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Many investments have uncertain futures, where not only are the timing and amount of episodic payments

uncertain, but so too is the duration of the cash flows and even the parameters of the distribution. For

many investments, more will be known later, including resolving parameter uncertainty over time. We model

decision-making on uncertain investments, taking into account deep uncertainty about distribution parame-

ters, and how this uncertainty changes when future observations become available. We show that the model

is useful even when the time required to resolve uncertainty is indefinite. We further examine the impact of

risk and uncertainty on optimal decisions, also comparing our results to a situation where the net present

value (NPV) rule is used to guide investment. Our findings suggest that decisions based on the NPV rule

are typically not optimal and result in a significant loss, since the value of the investment option is ignored.

Further results from conducted sensitivity analysis suggest that the loss is large when the investment cost is

high, when the uncertainty resolution is slow, or when the probability belief in change is low. Importantly,

the proposed framework is also consistent with the precautionary principle, leading to earlier investment

under high uncertainty together with a low rate of learning. We then demonstrate the model using the

uncertainty about future climate change and its parameters by applying the model to a climate risk adap-

tation/mitigation investment.

Key words : Climate Change Adaptation; Decision-Making under Uncertainty; Real Options Analysis;

Catastrophic Risk; Bayesian Models
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1. Introduction

Many investment projects involve some uncertainty. While the cash flows of a sovereign Treasury

bond are (almost) certain, most real-life long-term investments have a reasonable amount of uncer-

tainty. Sometimes the cash flows are regularly scheduled, so much of the uncertainty is about the

magnitude but not the timing. Sometimes the cash flows are episodic, so the uncertainty is about

both the timing and the size of the cash flows. Sometimes the duration of the project and its cash

flows is also not known. For most analyses, even if the cash flows are risky, it is assumed that

the parameters (the mean, the variance, etc.) of the distribution of that risk, are known, as is the
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timing and the number of cash flows. However, while this is true for a bond, this is less and less

true for large-scale projects of uncertain duration and timing. For these and other projects, not

only is the timing of the cash flows uncertain and episodic, but it is increasingly apparent that past

is not prologue and circumstances are changing so that the values for the parameters themselves

are uncertain.

While a reasonable decision-maker might rely on traditional net present value (NPV) analyses

for projects of known duration where the risk parameters are reasonably known and stationary,

traditional methods would not capture the uncertainty a decision-maker might have about the risk

parameters themselves. Nor would it capture any benefits over time from learning (both about the

path and about the parameter values). Therefore, different from previous studies that focus on

the notion of risk, in this paper we consider also the impact of deep uncertainty that characterizes

situations in which different data-generating mechanisms for the climate system are regarded by the

decision maker as plausible. In our framework, the decision maker learns more about the parameter

values (such as impacts of climatic change over time) and uses the Bayes’ rule to update her belief.

Investment decisions are then made based on the information available at the current time, but

with the expectation that new information will become available in the future. We investigate the

impact of risk and uncertainty on the optimal investment decision, and the possible losses that

incur when the net present value (NPV) rule is used to guide investment.

One advantage of this method is its computational simplicity. We use a method of measure

change that simplifies the problem considerably and makes it possible to derive some theoretical

insights. When the logarithm of the investment payoff follows a random walk process without drift,

we can obtain the exact value of the investment option using a closed form solution. When this is

not the case, the model can be solved using standard numerical techniques such as, e.g. binomial

lattice or finite difference methods. We show that when the growth rate of catastrophes’ frequency

is uncertain, the value of the investment option is higher than the value obtained when the growth

rate is known. The decision maker would therefore prefer to have the investment option under
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uncertain growth rate and also want to delay investment further to learn more about the true

growth rate. Investment delay is however reduced by the growth of loss exposure, the seriousness of

climate change, and the strength of climate change belief. We also find that when climate change

is believed to be more likely than the business usual scenario, higher uncertainty about climate

change can result in shorter delay in investment, a result that is similar to the results obtained by

Berger et al. (2017) under the uncertainty aversion framework.

We contribute to the literature by introducing a real options framework for the valuation of

projects that allows for continuous Bayesian updating of information. Our framework is built upon

work in the field of investment under incomplete information (Decamps et al. 2005, Klein 2009)

but quite significantly extends these studies in several directions. First, we allow for a more general

payoff structure: while Decamps et al. (2005) and Klein (2009) examine so-called ’front-loaded’

projects, i.e. projects where all payoffs are obtained immediately upon investment, we investigate

the investment decision for a ’back-loaded’ project, where payoffs are spread across the entire

lifetime of the project which is assumed to be indefinite. This extension is important since in

the real world, many investment projects last for a long time, and payoffs are typically obtained

while the projects are still in place. The investment behaviour for back-loaded projects can also

be significantly different from that for front-loaded projects. We find that the optimal investment

boundary in the payoff-belief state space for a back-loaded project is non-increasing rather than

non-decreasing in belief as found by Decamps et al. (2005) and Klein (2009) for front-loaded

projects. This means that the more pessimistic the decision maker is about the growth rate of

the payoff flow, the longer she delays investment. Second, our framework allows for also growth in

loss exposure that applies to most of economic regions due to economic and population growth.

Third, we extend the framework to allow for risk aversion behaviour using the Esscher transform

theory that is popular in the insurance literature. Fourth, we provide an empirical framework

to demonstrate the application of the proposed model using available data while the studies by

Decamps et al. (2005) and Klein (2009) are purely theoretical.
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We also analyse the expected time to learn about the growth rate of payoffs from the investment

and the expected time to investment. In contrast to the usual perception, see, e.g. Grenadier and

Malenko (2010), in a modelling framework with an unknown growth rate, uncertainty may remain

unresolved forever and one may never know the true growth rate. We show that the expected time

to investment may also be infinite, but it is still important to use the real options framework to

capture the positive value generated by volatile investment payoffs.

We then apply this framework to a situation with high parameter uncertainty: climate change.

Climate change issues are important with high parameter uncertainty, and the growth rate and

expected time to investment are of great interest in climate change adaptation (Chao and Hobbs

1997, Kelly and Kolstad 1999). In our case study, we find that it may take hundreds of years for

climate change uncertainty to resolve, and it is therefore paramount to have a framework that can

guide investment while the uncertainty remains.

The remainder of the paper is organized as follows. Section 2 discusses real options as it relates

to the special case of climate change. Section 3 outlines and analyzes the developed modeling

framework. Section 4 provides an application of the framework in a case study, using catastrophic

risks from bushfires as an empirical example. The final Section 5 concludes and provides some

suggestions for future research in related areas.

2. Real Options, Deep Parameter Uncertainty: Special Case of climate change

While the valuation method developed in this paper can be applied to any episodic cash flow project

with parameter uncertainty, one clear application would be to climate change mitigation projects.

Despite the appeal of real options theory in guiding investment under uncertainty, few applications

exist in the area of climate change adaptation, especially in the valuation of projects that may

mitigate catastrophic risks. This seems surprising, since investment projects in this area, e.g. flood

dykes or dams, often last for decades and investment is therefore difficult, if not impossible, to

reverse. The demand for accurate valuation of such adaptation projects is certainly high, given the

enormous investment costs. In addition, uncertainty induced by climate change is immense and
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the most significant impact of climate change is often thought to be through rare but catastrophic

events (Weitzman 2009, Jongman et al. 2014).

The main difficulty in applying existing real options models to climate change adaptation is that

typically in these models, the underlying probability law describing investment payoffs is assumed

to be known (Dixit and Pindyck 1994). Therefore, in most of the standard real options models,

only the investment payoff is uncertain and varies stochastically over time. While this assumption

is reasonable in a stationary environment, it may not be suitable in the context of climate change

adaptation, where the climate system is known to be changing, but the extent of the change is

uncertain. Appropriate models need to take into account not only uncertainty about parameters in

stochastic models, which is usually called ’deep uncertainty’, but also how the uncertainty resolves

over time as more observations on climate change impacts become available, i.e., learning by the

decision-maker. In this way, our study is also related to earlier work on climate change policy that

examines the impact of model uncertainty, e.g. Kelly and Kolstad (1999), Baker (2006), Karp and

Zhang (2006), and Berger et al. (2017).

While climate change may be a global phenomenon, there is notable regional variation. In addi-

tion, to humans, plants, or animals, climate change effects are felt regionally, or even locally:

buildings get flooded, habitat is destroyed, natural resources become either available or unavail-

able. Thus, while the effects of some mitigation of climate change is at a global scale (such as the

reduction of CO2 in the atmosphere), others such as dams or wildfires, are more local or regional

in nature. Oftentimes regional or local climate change mitigation require large investment outlays,

while any future payoff (in the form of loss avoidance) is uncertain, both in timing and duration.

In addition, there is notable uncertainty as to how the climate is changing, season to season or

year to year. While the very long term average centuries from now may be known (or assumed),

the human time scale for construction projects is much shorter as noted in Sturm et al. (2017),

and thus subject to the vagaries of changing variance.

To demonstrate the use of the valuation method developed in this paper, we therefore examine an

optimal investment problem at a regional level to reduce the risk of climate-impacted hazards such
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Figure 1 Inflation-adjusted annual insurance claim payments for bushfires, and all catastrophes in Australia

over the period 1990-2012. The red line represents the constant growth model fitted to losses from all

catastrophes. Data are sourced from Insurance Council of Australia (2016).

as bush fires, flooding and storm surges. These are important catastrophes that result in large costs

to the insurance industry worldwide. In a warmer and therefore more energetic climate system,

these catastrophes are predicted to occur even more frequently in future periods (Solomon 2007).

While climatic change can be expected to increase the risk of extreme weather events globally,

in our empirical analysis we focus on the application of the developed framework to a region in

Australia. Recent studies suggest that Australia will be particularly impacted by climatic change

with a predicted increase in the occurrence of floods, storm surges, and bush fires (Murphy and

Timbal 2008, Garnaut 2011). As illustrated by Figure 1, these trends seem to be already present

in the records of Australian insurance costs (Insurance Council of Australia 2016). The costs of

insuring bush fire, flooding and storm surge losses appear to have grown exponentially over the last

two decades, from a total of $0.47 billion in the 1990s to $5.2 billion in the 2000s. This expansion

is likely to have been driven not just by the increase in the frequency and strength of climate-

related catastrophic events, but also by changes in the underlying socio-economic environment, e.g.

increased income per capita, higher cost of infrastructure, greater perception of risk (Mohleji and

Pielke Jr 2014).
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As a result of more frequent and possibly more severe catastrophic losses, the payoff of risk

reduction investment projects is expected to grow over time. The growth rate of the payoffs is,

however, highly uncertain, due to the uncertainty in climate change predictions and in the mech-

anisms used to downscale global climate change estimates to a regional level. Using alternative

climate models and emission scenarios leads to quite different predictions for the frequency and

severity of climate impacted hazards. Importantly, a decision maker can form an initial probability

belief on the growth of investment payoff based on the predictions from climate models and update

this belief when more observations on the impact of local climate, and therefore catastrophic risk,

are available.

3. Modeling framework

3.1. Cash flow stochastic process

The total profit St from an investment project over a period (0, t] can be described by a multiple

of a compound Poisson process:

St = k

Nt∑
n=1

eγτnXn, (1)

where Nt is the number of cash flows that arise during period (0, t] and γ is the growth rate of the

cash flows. In addition, τn is the random time when the nth cash flow occurs, Xn is the magnitude

of the nth cash flow under zero growth, and k is a constant whose value depends on the type of

investment projects. For a climate change adaptation project that reduces the severity of disaster

losses, or the frequency of losses by a proportion k, then St is the total avoided losses. For other

investment projects such as fracking wells, k can be set to 1.

It is assumed that Xn, n= 1,2, · · · , are independent and identically distributed random variables,

which are also independent of Nt. The expected value of Xn is denoted by β. We assume that the

number of events, Nt, follows a conditional Poisson process that has a stochastic intensity Λt, and

the process {Λt} follows a geometric Brownian motion:

dΛt/Λt = µdt+σdBt, (2)
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where {Bt} is a standard Brownian motion defined on a given complete probability space (Ω,F , P ).

We assume that the volatility σ is a known constant, while the drift µ is a random variable on

(Ω,F , P ), taking a value in the state space {µH , µL}1.

The decision maker has an initial belief p0 that the growth rate is µH and updates her belief

as information about the Poisson intensity emerges, using the Bayes’ rule, so that the information

updating is rational. The σ-field generated by the process {Λt} up to and including time t aug-

mented by all P -null subsets of F is denoted by Ft and the posterior probability of event µ= µH

at time t is denoted by Pt, i.e. Pt = P [µ= µH |Ft], with the initial condition P0 = p0. Upon applying

Bayes’ rule, the posterior probability Pt can be expressed as

Pt =

[
1 +

1− p0

p0

(
exp

(
lnΛt− lnΛ0−

µH +µL−σ2

2
t

))−ω/σ]−1

, (3)

where ω= µH−µL
σ

is interpreted as the signal to noise ratio. It can be checked that Pt ∈ (0,1).

Using a Brownian motion {B̄t} that is adapted to the filtration {Ft}2,

B̄t ≡ σ−1

(
lnΛt− lnΛ0−

∫ t

0

E(µ|Fs)ds+
1

2
σ2t

)
, (4)

the (observed) dynamics of Λt can then be expressed in terms of B̄t as

dΛt/Λt = [µL +Pt(µH −µL)]dt+σdB̄t, (5)

and by applying Itô’s Lemma to (3), the dynamics of posterior beliefs can be obtained,

dPt = Pt(1−Pt)
(µH −µL)

σ
dB̄t. (6)

1 In general, one may consider the situation where µ can take any real values. In particular, if µ has a prior distribution

as a normal distribution, we may end up with a conjugate-prior situation and the posterior estimate of µ can be

derived by solving a heat equation, as in, for example, Karatzas and Zhao (2001) and Zhang et al. (2012). However,

to illustrate the key idea of the present modeling framework and to simplify our discussion, we consider the simpler

situation where µ takes a value in {µH , µL}
2 Note that the Brownian motion {Bt} is not adapted to the filtration {Ft, t≥ 0}, since µ is unknown and therefore,

knowing the history of Λt up to time t is not sufficient to know the history of B up to time t.
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3.2. Investments into Climate Change Adaptation

Let us now consider an investment project that has an investment cost I and lasts until infinity.

The expected value of the project cash flow over a period (t1, t2], given the information observed

up to and including time t1, is kβE[
∫ t2
t1
eγsΛsds|Ft1 ] = E[

∫ t2
t1
πsds|Ft1 ], where πt = kβeγtΛt. We

can interpret πt as the flow of expected benefit from the project and since Λt follows process (5),

πt evolves according to process:

dπt/πt = [γ+µL +Pt(µH −µL)]dt+σdB̄t. (7)

Given the discount rate r, the investment problem is:

max
τ
E

[∫ ∞
τ

e−r(s−t)πsds− e−r(τ−t)I|Ft

]
, (8)

subject to (6) and (7). This problem has two state variables, Pt and πt that are correlated. It may

not be easy to directly calculate the NPV of a project invested at a given state, while determining

the value of the option is even more challenging. In the following, we therefore apply a change of

measures method to simplify the problem.

3.3. A Measure Change Approach

The investment problem may now be simplified by changing the measure P to P̃ under which πs

has a known and constant growth rate of γ+µL. This measure change approach has been used in

filtering and is called a reference probability approach (Elliott et al. 1995). The measure change is

achieved by using the Radon-Nikodym derivative Z∞ such that

dP̃

dP

∣∣∣∣
F∞

:=Z∞, (9)

where Zs = exp
(
−
∫ s
t
θudB̄u− 1

2

∫ s
t
θ2
udu
)
, and θs = Psω. Since Ps ∈ (0,1), |θs| is bounded, and as

a result, {Zs} is an (F, P )-martingale. Indeed, it is an uniformly integrable martingale, and so

lims→∞Zs =Z∞, P -a.s. Under P̃ , B̃s = B̄s +
∫ s
t
θudu is a standard Brownian motion by Girsanov’s

theorem, (Karatzas and Shreve 1988). To simplify the problem, we replace the state variable Ps
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by the likelihood ratio φs = Ps
1−Ps that evolves over time according to the stochastic differential

equation dφs = ωφsdB̃s. The investment problem then becomes (see EC.5 for details):

F (φt, πt) =
1

1 +φt
max
τ
Ẽ

[(∫ ∞
τ

e−r(s−t)(1 +φs)πsds− e−r(τ−t)(1 +φτ )I

)
|(φt, πt)

]
. (10)

subject to the dynamic state constraints

dπs/πs = (γ+µL)ds+σdB̃s, (11)

dφs/φs = ωdB̃s, s≥ t. (12)

3.4. Risk Aversion by the Esscher Transform

In this section, we present the method to incorporate risk aversion into our modelling framework.

Specifically, we use the Esscher transform that provides a convenient way to incorporate risk aver-

sion via changing probability measures. In this approach, the Esscher parameter can be interpreted

as the risk premium required to compensate for risk aversion in the decision making process. In

practice, the Esscher parameter might be extracted through different methods such as experiments,

estimation from empirical data in climate sciences, or from premiums charged for related insurance

contracts.

Let {η(s)} be the process of the Esscher parameters. The density process for changing probability

measures under the Esscher transform associated with the process {η(s)} is given by:

Zη(s) = exp

(∫ s

t

η(u)σdB̃(u)− 1

2

∫ s

t

η2(u)σ2du

)
, (13)

see EC.1 for more details about the Esscher transform.

A new probability measure P η equivalent to P̃ on F∞ can now be defined by putting:

dP η

dP̃

∣∣∣∣
F∞

:=Zη(∞). (14)

It is known by the Girsanov’s theorem for Brownian motions that under the new measure P η, the

process {Bη(t)} defined by

Bη(s) := B̃(s)−
∫ s

t

η(u)du,
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is a standard Brownian motion with respect to the observed filtration {F(s)}. Consequently, under

P η, the stochastic benefit flow {π(s)} is governed by the following dynamics:

dπ(s)/π(s) = (γ+µL +ση(s))ds+σdBη(s), (15)

and similarly, φ(s) evolves according to the stochastic process:

dφ(s)/φ(s) = η(s)ωds+ωdBη(s). (16)

Equations (15-16) can be solved to obtain a time dependent relation between φs and πs:

φs
φt

=

(
πs
πt

)ω/σ
exp

[
−ω(s− t)

2σ
(2γ+µH +µL−σ2)

]
. (17)

It can be seen that if the component inside the squared bracket is zero, then there is one to one

relation between the two state variables, and the investment problem has effectively only one state

variable.

3.5. Valuation of the Investment Option

The investment problem that incorporates risk aversion preference is given by:

F (φt, πt) =
1

1 +φt
max
τ
Eη

[(∫ ∞
τ

e−r(s−t)(1 +φs)πsds− e−r(τ−t)(1 +φτ )I

)
|(φt, πt)

]
, (18)

where Eη is the expectation under the measure P η, and the dynamics of the state processes under

the new measure P η are given by (15) and (16).

To find the value of the investment option, we solve the auxiliary optimal stopping problem:

G(φt, πt) = max
τ
Eη

[(∫ ∞
τ

e−r(s−t)(1 +φs)πsds− e−r(τ−t)(1 +φτ )I

)
|(φt, πt)

]
. (19)

The intrinsic value in the optimal stopping problem (19) obtained by immediate stopping at

time t is given by (see EC.2):

V (φt, πt) =
πt

r− γ−µL− ησ
+

πtφt
r− γ−µH − η(σ+ω)

− (1 +φt)I. (20)
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At any time t, given state (φt, πt), the decision to be made is whether to stop and get value

V (φt, πt) or to wait to the next instant t+∆t. The value G(φt, πt) is the larger of the value obtained

by immediate stopping and the value obtained by waiting,

G(φt, πt) = max{V (φt, πt), e
−r∆tEη [G(φt+∆t, πt+∆t)|(φt, πt)]}. (21)

Suppose that the value function G is “sufficiently” smooth in the continuation region, i.e. G∈ C2,

where C2 is the space of twice continuously differentiable functions. Using Itô’s lemma and standard

arguments in optimal stopping theory3, we can express (21) as:

max
(
V (φt, πt)−G(φt, πt),

1

2
σ2π2

tGππ +
1

2
ω2φ2

tGφφ−ωσφtπtGφπ −ωηtφtGφ + (γ+µL + ηtσ)πtGπ − rG
)

= 0, (22)

where the subscripts of G denote the derivatives of function G. In the continuation region (i.e.,

deferring investment), the value of the option can be found by solving the second-order partial

differential equation:

1

2
σ2π2

tGππ +
1

2
ω2φ2

tGφφ−ωσφtπtGφπ −ωηtφtGφ + (γ+µL + ηtσ)πtGπ − rG= 0. (23)

In addition, at the optimal investment threshold (φ∗, π∗), the following high-contact and smooth-

pasting conditions need to be satisfied4:

G(φ∗, π∗) = V (φ∗, π∗) (24)

Gφ(φ∗, π∗) = Vφ(φ∗, π∗) (25)

Gπ(φ∗, π∗) = Vπ(φ∗, π∗). (26)

3 see, for example, Shiryaev (1978), Chapter 3, and Oksendal (2003), Chapter 10, Section 10.4

4 In the context of pricing finite-maturity American-style contingent claims, some theoretical justifications for the

high-contact and smooth-pasting conditions are available in the literature, see, for example, Elliott and Kopp (2005),

Chapter 8, for the case of a geometric Brownian motion, and a recent paper by Siu (2016) for the case of a self-exciting

threshold diffusion process.
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In general cases, the partial differential equation (23) may not have a closed form solution. The

option value can be found by applying finite difference methods to (23) or a lattice method to

(21). Note that for a lattice method, starting from an initial state (φt, πt), the value of φs can be

determined based on πs, and the lattice has one state variable. This is much simpler than solving

(23) with two state variables. We therefore use a binomial lattice method to calculate the option

value and the optimal investment threshold (see EC.7 for details on binomial lattice method). We

also assume that ηs = η, which is a given constant.

3.6. Special Case

As shown in (17), when γ+ µH+µL
2

= 1
2
σ2, the two state variables of the investment problem map

one to one in a time homogeneous relation. Consider φt as a parameter, the problem then has only

one state variable πt. The optimal stopping time is the first time when πt exceeds the optimal

threshold π∗ that is a function of parameter φt.

The condition of the special case is imposed on the sum of γ, µH and µL, and therefore, for a

given σ, there are various combinations of γ, µH and µL for which the special case applies. This

makes the special case relevant to most of the empirical contexts.

3.6.1. The Investment Threshold

Proposition 1. If γ + µH+µL
2

= 1
2
σ2, the optimal stopping time that solves Problem (19) is a

trigger strategy with τ ∗ = inf{s : πs ≥ π∗}. The investment threshold π∗ depends on the belief at the

time of investing P ∗ and is defined by:

π∗ =
P ∗αH + (1−P ∗)αL

P ∗(αH − 1)AH + (1−P ∗)(αL− 1)AL
× I, (27)

where αL = 1
2
−(γ+µL+ση)/σ2 +

√
((γ+µL +ση)/σ2− 1

2
)2 + 2r/σ2 is the solution of the quadratic

equation:

1

2
σ2αL(αL− 1) + (γ+µL +ση)αL− r= 0. (28)

In addition, αH = αL−ω/σ, AH = 1
r−γ−µH−η(σ+ω)

and AL = 1
r−γ−µL−ησ

.

See EC.3 for proof.
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An interesting result that follows from Proposition 1 is that the optimal investment threshold is

decreasing in belief, as shown in Proposition 2. For climate change adaptation, this means that a

decision maker who has a stronger belief in climate change, will have a lower investment threshold

and will invest in the adaptation project earlier. This result is intuitive and consistent with the

findings by Truong and Trück (2016) that more serious climate change leads to earlier investment.

It is however in direct contrary with the results obtained by Décamps et al. (2005) and Klein

(2009) who find that the optimal investment threshold is increasing in belief. The key element

that leads to such difference is the assumption by Décamps et al. (2005) and Klein (2009) that the

value of the project is directly observable. Under that assumption, an increase in the current belief

affects only future values of the project, leaving the current value of the project unaffected. The

expected growth rate of the project value, however, rises with the current belief, which leads to a

decrease in the shortfall between the risk free rate and the expected growth rate of the project

value5. The investment threshold is therefore increased, and project investment is deferred further

into the future in the modelling framework proposed by Décamps et al. (2005) and Klein (2009).

Under a more realistic assumption that the value of the project is the total present value of all

future payoffs, an increase in the current belief will also increase the current value of the project.

As long as an increase in the current belief generates a higher impact on the current project value

compared to the impact on the investment boundary, increases in the current belief will result in

earlier investment. The optimal investment threshold π∗ is also found to be decreasing in belief in

the general case, as illustrated in Figure 7 in the empirical section.

Proposition 2. Suppose γ+ µH+µL
2

= 1
2
σ2 and η= 0, then dπ∗/dP ∗ < 0. See EC.4 for proof.

The investment threhold in (27) can also be regarded as a generalised form of the investment

threshold of a standard real options model. In the standard real options, the investment threshold

5 As discussed in Truong et al. (2018), the shortfall is similar to the dividend payout rate, and when the shortfall is

zero, the project will never be invested. A higher shortfall will result in earlier investment.
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satisfies V ∗ = α
α−1

I or V ∗ (α−1)

α
= I, see, e.g. Dixit and Pindyck (1994). The project is invested

whenever the standardized project value V (α−1)

α
exceeds the investment cost. In the case of uncer-

tain growth rate, the standardized project value becomes E [(α−1)V ]

E(α)
, where E is the expectation

under distribution (Pt, (1−Pt)) of the growth rate (µH , µL). We invest in the project whenever its

standardized value that takes into account the impact of growth rate uncertainty is higher than

the investment cost.

3.6.2. Option Value

Proposition 3. When γ+ µH+µL
2

= 1
2
σ2, the value of the investment option at state (Pt, πt) is:

F (Pt, πt) = Pt

(
πt
π∗

)αH( π∗

r− γ−µH − η(σ+ω)
− I
)

+ (1−Pt)
(
πt
π∗

)αL( π∗

r− γ−µL− ησ
− I
)
(29)

See EC.3 for proof.

Thus, the option value is a belief-weighted average of the corresponding values obtained in

certainty cases. When Pt = 0 or Pt = 1, Equations (27) and (29) provide the investment threshold

and the option value for the case when the growth rate is known with certainty to be µL or µH ,

which are consistent with the standard real options model outlined in Dixit and Pindyck (1994).

3.7. Impacts of Volatility

In the proposed model, the volatility parameter σ also represents the noise that makes the distinc-

tion between the high growth rate µH and the low growth rate µL difficult. One may expect that

an increase in σ will reduce the value of waiting, and lead to earlier investment.

However, as shown in Proposition 4, increases in volatility actually lead to increases in the

investment threshold. This seems quite obvious from the value of the option given in (29), where

the option value of investment is the weighted average of an option value under the high growth

rate µH and an option value under the low growth rate µL. It is well-known that the option value

under a given growth rate (µH or µL) is increasing in σ. As a result, an increase in σ will increase
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Figure 2 Impacts of volatility σ on the investment threshold and the option value for different initial belief P0.

the option value under µH and the option value under µL, and therefore increase the option value

of the investment. In addition, since the investment threshold is increasing for both µH and µL,

the investment threshold given by the Bayesian real options model will increase when volatility σ

increases. The impact of volatility is further illustrated in Figure 2.

Proposition 4. For γ+ µH+µL
2

= 1
2
σ2 and η= 0, the optimal investment threshold π∗ is increasing

in volatility σ. See EC.9 for proof.

3.7.1. Impacts of Uncertainty In the proposed model, uncertainty is represented by the

difference in possible drifts, µH − µL. To enable comparison with the results by Klein (2009), we

examine the special case where γ+ µH+µL
2

= 1
2
σ2 and η= 0. In this case, an increase in uncertainty

means a mean preserving spread of the drifts.

Figure 3 illustrates the impact of uncertainty on the investment threshold and the option value

for different initial beliefs. To facilitate benchmarking, we also depict the case where the drift is

known and equal to the expected drift, P0µH + (1− P0)µL
6. When the initial belief is P0 = 0.5,

6 In this case, the investment threshold is π̂ = α̂
(α̂−1)

I(r − γ − µ̂) where µ̂ = P0µH + (1− P0)µL, and α̂ = 1
2
− (γ +

µ̂)/σ2 +
√

[(γ+ µ̂)/σ2− 1
2
]2 + 2r/σ2. The option value is F̂ (πt) = Bπα̂t , where B =

(
1

r−γ−µ̂
α̂−1
α̂

)α̂ I1−α̂
α̂−1

, see Truong

et al. (2018) for details.
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Figure 3 Impacts of drift uncertainty on the investment threshold and the option value for different initial belief

P0. Thin lines represent the cases where the standard real options model is used with the drift assumed

known and equal to P0µH + (1−P0)µL.

increases in uncertainty do not change the expected value P0µH + (1− P0)µL, and the impact of

uncertainty becomes most apparent. As shown in Proposition 5, uncertainty and the opportunity

to learn about the true drift, in fact, increase the value of the investment option and make it

worthwhile to wait longer than when the drift is known with certainty. It is clear that a decision

maker would prefer the case of uncertainty, where the option to invest has a higher value.

Proposition 5. For γ + µH+µL
2

= 1
2
σ2 and η = 0, the optimal investment threshold π∗(P0) under

drift uncertainty is higher than the investment threshold π̂(P0) for the case when the drift is known

and equal to µ̂= P0µH + (1−P0)µL. See EC.8 for proof.

The finding that the investment threshold is higher in the uncertainty case, as stated in Propo-

sition 5, is different from the results found by Klein (2009) for front-loaded projects where projects

with uncertain drift are invested earlier. This difference suggests that it is important to explicitly

model backloaded projects when investment payoffs are harvested over the lifetime of the projects.

Although relative to the case of drift certainty, investment delay is increased under drift uncer-

tainty, the relation between uncertainty and investment timing is in general non-monotonic. As
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shown in Figure 3, when the initial belief is higher than 0.5, increases in uncertainty will increase

the expected drift µ̂ and reduces the investment threshold under the known drift µ̂. The opti-

mal investment threshold under uncertain drift also decreases as long as the uncertainty is not

excessively large. The result that uncertainty can increase or decrease the option value and the

investment threshold is consistent with the findings by Klein (2009), and broadly consistent with

Miao and Wang (2011) who find that uncertainty ambiguity can accelerate or delay option exercise.

3.8. Learning Time

The expected time required to learn about the true growth rate with a level of confidence, e.g. 95%

confidence, provides an indication of how slowly or quickly the uncertainty is resolved. We are X%

confident that the true growth rate is µH when the belief Pt reaches X%. Conversely, we are X%

confident that the true growth rate is µL when Pt reaches (100−X)%.

We can find the expected time to learn about µH when the true growth rate is µH as follows.

When the true growth rate is µH , the value of Λt at time t is given by:

Λt = Λ0 exp

[
(µH −

σ2

2
)t+σBt

]
. (30)

Using (30) in Equation (3) gives:

µH −µL
2

t+σBt =
σ

ω
ln

[
Pt

1−Pt
1− p0

p0

]
. (31)

Therefore, we will be X % confident that the true growth rate is µH when the process Yt = µH−µL
2

t+

σBt reaches a value σ
ω

ln X
100−X

1−p0
p0

. Apply the results of Lemma 1 with x = 0, a = µH−µL
2

and

m= σ
ω

ln X
100−X

1−p0
p0

, the expected time to learn about the true growth rate µH is:

E(τH) =
2

ω2
ln

[
X

100−X
1− p0

p0

]
. (32)

This implies that the expected time to learn about the true growth rate µH is lower when the

signal to noise ratio is higher or when the initial belief p0 is higher. Similarly, the expected time

to learn about the true growth rate µL is

E(τL) =
2

ω2
ln

[
X

100−X
p0

1− p0

]
. (33)
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such that the expected time to learn about the true growth rate µL is lower when the signal to

noise ratio is higher or when the initial belief p0 is lower.

Lemma 1. Consider a process dXt = adt+σdBt, where Bt is a Brownian motion, X0 = x> 0, and

a stopping time τm = min{t≥ 0 :Xt =m}. Then

Eτm =


m−x
a

if m−x
a
≥ 0

∞ otherwise.

(34)

For proof, see EC.6

3.8.1. Expected Investment Delay The expected time to investment can be calculated as

Eτπ∗ = p0E[τπ∗ |µ= µH ] + (1− p0)E[τπ∗ |µ= µL]. (35)

The expected time E[τπ∗ |µ= µi], i∈ {H,L} is the time for process d lnπt = (γ+µi− 1
2
σ2)dt+σdBt

to get to the optimal investment threshold π∗ from π0. Apply Lemma 1:

E[τπ∗ |µ= µi] = (γ+µi−
1

2
σ2)−1 ln

π∗

π0

, i∈ {H,L}.

Note that when γ + µL − 1
2
σ2 < 0, E[τπ∗ |µ = µL] is infinite and as a result, the expected time

to investment Eτπ∗ is infinite. An important question is whether the real options framework is

still relevant. This question can be answered by looking at the case p0 = 0, i.e. the growth rate is

known with certainty to be µL, and the investment problem is reduced to the standard real options

problem considered in the literature. If the volatility is positive, there is a positive probability that

the value of the project will rise above the current level in the future and deferring investment to a

later time may provide a higher value. As it is well-known from the real options literature, see, e.g.

Dixit and Pindyck (1994), (and also apparent from (27)), when σ > 0, the investment threshold in

terms of project value is αL
αL−1

I, which is higher than I. This holds regardless of the expected time

to investment. The investment threshold given by our real options model is, therefore, optimal

even when the expected investment delay or the expected time taken for uncertainty to resolve is

infinite.
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4. Empirical Application

We illustrate the application of the proposed model by examining a case study of bushfire risk

management in Ku-ring-gai local government area in NSW, Australia. The area has residential

properties in close proximity to bushland and ranks third in bushfire vulnerability among the 61

local government areas in the Greater Sydney Region.

A number of options has been identified by Ku-ring-gai Council to reduce the risk from bushfires.

These include, among others, building new fire trails, constructing new fire stations and rezoning

land, see Ku-ring-gai Council (2010). Fire trails allow for controlled hazard reduction burning,

break wild fire transition and potentially allow more time for fire brigades to respond to bushfires.

Constructing more fire stations reduces the response time and helps to reduce the risk of fires

expanding beyond suppression. In the following, we will focus on evaluating an adaptation project

of constructing an additional fire trail in the region.7

4.1. Bushfire Risk Estimation

Implementation of the investment model requires an estimate of parameters µ and σ of the expected

fire frequency process Λt. To estimate the volatility σ, we use daily data of the McArthur Forest

Fire Danger Index (FFDI) that is commonly used to provide fire warnings in Australia and also

other countries. The McArthur Forest Fire Danger Index combines air temperature, wind speed,

humidity and a drought factor to forecast the chance that a bush fire will occur on a specific day

in a local area.8 It has also been used in previous studies to examine the changes in bush fire risk

under climate change, see e.g. Jolly et al. (2015), Clarke et al. (2016).

Figure 4 shows the monthly FFDI in Sydney, which is obtained by aggregating daily FFDI

observations for each month. It is apparent that the FFDI contains seasonal variation and exhibits

7 Note that Truong et al. (2018) examine sequential investment projects, but considering a single project only allows

us to better illustrate our framework.

8 Note that in NSW, Australia, the Forest Fire Danger Index is reported on a scale from 0-100, but should not be

interpreted as actual probability for the occurrence of a bushfire, see, e.g., Lucas (2010) for further details.
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Figure 4 Monthly cumulative FFDI for the Sydney region in NSW.

additional volatility due to the variation in local weather conditions. For the investment decision,

we are mainly interested in the long term variation of the FFDI that results from changes in

climatic conditions. We therefore use a dynamic factor model to extract a common factor that

drives the long term variation of the FFDI in various regions in Australia. Our approach is similar

to the approach proposed by Schwartz and Smith (2000) to extract the long term component from

a commodity price process. The difference is that Schwartz and Smith (2000) use futures price

data with different maturities, while in our case, such data are not available, and as an alternative,

we use observations for the FFDI in different locations in Australia.

We model the logarithm of the total FFDI in month t and region i as:

log FFDIi,t = b1,ift + b2,ist + εi,t, (36)

where b1,i and b2,i are the factor loadings to be estimated and εi,t ∼N(0, σ2
εi

). The common trend ft

is assumed to follow a random walk with drift, and the seasonality factor st follows a deterministic

periodic pattern:

ft = ft−1 + δt−1 + ξt, ξt ∼N(0, σ2
ξ) (37)

δt = δt−1 (38)

st =−
11∑
j=1

st−j. (39)
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The error terms, εi,t and ηt, are assumed to be uncorrelated with each other and uncorrelated

with their past values. The model can be written in state space form as:

log FFDIi,t = biXt + εi,t, (40)

Xt = TXt−1 +Rξt, (41)

where bi = [ b1,i 0 b2,i 0 ... 0 ], Xt = [ ft δt st st−1 ... st−10
]
′
, R= [ 1 0 0 0 ... 0 ]

′
, and T (13× 13) is a

state transition matrix.

We estimate this state space model using a Kalman filter as documented in e.g. Durbin and

Koopman (2012). For the model to be identified, we set the factor loadings of the risk in the first

region, b1,1 and b1,3 to be equal to 1.

To obtain reliable estimates of the long term risk processes, we use the FFDI data observed in

the capital cities of four large states of Australia, i.e. Sydney, Melbourne, Perth and Hobart. These

data are based on measurements from weather stations at airports and have good quality.

The estimates of the long term risk factor ft and the drift δt are presented in Figure 5. The long

term risk factor seems to decrease over period 1980-1990, and starts to trend up since 1990. The

estimate of the drift obtained from the dynamic factor model is essentially a Bayesian estimate. In

the initial periods, with short data samples, the drift estimates are more volatile, and after the year

2000 when the samples are sufficiently long, the drift estimates are consistently positive. However,

significant uncertainty remains about the exact value of the drift.

4.1.1. Estimating the frequency of events We obtain the Poisson intensity for Ku-ring-

gai by downscaling the deseasonalized forest fire danger index of the Sydney region in NSW. In

the Ku-ring-gai area, there was only one house-damaging bushfire event occuring over period 1980-

2017 (38 years), and the average probability of an event occurring in one year is 1/38 = 0.026. We

therefore scale down the deseasonalized FFDI of the Sydney region by a factor of 2400 so that the

scaled-down risk has an annual average of 0.026. The Poisson intensity for the Ku-ring-gai area is

then:

lnΛt =− ln 2400 + ft + εt, (42)
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Figure 5 Estimates of long term trend (ft) and its drift (δt) based on the applied dynamic factor model

where ft ∼N(f0 + δ× t, σ2
η × t), and εt ∼N(0,0.67702).

Note that for the investment problem, the investment decision depends on the state variable ft.

The measurement error term εt is only relevant in that the expected value of Λt and the expected

value of the project are increased by e0.5×σ2ε , otherwise, it is irrelevant to the investment decision.

As a result, for investment analysis, we can use an equivalent Poisson intensity variable Λ̂t given

by:

ln Λ̂t =− ln 2400 + 0.5×σ2
ε + ft. (43)

The volatility of process {Λ̂t} is ση, which is also the volatility σ in Equation (2) that we need to

estimate. The estimate of this volatility is 5.81% per month, and 5.81%×
√

12 = 20.13% per year.

The current value of the Poisson intensity is Λ̂0 = 0.0279.

For the drift parameter µ, using a single value of drift µ estimated from historical data may

not be able to reflect the uncertainty about climate change. We therefore use two values of drift

µ to represent different views. We use µL = 0 to represent a climate change skeptic view that

there will be no climate change, and a value µH > 0 estimated based on climate change studies

that represents the view that the climate will change. We use the results provided by Hasson

et al. (2009) to calibrate parameters in this paper, however, our framework also applies if other

climate change studies are used. Hasson et al. (2009) uses 10 general circulation models and two

GHG emission scenarios, a low (B1) and a high (A2) emission scenario, to forecast the frequency
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of extreme fire weather events in Southeastern Australia. The forecast exercise yields 20 point

forecasts, with some models predicting the expected frequency of bushfire to grow as much as 6%

per year while others predicting decreases in bushfire risk. We regard growth rates higher than

1% as significant impact of climate change and there are 14 of these growth rates out of a total

of 20. We therefore set P0 = 14/20 = 0.7. In addition, for these 14 cases, the average growth rate

of the frequency of extreme bushfire events predicted by the models is 2.26% and therefore we set

µH = 2.26%.

4.1.2. Estimating the loss severity Following Truong and Trück (2016), we estimate the

loss severity distribution based on the information provided by a bushfire expert in the area. We

use a gamma distribution to allow for heavy tailed bushfire losses. The expert suggests that for a

severe bushfire, the average number of houses being damaged is 30 and the range for the average

number of damaged houses is between 15 (the lower quartile) and 50 (the upper quartile) houses.

With the reconstruction cost per house of $405,000, the loss severity distribution has a location

parameter a= 8077.55 and a scale parameter s= 1504.17, see Truong and Trück (2016) for details.

The expected bushfire loss in a fire event is then β = $12.15 million. The growth rate of loss

severity (γ) is estimated based on disaster insurance claim data provided by the Insurance Council

Australia (ICA) and yields a growth rate of γ = 1%.

4.2. The Discount Rate

The choice of an appropriate discount rate for long lasting projects is a highly controversial topic

in the literature. Some studies, e.g. Stern (2007) and Garnaut (2011), recommend the use of low

social discount rates, largely based on intergenerational equity arguments, while others such as

Newell and Pizer (2003), Nordhaus (2007), Quiggin (2008) and Tol and Yohe (2009) suggest that

the discount rate should be derived based on market interest rates.

We follow the latter strand of literature to determine the discount rate based on observed market

interest rates. In particular, we adopt the results by Truong and Trück (2016) who estimate the
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stochastic interest rate model proposed by Cox et al. (1985) using long term Australian government

bond data. They found that for Australian interest rates, the estimated model yields a quite low

coefficient of persistence, such that the estimated certainty equivalent discount rate converges

quickly to a long run level of 4.5%. For simplicity, in this study, we assume that the discount rate

is constant at 4.5%.

4.3. Other Parameters

Parameters relating to the investment project, including investment cost, risk mitigation effective-

ness and project life, are estimated by expert elicitation. Expert elicitation is an effective way to

overcome data scarcity problems and has been used in many previous climate adaptation studies,

see e.g. Baker and Solak (2011), Mathew et al. (2012). The expert specifies that the conducted

project is expected to reduce the frequency of house damaging bushfire events by 20%. The invest-

ment cost I of an infinite lifetime project can be calculated based on the estimated costs IM for a

project that lasts M years given in Table 1 as:

I = IM/[1− (1 + r)−(M+1)] (44)

Thus, at a 4.5% discount rate, the present value of building a bushfire trail with cost $1.5 million

every 50 years, is $1.68 million.

The estimate of the risk aversion parameter η is obtained by calibration. Cummins and Weiss

(2009) suggest that the premium charged by the reinsurance industry for bearing catastrophic risk

is comparable with the premium charged for bearing catastrophic risk by CAT bond holders. Data

on CAT bond premiums in the US over the period 2001-2008 indicate that the premium is about

5% (Cummins and Weiss 2009, p525). We therefore assume that the value of the project with risk

aversion is higher than the value of the project with risk neutrality by 5%. This gives η= 2.7×10−4.

4.4. Optimal Decision-Making

4.4.1. Baseline Case Let us first consider a base case scenario, where parameter values are as

given in Table 1. For this scenario, Figure 6 provides the plot of the option value F (π0), where the
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Table 1 Information on estimated and assumed parameter values.

Parameters Value Parameters Value

Current Poisson intensity (Λ̂0) 0.0279 Initial belief (P0) 0.7%

High Poisson intensity growth (µH) 2.26% Risk mitigation by project (k) 20%

Low Poisson intensity growth (µL) 0% Lifetime of the project (M ) 50 years

Volatility of the Poisson intensity process (σ) 20.13% Investment cost per project (IM) $1.5 million

Expected loss conditional on a fire event (β) $12.15 M Annual maintenance cost (C) $50,000

Growth rate of loss severity (γ) 1% Risk aversion parameter (η) 2.7× 10−4

Discount rate (r) 4.5%

initial belief is P0 = 0.7. For this case, at the current level of benefit flow π0 = $67,797, the option

value is $2,658,447, and the optimal investment threshold for the initial period is π∗ = $163,350.

The expected time to learn about the growth rate with 95% confidence is 333 years when the true

growth rate is µH , and 602 years when it is µL. This slow resolution of climate change uncertainty is

consistent with other studies in climate change, see e.g. Leach (2007). The long learning time is due

to the large value of noise (20.13%) relative to the signal (2.26%), leading to a small signal to noise

ratio (ω = 0.11). Given the long learning time, waiting for the uncertainty to resolve completely

before taking a decision on adaptation is infeasible. It is essential to make the investment decision

in the presence of climate change uncertainty. Note also that since µL− 1
2
σ2 < 0, the expected time

to investment is infinite. However, as explained in Section 3.8.1, our modelling framework remains

valid and allows to determine the optimal investment decision when the uncertainty is partially

resolved.

The investment threshold obtained from the model is substantially higher than the threshold

given by the NPV rule (π̂ = $43,200). If the NPV rule was used, the project would be invested

immediately, and a NPV of $1,646,727 would be obtained. An amount of $1,011,720 i.e. 38.06%

of the option value would be lost. For other levels of belief, optimal investment decisions can be

made based on the investment boundary in Figure 7. For example, if π0 = $160,000 and P0 = 0.4,

the optimal decision is to wait, while if π0 = $190,000 and P0 = 0.8, the project should be invested.
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Figure 6 Investment option values, project values and investment threshold in baseline case with P0 = 0.5

Figure 7 Investment boundary defined in two states (P0, π0)

When π0 is lower than $150,000 (higher than $200,000), waiting (investing) is optimal regardless

of belief.

4.4.2. Impact of Initial Belief To enable a comparison with the impact of other factors, we

examine the impact of an increase in the initial belief P0 by 10% from 0.7. For this higher belief,

the investment threshold is slightly lower at π∗ = $159,300 and the option value at π0 = $67,797

is increased by 8.37% to $2,880,855. The NPV of the project at the current benefit flow level,

π0 = $67,797, increases by 15.15% and reaches a value of $1,896,278 and the loss due to using the

NPV rule is reduced by 2.68% to $984,577.
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4.4.3. Impact of Uncertainty The impact of uncertainty is examined by comparing the

baseline scenario with the case where uncertainty is increased by 10%, i.e. µL is decreased to

-0.1110% and µH is increased to 2.37%. When the uncertainty increases by 10%, the NPV of

the project at the initial state (P0 = 0.7, π0 = $67,797) increases by 22.60%. This is because the

impact of risk aversion is very small (see below), and with η = 0, the NPV of the project is

V (φ0,Λ0)/(1+φ0) is a convex function of a random variable µ that takes values {µH , µL}. Therefore,

when the uncertainty in µ increases, the NPV of the project increases. The option value at the

initial state increases by 13.76% to $3,024,265 and the optimal investment threshold is reduced by

1.65% to $160,650. The loss when applying a NPV rule as decision criteria is also reduced, and

is 0.63% lower, i.e. $1,005,312. These results can be interpreted as more uncertainty resulting to

earlier investment, consistent with the precautionary principle.

4.4.4. Impact of Volatility When volatility increases by 10%, the NPV of the project at

the initial state (P0 = 0.7, π0 = $67,797) is increased, but the change is very small (0.06%). The

optimal investment threshold increases by 4.96% to $171,450 while the option value at the initial

state increases by 2.28% to $2,719,156. As a result, the loss incurred when using the NPV rule in

comparison to optimal timing of the investment increases by 5.91% to $1,071,500.

4.4.5. Impact of Risk Aversion When the risk aversion parameter η is increased by 10%,

the NPV of the project is increased by 0.17% to $1,649,469. The option value at the initial state

increases by 0.10% to $2,661,038, and the optimal investment threshold remains unchanged. The

loss induced by using the NPV rule is reduced by 0.01%. Changes in the risk aversion parameter

therefore do not have much impact on the investment decision.

4.4.6. Impact of Climate Change Scenarios Some climate change studies, e.g. Weitzman

(2009), Keller et al. (2004), suggest that the extent of change in the future climate can be quite

extreme. We examine a more serious climate change scenario in which the high level of the growth

rate, µH , is increased by 10%. With the increase in µH , the NPV of the project at the initial state

(P0 = 0.7, π0 = $67,797) increases by 52.68% to $2,514,262. The option value at the initial state is
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increased by 31.70% to $3,501,220 and the investment threshold is reduced by 3.31% to $157,950.

Under these assumptions, the loss incurred by using the NPV rule is then reduced by 2.45% to

$986,958.

4.4.7. Impact of loss exposure growth rate When the growth rate of loss exposure

increases by 10% from 1% to 1.10%, the NPV of the project is increased by 21.72% while the option

value is increased by 12.85%. The optimal investment threshold is reduced by 2.48%, pushing

investment to occur earlier. The loss due to the use of NPV rule is reduced by 1.60%.

4.4.8. Impact of Investment Costs When the investment cost increases by 10%, the NPV

of the project at the initial state (P0 = 0.7, π0 = $67,797) is decreased by 16.94% to $1,367,841.

The option value at the initial state is reduced by 2.29% and the investment threshold increases by

10% to $179,550. The loss due to using the NPV rule in comparison to the optimal timing of the

investment is then increased by 21.56% to $1,229,853. Therefore, changes in the initial investment

cost may have a substantial impact on the value obtained from investing and the time when the

project should be invested.

4.4.9. Impact of the Discount Rate The impact of the applied discount rate on the results

is examined by comparing the baseline scenario with the case where the discount rate is increased

by 10%. As a result of the higher discount rate, the NPV of the project at the initial state (P0 =

0.55, π0 = $67,797) is decreased by 58.20% to $688,309. The investment threshold is increased by

5.79% to $172,800 and the option value at the initial state is significantly reduced by 35.73% to

$1,708,529. The loss due to using the NPV rule therefore increases by 0.84% to $1,020,219.

4.4.10. Summary of sensitivity analysis A summary of the results for the conducted

sensitivity analysis is provided in Table 2. Recall that for each variable, we examine the impact

of a 10% increase in the parameter value. For our case study, we find that the loss due to using

a simple NPV rule instead of optimally timing the investment increases substantially for a larger

initial investment cost and a higher value of volatility. In addition, the loss is decreasing in the
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signal to noise ratio, i.e. the loss is higher when the uncertainty is low or when the volatility is high.

This means that the real options model is more important in settings where uncertainty resolution

is slow. Furthermore, the loss is decreasing in the initial belief in climate change as well as the

predicted level of climate change, which is consistent with the findings of Truong and Trück (2016).

Table 2 Sensitivity Analysis for a 10% increase in key parameters

Parameter ∆NPV ∆

(
Option value

)
∆

( Investment

threshold1

)
∆

( Loss by

NPV rule

)

Initial belief (P0) 15.15% 8.37% -1.57% -2.68%

Uncertainty (µH −µL) 22.60% 13.76% -1.65% -0.63%

Volatility (σ) 0.06% 2.28% 4.96% 5.91%

Risk aversion (η) 0.17% 0.10% 0.00% -0.01%

Extent of Climate Change (µH) 52.68% 31.70% -3.31% -2.45%

Loss exposure growth (γ) 21.72% 12.85% -2.48% -1.60%

Investment cost (Im) -16.94% -2.29% 10.00% 21.56%

Discount rate (r) -58.20% -35.73% 5.79% 0.84%

Note: to examine the sensitivity to the initial belief, the parameter for initial belief P0 is changed from P0 = 0.7

to P ∗0 = 0.77; to measure the sensitivity of the results to uncertainty, µH − µL is changed from 0.0226 to 0.0249

corresponding to µ∗L =−0.11% and µ∗H = 2.37%; to examine the impact of volatility, σ is increased from σ = 0.2013 to

σ∗ = 0.2214; to quantify the impact of a more serious climate change scenario, µH increases from 2.26% to 2.49%; to

study the impact of loss exposure growth, γ is increased from γ = 0.01 to γ∗ = 0.011; investment costs are assumed to

increase from Im = $1,500,000 to I∗m = $1,650,000; the discount rate r changes from r= 0.045 to r∗ = 0.0495.

1 The change in investment threshold is the change in the investment payoff threshold, keeping belief constant.

5. Conclusion

In this paper, we introduce a novel framework for determining the optimal timing of investment

into catastrophic risk mitigation projects. Instead of assuming that the growth rate of catastrophe

frequency is known as it is typically proposed in real options models, our framework allows for the

uncertainty about the actual growth rate. In the proposed framework, the decision maker’s prior
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belief about the growth rate of the expected frequency of catastrophic events is combined with

climate observations to inform investment decisions.

In a special case, the framework allows to derive a closed form solution for the value of the option

to invest. Furthermore, the option value of investment can be expressed as a weighted average

of the option values under different climate change scenarios. This means that the Bayesian real

option also has the same property as the standard real option and its value increases for higher

levels of volatility. There is, however, an important difference: in standard real options models, one

would invest only when the NPV of the project is sufficiently higher than the investment cost to

justify the volatile project value. Therefore, given a specific estimate of volatility, a higher growth

rate will raise the value of the project and lower the investment threshold. At the same time, for

a specific growth rate, higher volatility will raise the value of the project and also increase the

investment threshold. In the Bayesian real options model, there are two levels of uncertainty: the

uncertainty about the project value for a given growth rate, and the uncertainty about the true

growth rate. While the impact of the volatility on the investment threshold and option value is

similar to the case of a standard real option, the impact of the second layer of uncertainty is quite

different. When the learning rate is low, increasing uncertainty lowers the investment threshold

and accelerates investment. When the learning rate is significant, uncertainty can accelerate or

decelerate investment, depending on whether the impact of learning dominates the impact of

uncertainty.

The Bayesian model utilizes both prior belief and new observations to distinguish between a

high and a low growth rate. In the proposed empirical application, we illustrate that it may take

a relatively long time - up to several hundred years - for climate change uncertainty to resolve. An

important implication of this result is that passive learning through observing the climate might

play a less important role than active learning via climate change research that is represented by

the prior belief in the model.

As cautioned by Mearns (2010), a slow rate of learning can be used as an argument for not acting

on climate change adaptation yet. High uncertainty and a slow rate of learning might also explain



Truong, Trueck, Siu and Goldstein: Bayesian Real Options Model
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 33

why typically the NPV rule instead of a real options framework is used in climate change adaptation

studies. However, based on the proposed framework we argue that the Bayesian framework provides

a solution that is robust to climate change uncertainty. If the decision maker is quite uncertain

about climate change, the value of the Bayesian real option is the average of the option values under

different climate change scenarios. On the other hand, if the decision maker has a strong belief in

a climate change scenario, the value of the Bayesian real option is strongly weighted towards the

standard option value given in such scenario. Importantly, an additional feature of the framework

is that the advised investment decision is consistent with the precautionary principle that has been

emphasized in relation to climate change mitigation action, e.g. by the IPCC. When the climate

change scenario is believed to be more likely than the business usual scenario, higher uncertainty

about climatic change can result in a lower investment threshold, and the adaptation investment

will occur with a shorter delay.

Our empirical results suggest that the loss due to the use of the NPV rule instead of a real

options framework can be high. This is because the NPV rule ignores the option to invest, which

is valuable in all climate change scenarios. We further find that the loss is larger when the noise

is larger, which leads to a seemingly contradictory result that when climate change uncertainty is

resolved more slowly, the loss due to the use of the NPV is higher. This is because when the noise

is higher, the option value in each climate change scenario will be higher, such that the value of the

Bayesian real option will also be higher. Although the increase in the noise makes it more difficult

to distinguish between the scenarios, such increased difficulty in learning is irrelevant when the

option to invest is ignored all together, as implied by the NPV rule. We also find that the loss is

large when the investment cost is high and when the belief in climate change is low. This suggests

that the proposed Bayesian real options model is most useful for large investment projects whose

benefits depend on future climate and the decision maker has a low belief about the climate change

scenario.

Future research could apply the proposed framework to the valuation of other investments in

climate change adaptation, for example to hazards arising from flooding, storms or sea level rise.
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Interesting applications of the method might also include large infrastructure projects that often

require information updating or resolving uncertainty about, e.g., population growth or environ-

mental change. Also, the high sensitivity of the option value and the loss incurred by using the

NPV rule to changes in volatility also provides directions for additional research. For example,

there may be practical ground for the development of real options models that can also include

uncertainty and learning about volatility.
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Online Appendix

EC.1. The Esscher Transform

Recall that the stochastic benefit flow process {πt} follows a geometric Brownian motion so that

the logarithm of benefit flow process follows a diffusion process with constant drift and volatility,

which is a special case of a Lévy process. Consequently, the (classical) Esscher transform adopted

in, for example, Gerber and Shiu (1993), which is applicable for Lévy processes, may be used

here. However, with a view to incorporating time-varying or stochastic risk premiums here and to

providing a general and rigorous approach to specify the density process for changing probability

measures based on the Esscher transform, we use a generalized version of the Esscher transform

for a semimartingale initially proposed by Bühlmann et al. (1996) and extended by Kallsen

and Shiryaev (2002) and Siu (2016). The Esscher transform in this framework is based on the

Doléan-Dade stochastic exponential and a Laplace cumulant process.

Recall from Section 2.3 that under the measure P̃ , the dynamics of the stochastic intensity {π(t)}

are governed by the following geometric Brownian motion:

dπ(t) = (γ+µL)π(t)dt+σπ(t)dB̃(t).

We denote the Esscher parameter at time t by η(t) and suppose that {η(t)} is a real-valued

predictable process with respect to the observed filtration {Ft}. Also, for each t, let Y (t) :=

ln(π(t)/π(0)). Then

dY (t) =

(
γ+µL−

1

2
σ2

)
dt+σdB̃(t). (EC.1)

Assume that the process {η(t)} is such that the following stochastic integral exists:

(η ·Y )(t) :=

∫ t

0

η(u)dY (u),
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Then an {F(t)}-special semimartingale {Xη(t)} associated with the process of the Esscher

parameters {η(t)} is given by:

dXη(t) :=

((
γ+µL−

1

2
σ2

)
η(t) +

1

2
σ2η2(t)

)
dt+ση(t)dB̃(t). (EC.2)

The predictable part {Xη
p (t)} of the finite variation in {Xη(t)} is:

Xη
p (t) =

∫ t

0

((
γ+µL−

1

2
σ2

)
η(u) +

1

2
σ2η2(u)

)
du.

As noted by Kallsen and Shiryaev (2002), {Xη
p (t)} is the Laplace cumulant process of the stochastic

integral process {(η · Y )(t)}. Let {E(Xη
p )(t)} be the stochastic exponential of {Xη

p (t)}. The den-

sity process of the generalized Esscher transform corresponding to the process {η(t)}, denoted as

{Zη(t)}, can then be defined as:

Zη(t) :=
exp((η ·Y )(t))

E(Xη
p )(t)

. (EC.3)

Note that the stochastic exponential {E(Xη
p )(t)} acts as the normalisation constant, and therefore

Zη(t) has a unit expected value. As noted in Siu (2016), since {Xη
p )(t)} is a finite variation process

without martingale parts, we can write

E(Xη
p )(t) = exp(Xη

p (t)). (EC.4)

As a result:

Zη(t) = exp

(∫ t

0

η(u)σdB̃(u)− 1

2

∫ t

0

η2(u)σ2du

)
, (EC.5)

which suggests that Zη(t) is a local-martingale with respect to {F(t)}. Here we suppose that

{η(t)} satisfies the Novikov condition so that {Zη(t)} is an {F(t)}-martingale.
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EC.2. Immediate Stopping Value

The immediate stopping value V (φt, πt) is obtained by setting the stopping time τ to t in (19),

V (φt, πt) =

∫ ∞
t

e−r(s−t)Eη [(1 +φs)πs|(φt, πt)]ds− (1 +φt)I. (EC.6)

Since φt evolves according to Equation (16), its value at time s > t is given by

φ(s) = φ(t) exp[(ηω)(s− t)]Ẑs (EC.7)

where

Ẑs = exp

[
−1

2
ω2(s− t) +ω

∫ s

t

dBη(u)

]
(EC.8)

is a martingale with unit expected value, and can be used as a stochastic exponential. As a

result,

Eη[φsπs|(φt, πt)] = φt exp[(ηω)(s− t)]πt exp[(γ+µH + ησ)(s− t)], (EC.9)

where we use the fact that the stochastic exponential Ẑs changes measure P η to a new measure

under which, πt has a drift γ+µH + ησ. The intrinsic value V (φt, πt) then becomes

V (φt, πt) =

∫ ∞
t

e−r(s−t)
[
πte

(γ+µL+ησ)(s−t) +φtπte
(γ+µH+η(σ+ω))(s−t)]ds− (1 +φt)I. (EC.10)

which can be simplified to

V (φt, πt) =
πt

r− γ−µL− ησ
+

πtφt
r− γ−µH − η(σ+ω)

− (1 +φt)I.� (EC.11)
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EC.3. Proof of Proposition 1 on Optimal Investment Boundary and
Proposition 3 on Option Value

When γ+ µH+µL
2

= 1
2
σ2, it follows from Equation (17) that:

φsπ
−ω/σ
s = φtπ

−ω/σ
t , (EC.12)

which means that φsπ
−ω/σ
s does not change through time. Let θ= φsπ

−ω/σ
s , then:

G(φt, πt) =G(θπ
ω/σ
t , πt) = J(πt, θ). (EC.13)

In the continuation region, J(πt, θ) must satify the second order partial differential equation:

1

2
σ2π2

t Jππ + (µL + ηtσ)πtJπ − rJ = 0. (EC.14)

The general solution is given by:

J(πt, θ) =A(θ)παLt +B(θ)πδt , (EC.15)

where A and B are smooth functions to be determined and αL and δ are the positive and negative

roots of the quadratic equation:

1

2
σ2α(α− 1) + (γ+µL + ησ)α− r= 0. (EC.16)

The boundary condition J(0, θ) = 0 implies B = 0. Hence,

G(φt, πt) =A(φtπ
−ω/σ
t )παLt . (EC.17)

At the investment boundary (φ∗, π∗), the value matching and smooth-pasting conditions must

be satisfied:

G(φ∗, π∗) = V (φ∗, π∗) (EC.18)

Gφ(φ∗, π∗) = Vφ(φ∗, π∗) (EC.19)

Gπ(φ∗, π∗) = Vπ(φ∗π∗) (EC.20)
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which gives

A(φ∗π∗−ω/σ)π∗αL =
π∗

r− γ−µL− ησ
+

π∗φ∗

r− γ−µH − η(σ+ω)
− (1 +φ∗)I (EC.21)

π∗−ω/σA
′
π∗αL =

π∗

r− γ−µH − η(σ+ω)
− I (EC.22)

−ω
σ
φ∗π∗−ω/σ−1A

′
π∗αL +αLA(φtπ

∗−ω/σ)π∗αL−1 =
1

r− γ−µL− ησ
+

φ∗

r− γ−µH − η(σ+ω)

(EC.23)

Multiply (EC.23) by π∗ and use (EC.21) and (EC.22) give:

− ω
σ
φ∗
[

π∗

r− γ−µH − η(σ+ω)
− I
]
+

αL

[
π∗

r− γ−µL− ησ
+

π∗φ∗

r− γ−µH − η(σ+ω)
− (1 +φ∗)I

]
=

π∗

r− γ−µL− ησ
+

φ∗π∗

r− γ−µH − η(σ+ω)
(EC.24)

Rearrange terms:

(αL− 1)
π∗

r− γ−µL− ησ
+ (αL− 1−ω/σ)

π∗φ∗

r− γ−µH − η(σ+ω)
=

[
αL +φ∗(αL−ω/σ)

]
I

Let αH = αL−ω/σ, and replace φ∗ = P ∗/(1−P ∗) gives:

π∗ =
P ∗αH + (1−P ∗)αL

P ∗(αH − 1)AH + (1−P ∗)(αL− 1)AL
I. (EC.25)

where AL = 1
r−γ−µL−ησ

and AH = 1
r−γ−µH−η(σ+ω)

.

To prove Proposition 3, recall that F (φt, πt) = 1
1+φt

G(φt, πt), and G(φt, πt) = AπαLt . Using the

value of A in (EC.21):

F (φt, πt) =
1

1 +φt

π∗1−αLπαLt
r− γ−µL− ησ

+
1

1 +φt

φ∗π∗1−αLπαLt
r− γ−µH − η(σ+ω)

− 1 +φ∗

1 +φt
π∗−αLπαLt I (EC.26)

Since φ∗π∗−ω/σ = φtπ
−ω/σ
t , and therefore φ∗ = φtπ

−ω/σ
t π∗ω/σ, it follows that:

F (φt, πt) =
1

1 +φt

(
πt
π∗

)αL( π∗

r− γ−µL− ησ
− I
)

+
φt

1 +φt

(
πt
π∗

)αH( π∗

r− γ−µH − η(σ+ω)
− I
)

Replace Pt = φt
1+φt

and 1−Pt = 1
1+φt

gives:

F (Pt, πt) = Pt

(
πt
π∗

)αH( π∗

r− γ−µH − η(σ+ω)
− I
)

+ (1−Pt)
(
πt
π∗

)αL( π∗

r− γ−µL− ησ
− I
)
�
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EC.4. Proof of Proposition 2 on Decreasing Investment Boundary

The optimal investment threshold in (27) is:

π∗ =
PtαH + (1−Pt)αL

Pt(αH − 1)AH + (1−Pt)(αL− 1)AL
× I (EC.27)

where AH = 1
r−γ−µH−η(σ+ω)

and AL = 1
r−γ−µL−ησ

.

The derivative of π∗ with respect to Pt is then:

∂π∗

∂Pt
=

(αH −αL)D−N [(αH − 1)AH − (αL− 1)AL]

D2
× I, (EC.28)

where N and D are the nominator, and denominator in (EC.27).

It follows that ∂π∗

∂Pt
has the same sign as S = (αH −αL)D−N [(αH − 1)AH − (αL− 1)AL]. After

multiplying the terms out, S is reduced to:

S = αH(αL− 1)AL−αL(αH − 1)AH . (EC.29)

Using the expression of AL,AH , we can write S as:

S =
[αH(αL− 1)(r− γ−µH − η(σ+ω))−αL(αH − 1)(r− γ−µL− ησ)]

(r− γ−µH − η(σ+ω))(r− γ−µL− ησ)
, (EC.30)

and therefore, the sign of ∂π∗

∂Pt
is the same as the sign of:

Ŝ = αH(αL− 1)(r− γ−µH − η(σ+ω))−αL(αH − 1)(r− γ−µL− ησ). (EC.31)

Since αH = αL−ω/σ, we can write αH as:

αH =
1

2
− (γ+µH +σηt)/σ

2 +

√
[(γ+µL +σηt)/σ2− 1

2
]2 + 2r/σ2

In addition, since 2γ+µH +µL = σ2, we can write:

[(γ+µL +σηt)/σ
2− 1

2
]2 = [(γ+µH −σηt)/σ2− 1

2
]2 (EC.32)

and therefore:

αH =−1

2
− (γ+µH +σηt)/σ

2 +

√
[(γ+µH −σηt)/σ2− 1

2
]2 + 2r/σ2.
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It follows that when η= 0, αi where i∈ {H,L} satisfies Equation:

1

2
σ2αi(αi− 1) + (γ+µi)αi− r= 0, (EC.33)

which can be written as:

αi(r−µi− γ) = (αi− 1)(
1

2
σ2αi + r) (EC.34)

Substitute (EC.34) into (EC.31) and use η= 0 gives:

Ŝ =(αL− 1)(αH − 1)(
1

2
σ2αH + r)(αH − 1)(αL− 1)(

1

2
σ2αL + r)

=(αL− 1)(αH − 1)
1

2
σ2(αH −αL)

=− (αL− 1)(αH − 1)
1

2
σ2(ω/σ) (EC.35)

Since αi > 1 for i∈ {L,H} and ω/σ > 0, it is clear that Ŝ < 0, and ∂π∗

∂Pt
< 0. �

Note that the results by Décamps et al. (2005) and Klein (2009) are also easy to see. The

investment threshold shown in Klein (2009) is:

π∗ = I × PtαH + (1−Pt)αL
Pt(αH − 1) + (1−Pt)(αL− 1)

, (EC.36)

and so ∂π∗

∂Pt
has the same sign as αH(αL−1)−αL(αH −1). Since αH = αL−ω/σ, we have αH(αL−

1) = α2
L − αL(1 + ω/σ) + ω/σ; and also αL(αH − 1) = α2

L − αL(1 + ω/σ). Since ω/σ > 0 it follows

that:

αH(αL− 1)>αL(αH − 1). (EC.37)

Therefore, when the project is front-loaded as assumed by Décamps et al. (2005) and Klein (2009)

∂π∗

∂Pt
> 0.
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EC.5. Investment problem under a changed measure

We first prove the following lemma on the product of a martingale and an integral:

Lemma EC.1. Let

H = Ẽ

[
1

Z∞

(∫ ∞
τ

e−r(s−t)πsds

)
|(φt, πt)

]
, (EC.38)

where Z∞ is given by (9) and πt follows process (EC.43). Then, H can also be expressed as:

H = Ẽ

[(∫ ∞
τ

e−r(s−t)
1

Zs
πsds

)
|(φt, πt)

]
. (EC.39)

Let Ys = 1
Zs

and Xs =
∫ s
τ
e−r(u−t)πudu where s≥ τ ≥ t, then

H = Ẽ [Y∞X∞|(φt, πt)] .

Applying Ito’s product rule to YsXs:

d(YsXs) = YsdXs +XsdYs + d[Y,X]s

=
1

Zs
e−r(s−t)πsds+XsdYs. (EC.40)

Since Zs = exp
(
−
∫ s

0
θudB̄u− 1

2

∫ s
0
θ2
udu
)

and B̃s = B̄s +
∫ s

0
θudu, Ys is given by

Ys =
1

Zs
= exp

(∫ s

0

θudB̃u−
1

2

∫ s

0

θ2
udu

)
,

and therefore dYs = YsθsdB̃s. This implies that:

Y∞X∞ =

∫ ∞
τ

1

Zs
e−r(s−t)πsds+

∫ ∞
τ

XsYsθsdB̃s, (EC.41)

and as a result,

H = Ẽ

[∫ ∞
τ

1

Zs
e−r(s−t)πsds|(φt, πt)

]
�

Under measure P̃ , the investment problem is:

F (φt, πt) =max
τ
Ẽ

[
1

Z∞

(∫ ∞
τ

e−r(s−t)πsds− e−r(τ−t)I
)
|(φt, πt)

]
(EC.42)
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subject to the dynamic state constraints

dπs/πs = (γ+µL)ds+σdB̃s, (EC.43)

dφs/φs = ωdB̃s, s≥ t. (EC.44)

Note that in (EC.42), Ys ≡ Z−1
s is a martingale under measure P̃ that has an initial starting

point Yt = 1, and the value at time s can be expressed in terms of φs as Ys = 1+φs
1+φt

9. Using the value

Z−1
s ≡ Ys = 1+φs

1+φt
and Lemma EC.1, we can express (10) as

F (φt, πt) =
1

1 +φt
max
τ
Ẽ

[(∫ ∞
τ

e−r(s−t)(1 +φs)πsds− e−r(τ−t)(1 +φτ )I

)
|(φt, πt)

]
. (EC.45)

9 As shown in above in the proof of the lemma, Ys evolves according to the stochastic differential equation dYs/Ys =

θsdB̃s. In addition, since θ= Pω= φ
1+φ

ω and dφs = φsωdB̃s, we have dYs/Ys = dφs/(1+φs). Therefore, two variables

Ys and Xs ≡ 1+φs
1+φt

follows the same stochastic process and both have the same initial value of 1. As a result, Ys = 1+φs
1+φt

.
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EC.6. Proof of Lemma 1 on expected waiting time

For a process dXt = adt + σdBt, where Bt is a Brownian motion, X0 = x > 0, a stopping time

τm = min{t≥ 0 :Xt =m}, and a scalar u> 0,

Ee−uτm = exp

[
−a+

√
a2 + 2uσ2

σ2
(x−m)

]
. (EC.46)

Then, taking the limit limu↓0
∂Ee−uτm

∂u
gives

Eτm =
m−x
a

. (EC.47)

This result holds if a> 0 when x<m or if a≤ 0 when x>m. The reason is if a≤ 0 when x<m,

there is a positive probability that the process Xt wanders off to −∞ and Eτm is infinite.

For the proof of (EC.46), see e.g. Ryan and Lippman (2003).�
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EC.7. Binomial lattice method

A binomial lattice is constructed by first fixing a time horizon T and then dividing the time horizon

into N small sub-intervals, each of which has a time length of ∆t= T/N . At an arbitrary time step

t of the binomial lattice, given the value πt of the benefit flow of the project, the value πt+∆t of the

benefit flow at the next time step t+ ∆t is either πtu with probability p or πtd with probability

1− p, where u = 1/d. It is easy to see that the conditional mean and variance of πt+∆t given πt

are pπtu+ (1− p)πtd, and π2
t [pu

2 + (1− p)d2 − [pu+ (1− p)d]2], respectively. As shown by Cox

et al. (1979), these conditional mean and variance are the same as those implied by the stochastic

differential equation (EC.43), which are πte
(µL+ησ)∆t and π2

tσ
2∆t, when p, u, and d are set as

follows:

u= eσ
√

∆t, d= e−σ
√

∆t, p=
e(µL+ησ)∆t− d

u− d
. (EC.48)

For a given initial condition (φ0, π0), the value G(φ0, π0) is computed by backward induction,

using Equation (21) and starting with the terminal conditionG(φT+1, πT+1) = 0. The computational

efficiency of the lattice method can be improved by applying the Richardson extrapolation as

suggested by Boyle et al. (1989). The value of the option is calculated for 20, 40, 60, and 80 time

steps per year and the obtained points are then fitted with a cubic polynomial. The value given

by the polynomial curve at a high number of time steps then provides an accurate estimate of

the option value. In addition, the time horizon T should be sufficiently large such that further

increasing the investment time horizon does not have a material effect on the solution.
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EC.8. Proof of Proposition 5 on the impact of uncertainty on optimal
investment

Note that when γ + µH+µL
2

= 1
2
σ2 and η = 0, the optimal investment threshold under drift uncer-

tainty is:

π∗(P0) =
P0αH + (1−P0)αL

P0(αH − 1) 1
r−γ−µH

+ (1−P0)(αL− 1) 1
r−γ−µL

× I, (EC.49)

and the investment threshold for the case of known drift is:

π̂=
α̂

(α̂− 1) 1
r−γ−µ̂

I.

Consider function f = α

(α−1) 1
r−γ−µ

I. Note that α satisfies the equation:

1

2
σ2α(α− 1) + (γ+µ)α− r= 0, (EC.50)

which can be written as:

α(r− γ−µ) = (α− 1)(
1

2
σ2α+ r). (EC.51)

Using (EC.51) we can write f as

f = (
1

2
σ2α+ r)I. (EC.52)

Since α = 1
2
− (γ+µ)/σ2 +

√
[(γ+µ)/σ2− 1

2
]2 + 2r/σ2, the first and second derivative of α with

respect to µ are:

∂α

∂µ
=−σ−2 +σ−2[(

γ+µ

σ2
− 1

2
)2 + 2r/σ2]−1/2× (

γ+µ

σ2
− 1

2
) (EC.53)

∂2α

∂µ2
= σ−4[(

γ+µ

σ2
− 1

2
)2 + 2r/σ2]−1/2[1− (

γ+µ

σ2
− 1

2
)2[(

γ+µ

σ2
− 1

2
)2 + 2r/σ2]−1]> 0. (EC.54)

It follows that f is convex in µ. Using the Jensen inequality, π∗ > π̂.�
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EC.9. Proof of Proposition 4 on the Impact of Volatility on Optimal
Investment

When η= 0, AH and AL do not depend on σ. The derivative of π∗ with respect to σ is then:

∂π∗

∂σ
=
−P 2

t AH ×
∂αH
∂σ
− (1−Pt)2AL× ∂αL

∂σ

D2
× I, (EC.55)

where D is the denominator in (27).

Since αi, i∈ {H,L} satisfies Equation:

Q=
1

2
σ2αi(αi− 1) +µiαi− r= 0, (EC.56)

by total differentiation of (EC.56):

∂Q

∂αi

∂αi
∂σ

+
∂Q

∂σ
= 0, (EC.57)

we then have:

∂αi
∂σ

=− ∂Q/∂σ
∂Q/∂αi

. (EC.58)

In addition, ∂Q/∂σ= σαi(αi− 1)> 0 since αi > 1. Also, Q is an upward pointing parabola with

Q(0) =−r < 0 and therefore at αi > 1, we have ∂Q/∂αi > 0. As a result, ∂αi
∂σ

< 0 and ∂π∗

∂σ
> 0. �


