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Abstract

We consider an optimal investment problem in which the cost of the invest-
ment decreases over time. This decrease is modelled using the negative of
a non-decreasing Lévy process. The decreasing cost is a way of modelling
that innovations drive down the cost of the investment. Several explicit
examples of how different Lévy processes influence the value of the invest-
ment are given.
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1 Introduction

An optimal irreversible investment problem with technical innovation is studied.
We revisit and extend the model used in Murto [10], where an investment prob-
lem that generalizes the classical optimal investment problem in McDonald &
Siegel [8] is considered. In Murto [10], the cost of making the investment is as-
sumed to decrease by a given fraction each time a Poisson process (independent
of the Brownian motion driving the cash flows generated by the investment)
jumps. The idea is that as time passes innovations occur (represented by the
jump in the Poisson process) that drives down the cost of the investment. This
model has also recently been studied in Nunes et. al. [11]. We extend the class
of models of innovation by also considering innovations where not only the tim-
ing of when innovations occur is uncertain, but also the size of the innovations.
This is done by modelling the innovations according to a non-decreasing Lévy
process.

The rest of this paper is organized as follows: In Section 2 the model is
presented, in Section 3 the investment problem is solved, and in Section 4 several
examples are given.
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2 The model

We let (Ω,F, P, (Ft)) be a complete filtered probability space where the filtration
(Ft) is assumed to satisfy the ususal conditions of F0 containing all P -null sets
of F, and the filtration being right-continuous. There exists a bank account
with constant interest rate r, i.e. there exists a financial asset whose value Bt
at t ≥ 0 satisfies

dBt = rBtdt with B0 = 1.

We also assume the existence of a risk-neutral probability measure Q, locally
equivalent to P , and with B as its numeraire.

An investment generates per unit cash flows of Ct at time t ≥ 0. We assume
that (Ct) evolves according to a geometric Brownian motion,

dCt = µCtdt+ σCtdW
Q
t with C0 = c > 0,

where (WQ
t ) is a one-dimensional Q-Brownian motion, σ ≥ 0 and

−σ
2

2
≤ µ < r.

The value of the stream of cash flows at time t ≥ 0 is given by

Xt = EQ
[∫ ∞

t

e−r(s−t)Csds

∣∣∣∣Ft] =
Ct
r − µ

with X0 = x = c/(r − µ). Since we assume that µ < r, (Xt) is a well-defined
and strictly positive stochastic process. If the value (Xt) is the value of a traded
asset, then µ = r− δ, where δ > 0 is the yield the investment generates. If (Xt)
is not the value of a traded asset, then µ − r can be interpreted as an implied
yield; see Armerin & Song [3] for a discussion.

The cost of making the investment at time t ≥ 0 is It, where

It = ie−Zt with i > 0 (1)

and (Zt) is a non-decreasing Levy process satisfying Z0 = 0 and that is inde-
pendent of (Ct) (and thus also of (Xt)). For more on the facts of Lévy processes
needed, see e.g. Kyprianou [6]. In this model innovation drives down the cost of
the investment through the change in (Zt). In Murto [10] and Nunes et. al. [11]
the cost of investment is written as It = iϕNt with ϕ ∈ (0, 1) and where (Nt) is
a Poisson process with constant intensity λ > 0. Since iϕNt = ie− ln(1/ϕ)Nt , we
still have their specific form as the special case Zt = ln(1/ϕ)Nt.

The goal of the investor is to maximize the net present value

EQx,i
[
e−rτ (Xτ − Iτ )

]
over the set of stopping times. We let

V (x, i) = sup
τ
EQx,i

[
e−rτ (Xτ − Iτ )

]
, (2)

where the supremum is taken over the set of stopping times, and this is the
function we will determine given different Lévy processes (Zt). We are also
interested in determining optimal stopping times, were we recall that an optimal
stopping time is a stopping time τ∗ such that

V (x, i) = EQx,i

[
e−rτ

∗
(Xτ∗ − Iτ∗)

]
.
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3 The solution to the investment problem

To solve the optimal investment problem, i.e. to find the function given by
Equation (2) and to find an optimal stopping time, we start by rewriting the
problem as that of an American put option with constant strike price. First of
all we observe that we can write

Xt − It = Xt(1− It/Xt)

= xeµteσWt−σ
2

2 t

(
1− i

x
eUt
)

= eµtLt
(
x− ieUt

)
,

where

Ut =

(
σ2

2
− µ

)
t− σWt − Zt

and

Lt = eσWt−σ
2

2 t

is a Radon-Nikodym process. Using (Lt) to change measure from Q to a new
measure, which we call Q̂, we can write Equation (2) as

V (x, i) = sup
τ
EQ̂

[
e−(r−µ)τ

(
x− ieUτ

)]
. (3)

Furthermore, using the Girsanov theorem (see e.g. Jeanblanc et. al. [5]) we have

Ut = −
(
µ+

σ2

2

)
t− σŴt − Zt,

where Ŵ is a Q̂-Brownian motion (still independent of (Zt) under Q̂), and
(Zt) has the same distribution under Q̂ as under Q. Note that the condition
µ ≥ −σ2/2 imposed above, implies that the drift of (Ut) is non-positive.

For γ > 0 we let T (γ) denote an exponentially distributed random variable
independent of (Ut) with mean 1/γ; all of this under Q̂. We also introduce

U = inf
0≤t<T (r−µ)

Ut.

Mordecki [9] has shown that the function in Equation (3) is given by

V (x, i) = EQ̂

(x− i · eU

EQ̂ [eU ]

)+
 ,

and that an optimal stopping time is given by

τ∗ = inf
{
t ≥ 0

∣∣∣ ieUt ≤ xEQ̂ [eU ]}
(see Theorem 2 in Mordecki [9]). Since the random variable U has support on
the negative real line, it follows that

x− i · eU

EQ̂ [eU ]
≥ 0 when x ≥ i

EQ̂ [eU ]
= iAc,
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where

Ac =
1

EQ̂ [eU ]
,

from which it follows that

V (x, i) = x− i when x ≥ iAc.

When x < iAc we have

V (x, i) =

∫ ln( x
iAc

)

−∞

(
x− i · ey

EQ̂ [eU ]

)
dFU (y),

where FU (y) = Q̂(U ≤ y) is the distribution function of U under Q̂. Since
U has support on (−∞, 0], we can write the optimal value function for every
(x, i) ∈ R2

++ as

V (x, i) =

∫ ln( x
iAc

)

0

(
x− i · ey

EQ̂ [eU ]

)
dFU (y).

Now
It
Xt

=
i

x
eUt ,

so the optimal stopping rule is to stop as soon as

Xt ≥
1

EQ̂ [eU ]
It ⇔ Xt ≥ AcIt.

In order to calculate V and the optimal stopping rule, we need to determine

EQ̂
[
eU
]
. To do this we start by defining the Laplace exponent ψ:

ψ(z) =
1

t
lnEQ̂

[
ezUt

]
,

whish is finite at least for z ≥ 0. To continue, we need to distinguish between
two different cases.

(a) When σ > 0, the process (Ut) is a spectrally negative Lévy process (i.e. a
Lévy process with only negative jumps and that is not the negative of a
subordinator). With our model we have

ψ(z) =
σ2z2

2
−
(
µ+

σ2

2

)
z + ψ−(z),

where ψ− is the Laplace exponent of −Zt:

ψ−(z) =
1

t
lnEQ̂

[
e−zZt

]
.

Again using that (Ut) is a spectrally negative Lévy process when σ > 0,
it follows from Equation (8.4) in Kyprianou [6] that for z ≥ 0

EQ̂
[
ezU
]

=
r − µ

Φ(r − µ)
· Φ(r − µ)− z
r − µ− ψ(z)

,
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where Φ(r − µ) is the largest root of the equation

ψ(z) = r − µ.

We have ψ(1) = −µ+ ψ−(1), so

EQ̂
[
eU
]

=
r − µ

Φ(r − µ)
· Φ(r − µ)− 1

r − ψ−(1)
.

Hence,

Ac =
1

EQ̂ [eU ]
=

Φ(r − µ)

Φ(r − µ)− 1
· r − ψ

−(1)

r − µ
.

(b) When σ = 0, then Ut = −µt − Zt with µ ≥ 0. This means that (Ut) in
this case is the negative of a subordinator, which is a type of process not
in the class of spectrally negative Lévy processes. The general result by
Mordecki [9] is still valid, and in this case

U = inf
0≤t<T (r−µ)

Ut = −µT (r − µ)− ZT (r−µ).

We further have

EQ̂
[
ezU
]

= EQ̂
[
e−zµT (r−µ)−zZT (r−µ)

]
= EQ̂

[∫ ∞
0

e−zµy−zZy (r − µ)e−(r−µ)ydy

]
= (r − µ)

∫ ∞
0

EQ̂
[
e−zZy

]
e−(r−µ+zµ)ydy

= (r − µ)

∫ ∞
0

e−(r−µ+zµ−ψ−(z))ydy

=
r − µ

r − µ(1− z)− ψ−(z)
.

Since in this case
ψ(z) = −µz + ψ−(z),

it follows that

EQ̂
[
ezU
]

=
r − µ

r − µ− ψ(z)

and

Ac =
1

EQ̂ [eU ]
=
r − ψ−(1)

r − µ
.

To summarize, we have the following result:

Proposition 3.1 With notation and assumptions introduced above, the optimal
value function V in Equation (2) is given by

V (x, i) =

∫ ln( x
iAc

)

0

(
x− iAcey

)
dFU (y),
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where

Ac =
Φ(r − µ)

Φ(r − µ)− 1
· r − ψ

−(1)

r − µ
when σ > 0 and

Ac =
r − ψ−(1)

r − µ
when σ = 0. An optimal stopping time is in both cases given by

τ = inf {t ≥ 0 |Xt ≥ AcIt } .

To be able to numerically calulcate the optimal value function V we can use
Laplace transform techniques. We will now derive an expression where the value
function is written using inverse Laplace transforms. In order to conform with
standard Laplace transform methods we will work with the negative of U (since
this is a positive random variable). Letting J = −U , we have

V (x, i) = EQ̂

(x− i · e−J

EQ̂ [e−J ]

)+
 = EQ̂

[
(x− iAce−J)+

]
.

Now,
x− iAce−y ≥ 0 ⇔ y ≥ ln(iAc/x).

Since J has support on [0,∞), we can use the same argument as in the case
where we represented the value function using the random variable U , to see
that it can be written

V (x, i) =

∫ ∞
ln(iAc/x)

(
x−Acie−y

)
dFJ(y) = x

∫ ∞
ln(iAc/x)

dFJ(y)−iAc
∫ ∞

ln(iAc/x)

e−ydFJ(y).

(4)
We can also write the value function as

V (x, i) =

∫ ∞
ln(iAc/x)

(
x−Acie−y

)
dFJ(y)

=

∫ ∞
0

(
x−Acie−y

)
dFJ(y)−

∫ ln(iAc/x)

0

(
x−Acie−y

)
dFJ(y)

= x− i−
∫ ln(iAc/x)

0

(
x−Acie−y

)
dFJ(y)

= x− i− x
∫ ln(iAc/x)

0

dFJ(y) +Aci

∫ ln(iAc/x)

0

e−ydFJ(y).

From this expression for V (x, i) it is obvious that if we know

L(b; c) =

∫ c

0

e−bydFJ(y)

for all c ≥ 0 and b = 0, 1, then we can calculate the value function V . Since we
know that∫ ∞

0

e−zydFJ(y) = EQ̂
[
e−zJ

]
=

{
r−µ

Φ(r−µ) ·
Φ(r−µ)−z
r−µ−ψ(z) , when σ > 0

r−µ
r−µ−ψ(z)

, when σ = 0,
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we can use inverse Laplace transform techniques to calculate L(0; ln(iAc/x)) and
L(1; ln(iAc/x)). We now use that if F is the distribution function of a positive
random variable, then the Laplace transform of the function y 7→

∫ y
0
e−btdF (t)

is given by
F̃ (z + b)

z
,

where F̃ (z) =
∫∞

0
e−ztdF (t) is the Laplace-Stieltjes transform of F (this fol-

lows from changing the order of integration in the definition of the Laplace
transform). Using this result, and with L denoting the Laplace transform, we
have

L

[∫ ·
0

dFJ(y)

]
(z) =

1

z
· r − µ

Φ(r − µ)
· Φ(r − µ)− z
r − µ− ψ(z)

,

and

L

[∫ ·
0

e−ydFJ(y)

]
(z) =

1

z
· r − µ

Φ(r − µ)
· Φ(r − µ)− (z + 1)

r − µ− ψ(z + 1)

when σ > 0 (see below for the case when σ = 0). By inverting these two Laplace
transforms and evaluate at the point ln(iAc/x) will give us the value function.
Writing L−1

z [f(z)](t) for the inverse Laplace transform of f evaluated at t, we
can write the value function as

V (x, i) = x− i− xL−1
z

[
1

z
· r − µ

Φ(r − µ)
· Φ(r − µ)− z
r − µ− ψ(z)

]
(ln(iAc/x))

+iAcL
−1
z

[
1

z
· r − µ

Φ(r − µ)
· Φ(r − µ)− (z + 1)

r − µ− ψ(z + 1)

]
(ln(iAc/x))

= x−i−x(r−µ)L−1
z [ 1

z ·
1

r−µ−ψ(z)
− 1

Φ(r−µ)
· 1
r−µ−ψ(z) ](ln(iAc/x))

+iAc(r−µ)L−1
z [ 1

z ·
Φ(r−µ)−1

Φ(r−µ)
· 1
r−µ−ψ(z)+1

− 1
Φ(r−µ)

· 1
r−µ−ψ(z+1) ](ln(iAc/x)).

Since the evalution is at the point ln(iAc/x), two of the terms in this expression
cancels, and after some simplifications we get

V (x, i) = x

(
1 + (r − µ)L−1

z

[
1

z
· 1

ψ(z)− (r − µ)

]
(ln(iAc/x))

)
−i
(

1 + (r − ψ−(1))L−1
z

[
1

z
· 1

ψ(z + 1)− (r − µ)

]
(ln(iAc/x))

)
.

This is the expression of the solution (written here using inverse Laplace trans-
forms, but usually written using scale functions) that occurs in many places
in the literature (see Kyprianou [6], specifically Corollary 11.3, and references
therein). When σ = 0, it is straightforward to see that we will arrive directly
at the above expression for V , so it will hold for any σ ≥ 0.

4 Examples

4.1 Introduction

In this section we consider the presented model under several assumption on the
Lévy process (Zt) driving down the cost of the investment. The general result in
Proposition 3.1 results in the above expression involving Laplace inversions, and
this in many cases the best way of numerically calculate the value fucntion. In
this section we focus on models where we can get analytically explicit formulas.
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4.2 Models with σ > 0

A compound Poisson process with mixed-exponentially distributed
jump sizes

When (Zt) is a compound Poisson process where the compounding distribution
is a convex combination of exponential distributions (i.e. the compounding dis-
tribution is mixed-exponetial or hyperexponential), then the explicit solution to
the optimal stopping problem can be found in Mordecki [9]. Here we illustrate
this class of models by considering the investment problem when the jump size
is exponentially distributed. Hence, we assume that

Zt =

Nt∑
`=1

Y`,

where (Nt) is a Poisson process with constant intensity λ > 0 and the random
variables Y1, Y2, . . . are independent of each other, independent of (Nt) and have
common density

f(y) = βe−βy, y ≥ 0

for some β > 0. We also assume that σ > 0. In this case, the solution is given by
Corollary 2 in Mordecki [9]. We need the two strictly negative roots −ρ1 > −ρ2

to the equation
σ2z2

2
−
(
µ+

σ2

2

)
z − λ z

z + β
= r − µ.

Given these two, we calculate

B1 =

ρ1

β − 1
ρ1

ρ2
− 1

and B2 =

ρ2

β − 1
ρ2

ρ1
− 1

.

In this case

ψ−(z) = − λz

z + β
,

so
1

Ac
= EQ̂

[
eU
]

=
r − µ

r + λ/(1 + β)
· Φ(r − µ)− 1

Φ(r − µ)
.

An alternative expression is proved in Mordecki [9]:

EQ̂
[
eU
]

=
B1ρ1

ρ1 + 1
+

B2ρ2

ρ2 + 1
.

Given the four parameters ρ1, ρ2, B1 and B2, the solution can be written (see
Mordecki [9] for details)

V (x, i) =

{
x− i when x ≥ Aci
xB1

ρ1+1

(
x
Aci

)ρ1

+ xB2

ρ2+1

(
x
Aci

)ρ2

when x < Aci,

where

Ac =
1

B1ρ1

ρ1+1 + B2ρ2

ρ2+1

.
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A scaled Poisson process

The case where (Zt) is a scaled Poisson process and σ > 0 is the main model
considered in Murto [10] and in Nunes et. al. [11]. It is also considered in Aase
[1] and Aase [2]. With Zt = kNt, where k > 0 is a constant and (Nt) is a
Poisson process with constant intensity λ > 0, we have

ψ−(z) = λ(e−kz − 1),

and thus

ψ(z) =
σ2z2

2
−
(
µ+

σ2

2

)
z + λ(e−λz − 1).

It follows that

EQ̂
[
ezU
]

=
r − µ

Φ(r − µ)
· Φ(r − µ)− z
r − µ− σ2z2

2 +
(
µ+ σ2

2

)
z + λ(1− e−zk)

and we get

Ac =
1

EQ̂ [eU ]
=

Φ(r − µ)

r − µ
· r + λ(1− e−k)

Φ(r − µ)− 1
.

We now use the fact that we in this case can write the value function as

V (x, i) = x

(
1+(r−µ)L−1

z

[
1
z ·

1
σ2z2

2
−(µ+σ2

2 )z+λ(e−λz−1)−(r−µ)

]
(ln(iAc/x))

)

−i

1+(r−ψ−(1))L−1
z

 1
z ·

1
σ2(z+1)2

2
−(µ+σ2

2 )(z+1)+λ(e−λ(z+1)−1)−(r−µ)

(ln(iAc/x))


= x−i+x(r−µ)L−1

z

[
1
z ·

1
σ2z2

2
−(µ+σ2

2 )z+λ(e−λz−1)−(r−µ)

]
(ln(iAc/x))

−i(r−ψ−(1))L−1
z

 1
z ·

1
σ2(z+1)2

2
−(µ+σ2

2 )(z+1)+λ(e−λ(z+1)−1)−(r−µ)

(ln(iAc/x)).

To get an analytical expression for the solution of the optimal stopping problem
in this case, we follow the proof of the general compound Poisson process case
studied in Landriault & Willmot [7]. Let

C(z) =
σ2

2
· 1

ψ(z)− (r − µ)
=

1

z2 −
(

2µ
σ2 + 1

)
z − 2(r−µ)

σ2 − Λ(1− e−zk)
,

where Λ = 2λ/σ2. We can write

C(z) =
1

(z + z1)(z − z2) + Λe−kz
,

where

z1 = −
(
µ

σ2
+

1

2

)
+

√(
µ

σ2
+

1

2

)2

+
2(r − µ+ λ)

σ2
> 0

and

z2 =
µ

σ2
+

1

2
+

√(
µ

σ2
+

1

2

)2

+
2(r − µ+ λ)

σ2
> 0.
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Now

C(z) =
1

(z + z1)(z − z2)
· 1

1 + Λe−kz

(z+z1)(z−z2)

=

∞∑
n=0

(−1)nΛne−knz

(z + z1)n+1(z − z2)n+1
.

Let gn be the inverse Laplace transfom of 1
(z+z1)n+1(z−z2)n+1 . Then

L−1
z

[
(−1)nΛne−knz

(z + z1)n+1(z − z2)n+1

]
(t) = (−1)nΛngn(t− kn)1(t ≥ kn).

Hence,

c(t) := L−1
z [C(z)](t) =

∞∑
n=0

(−1)nΛngn(t− kn)1(t ≥ kn)

and, for p ≥ 0,∫ t

0

e−puc(u)du =
∞∑
n=0

(−1)nΛn
∫ t

0

e−pkne−p(u−kn)gn(u− kn)1(t ≥ kn)du

=

∞∑
n=0

(−1)nΛne−pkn
∫ max(kn,t)

kn

e−p(u−kn)gn(u− kn)du

=

∞∑
n=0

(−1)nΛne−pkn
∫ (t−kn)+

0

e−pvgn(v)dv

=

b tk c∑
n=0

(−1)nΛne−pkn
∫ t−kn

0

e−pvgn(v)dv.

The inverse Laplace transform gn is given by

gn(t) = e−z1t
∞∑
j=0

(
n+ j

j

)
(z2 + z1)jt2n+j+1

(2n+ j + 1)!

(this follows from Equation (29) in Landriault & Willmot [7]), and we get

c(t) =

∞∑
n=0

(−1)nΛne−z1(t−kn)
∞∑
j=0

(
n+ j

j

)
(z2 + z1)j(t− kn)2n+j+1

(2n+ j + 1)!
1(t ≥ kn).

Since

e−ptgn(t) = e−(z1+p)t
∞∑
j=0

(
n+ j

j

)
(z2 + z1)jt2n+j+1

(2n+ j + 1)!

= e−(z1+p)t
∞∑
j=0

(
n+ j

j

)
(z2 + z1)j

(z1 + p)2n+j+2
· (z1 + p)2n+j+2t2n+j+1

(2n+ j + 1)!
,

we can write∫ t

0

e−puc(u)du =

b tk c∑
n=0

(−1)nΛne−pkn
∞∑
j=0

(
n+ j

j

)
(z2 + z1)j

(z1 + p)2n+j+2

·

(
1− e−(z1+p)·(t−kn)

2n+j+1∑
`=0

(z1 + p)`(t− kn)`

`!

)
,
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where we have used the fact that

f(t) =
(z1 + p)2n+j+2t2n+j+1e−(z1+p)t

(2n+ j + 1)!

is the density function of an Erlang distributed random variable with shape
parameter 2n+ j + 1 and rate parameter z1 + p. Now

L−1
z

[
1

z
· 1

ψ(z)− (r − µ)

]
(t) =

2

σ2

∫ t

0

c(u)du

and

L−1
z

[
1

z
· 1

ψ(z + 1)− (r − µ)

]
(t) =

2

σ2

∫ t

0

e−uc(u)du,

and from this

V (x, i) = x−i+x2(r − µ)

σ2

∫ ln( iAcx )

0

c(u)du−i2(r + λ(1− e−k))

σ2

∫ ln( iAcx )

0

e−uc(u)du.

(5)
More explicitly we can write

V (x, i) = x− i+ x
2(r − µ)

σ2

b 1
k ln( iAcx )c∑
n=0

(−1)n
(

2λ

σ2

)n ∞∑
j=0

(
n+ j

j

)
(z2 + z1)j

z2n+j+2
1

·

(
1− e−z1·(t−kn)

2n+j+1∑
`=0

z`1(t− kn)`

`!

)

−i2(r + λ(1− e−k))

σ2

b 1
k ln( iAcx )c∑
n=0

(−1)n
(

2λ

σ2

)n
e−kn

∞∑
j=0

(
n+ j

j

)
(z2 + z1)j

(z1 + 1)2n+j+2

·

(
1− e−(z1+1)·(t−kn)

2n+j+1∑
`=0

(z1 + 1)`(t− kn)`

`!

)
.

As a by-product of these calculations, and with notation as above, we have the
following corollary (for the definition of the scale functions, see e.g. Kyprianou
[6]), and using the corollary together with Equation (8.24) in Kyprianou [6] we
can also get the distribution of J .

Corollary 4.1 The scale functions W(r−µ) and Z(r−µ) of the stochastic process

Zt = −
(
µ+

σ2

2

)
t− σŴt − kNt

are for x ≥ 0 given by

W(r−µ)(x) =
2

σ2
c(x)

and

Z(r−µ)(x) = 1 +
2(r − µ)

σ2

∫ x

0

c(u)du.

respectively.

Proof. The result follows from combining Equation (5) with the formula in
Corollary 11.3 in Kyprianou [6]. 2
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Deterministic innovations

When Zt = γt for a constant γ > 0, the problem has no jump component, and
is reduced to a pure diffusion setting. This case is solved already in McDonald
& Siegel [8], and is also considered and solved in Murto [10].

4.3 Models with σ = 0

A scaled Poisson process

One of the special cases considered in Murto [10] is when σ = 0 and (Zt) is a
Poisson process times a positive constant: Zt = kNt, where k > 0 is a constant
and (Nt) is a Poisson process with constant intensity λ > 0, then both the
distribution of I, and the function V (x, i) can be explicitly calculated. In this
case

ψ−(z) = λ(e−zk − 1),

EQ̂
[
ezU
]

=
r − µ

r − µ(1− z) + λ(1− e−zk)

and

EQ̂
[
eU
]

=
r − µ

r + λ(1− e−k)
.

With
J = −U = kNT (r−µ) + µT (r − µ).

we recall that

V (x, i) = EQ̂

(x− i · e−J

EQ̂ [e−J ]

)+
 ,

and the optimal stopping time is

τ∗ = inf
{
t ≥ 0

∣∣∣ ieUt ≤ xEQ̂ [e−J]}
(note that Q̂ = Q in this case since σ = 0). Straightforward calculations show
that for x ≥ 0

fJ(x) =
r − µ
µ

∞∑
`=0

1

`!
·
(
λ(x− k`)

µ

)`
e−

r−µ+λ
µ (x−k`)1(x ≥ k`).

Let for a, b ≥ 0

LJ(a, b) :=

∫ ∞
a

e−bxfJ(x)dx.

Using Fubini’s theorem we get

LJ(a, b) =
r − µ
µ

∞∑
`=0

1

`!

∫ ∞
a

e−bx
(
λ(x− k`)

µ

)`
e−

r−µ+λ
µ (x−k`)1(x ≥ k`)dx︸ ︷︷ ︸

=:I`

.
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For ` = 0, 1, . . . we have

I` =

∫ ∞
max(a,k`)

(
λ(x− k`)

µ

)`
e−

r−µ+λ
µ (x−k`)−bxdx

=

(
λ

µ

)`
e
r−µ+λ
µ k`

∫ ∞
max(a,k`)

(x− k`)`e−( r−µ+λ
µ +b)xdx

=

(
λ

µ

)`
e−bk`

∫ ∞
(a−k`)+

y`e−( r−µ+λ
µ +b)ydy.

We now use the fact that for u, v ≥ 0 and n a non-negative integer it holds that∫ ∞
u

yne−vydy = n!
e−uv

vn+1

n∑
m=0

(uv)m

m!
;

see e.g. Jameson [4]. Using this result, we get

∫ ∞
(a−k`)+

y`e−( r−µ+λ
µ +b)ydy = `!

e−( r−µ+λ
µ +b)·(a−k`)+(

r−µ+λ
µ + b

)`+1

∑̀
m=0

((
r−µ+λ
µ + b

)
· (a− k`)+

)m
m!

.

It follows that

LJ(a, b) =
r − µ

r − µ+ λ+ bµ

∞∑
`=0

(
λ

r − µ+ λ+ bµ

)`
e−bk`−( r−µ+λ

µ +b)·(a−k`)+

·

∑̀
m=0

((
r−µ+λ
µ + b

)
· (a− k`)+

)m
m!

To get a formula for the value function V using Equation (4), we need to evaluate
LJ for general a ≥ 0 and b = 0, 1:

LJ(a, 0) =
r − µ

r − µ+ λ

∞∑
`=0

(
λ

r − µ+ λ

)`
e−( r−µ+λ

µ )·(a−k`)+ ∑̀
m=0

((
r−µ+λ
µ

)
· (a− k`)+

)m
m!

LJ(a, 1) =
r − µ
r + λ

∞∑
`=0

(
λe−k

r + λ

)`
e−( r+λµ )·(a−k`)+ ∑̀

m=0

((
r+λ
µ

)
· (a− k`)+

)m
m!

.

We recall that in this case

Ac =
1

EQ̂ [e−J ]
=
r + λ(1− e−k)

r − µ
.

It now follows from Equation (4) that

V (x, i) = xLJ(ln(iAc/x), 0)− i r + λ(1− e−k)

r − µ
LJ(ln(iAc/x), 1).

By introducing

α =
r + λ

µ
, β0 =

λ

r − µ+ λ
and β1 =

λe−k

r + λ

13



we can write the value of the optimal stopping problem in this case as

V (x, i) = x(1− β0)

∞∑
`=0

β`0e
−(α−1)·(ln(iAc/x)−k`)+ ∑̀

m=0

(
(α− 1) · (ln(iAc/x)− k`)+

)m
m!

−i(1− β1)

∞∑
`=0

β`1e
−α(ln(iAc/x)−k`)+ ∑̀

m=0

(
α(ln(iAc/x)− k`)+

)m
m!

.

References

[1] Aase, K. K. (2005), ’The perpetual American put option for jump-diffusions
with applications’, Working paper, Finance, Anderson Graduate School of
Management, UC, Los Angeles.

[2] Aase, K. K. (2010), ’The Perpetual American Put Option for Jump-
Diffusions’, in E. Bjorndal et. al. (eds.), ’Energy, Natural Resources and
Environmental Economics’, Energy Systems, Springer-Verlag.

[3] Armerin, F. & Song, H.-S. (2018), ’Valuation of real options in incomplete
models – an implied yield approach’, Fuzzy Economic Review, Vol. 23, No. 1,
pp. 19-32, DOI: 10.25102/fer.2018.01.02.

[4] Jameson, G. J. O. (2016), ’The incomplete gamma functions’, The Mathe-
matical Gazette, 100(548), pp. 298-306, DOI: 10.1017/mag.2016.67.

[5] Jeanblanc, M. Yor, M. & Chesny, M. (2009), ’Mathematical Methods for
Financial Markets’, Springer-Verlag London.

[6] Kyprianou, A. E. (2014), ’Fluctuations of Lévy Processes with Applications.
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