′2(0+) < +∞. Thus, it

must hold that f2(x) < σ2(x) and σ′2(x) < 0, for all x ∈ (0, x̄).

2. Second, we prove that σ′1(x) < 0 and, thus, |σ′1(x)| < 0. For Firm 1, it holds that V ′1(x) < 0

and σ
V ′1(x)
V1(x) < 0, so that

σ′1(x) = −σV
′′

1 (x)V1(x)− (V ′1(x))2

(V1(x))2
(40)

From the HJB equation for Firm 1, it holds that

1

2
σ2V ′′1 (x) + π̄2(x)V ′1(x)− ρV1(x) + π̄1(x) = 0, 0 < x < x̄, (41)

where π̄2(x) = (a−c)2

b(3−V ′1(x))2 , π̄1(x) =
(a−c)2(1−V ′1(x))
b(3−V ′1(x))2 , and V ′′1 (x) can be expressed as

V ′′1 (x) =
2

σ2

(
ρV1(x)− (a− c)2

b(3− V ′1(x))2

)
(42)

We can, therefore, see that

V ′′1 (x)V1(x)− (V ′1(x))2 =
2ρ

σ2
(V1(x))2 − 2(a− c)2

σ2b(3− V ′1(x))2
V1(x)− (V ′1(x))2 (43)

=
2ρ

σ2

(
V1(x)− V ′1(x)

−ψ(x) +
√
ψ(x)2 + 2ρσ2

2ρ

)(
V1(x) + ϕ′1(x)

ψ(x) +
√
ψ(x)2 + 2ρσ2

2ρ

)
,

where ψ(x) = − 1
V ′1(x)

(a−c)2

b(3−V ′1(x))2 > 0, because V ′1(x) < 0. The first term in (43) is positive, so that

sign(σ′1(x)) = − sign

(
V1(x) + ϕ′1(x)

ψ(x) +
√
ψ(x)2 + 2ρσ2

2ρ

)
. (44)

Define f1 : (0, x̄)→ R by

f1(x) =
2ρσ

ψ(x) +
√
ψ(x)2 + 2ρσ2

.
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Then we see that

V1(x) + ϕ′1(x)
ψ(x) +

√
ψ(x)2 + 2ρσ2

2ρ
= V1(x) + ϕ′1(x)

σ

f1(x)

=
1

f1(x)
V1(x)

(
f1(x) + σ

V ′1(x)

V1(x)

)
=

1

f1(x)
V2(x) (f1(x)− σ1(x)) , (45)

for all 0 < x < x̄.

Therefore, since f1(x) > 0 and −σ1(x) > 0, we conclude that

• for x ∈ (0+, x̄) such that f1(x) > σ1(x), it holds that σ′1(x) < 0, and

• for x ∈ (0+, x̄) such that f1(x) < σ1(x), it holds that σ′1(x) > 0.

Note that f1(0+) > 0 and f ′1(x) < 0 as ϕ′1(x) < 0 and, as a result, ψ(x) > 0. In addition,

−σ1(x̄) = f1(x̄) = 0. Thus, it must hold that f1(x) > σ1(x) and σ′1(x) < 0, for all x ∈ (0, x̄). �
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