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1 Introduction

In today’s innovation driven economy (Christensen et al. (1998), McGrath (2019), Geelen et al.

(2019)) creative destruction considerably reduces product lives (Jovanovic and Tse (2010)).1 A

prominent example is the mobile phone industry where the innovative success of Apple and

Samsung caused the end of the economic lifetime of Nokia phones. For this reason it is more

and more important to take account of the finiteness of product lifetime in capital investment

decisions of firms. The present article focuses on this topic within a monopoly as well as a

duopoly framework. In particular, we consider a scenario where the occurrence of one event can

end market activities related to the current product. An obvious example is thus the arrival of a

drastic innovation that makes selling this product obsolete.2

The article considers capital investment opportunities of firms, where investing implies that

the particular firm acquires a production plant. The firms have to decide when and how much

to invest. Taking into account the uncertain economic environment, we deal with a real option

problem. The real options literature took off with the seminal works of Dixit and Pindyck (1994)

and Trigeorgis (1996), mainly considering the optimal timing of investment where the project life

is infinite. Contributions where also the investment size is determined are, e.g., Capozza and Li

(1994), Dangl (1999), and Bar-Ilan and Strange (1999). Bensoussan and Chevalier-Roignant (2019)

allow for sequential capacity decisions. A finite project life, but then for investment projects with

exogenously given size, is considered in Gryglewicz et al. (2008).3

This paper also considers finite project life but then with the investment size being endoge-

nous. Since Schumpeter we know that technological change is the driving force of “creative

destruction”. The latter term stands for the decay of long-standing products followed by more

innovative, disruptive ones. The present paper shows that ignoring the possibility that products

get outdated, could lead to suboptimal investment decisions resulting in considerable value

losses. These losses are especially significant in highly competitive markets. There it could

happen that, in the race to be the first investor with the reward of achieving a time period with

monopoly profits, a firm runs the risk of investing far too much at a too early stage.

Creative destruction is the arrival of a more innovative, disruptive product, which makes

the current product obsolete. Our theory states that it is important to distinguish between two

1He and Matvos (2016) focus on the role of debt in the process of liquidating firms that have become inefficient
due to technological innovation shocks.

2Bollen (1999) builds a discrete-value lattice to analyze a framework in which the firm faces a product lifecycle
where demand first grows and then decreases. In the resulting complex setup the use of numerical methods is
required to solve the model. Bollen (1999) concludes that contraction (expansion) options are under (over) valued
in the standard real options literature that ignores the declining demand phase.

3Investment decisions with finite-lived collars are considered in Adkins et al. (2019). However, in that paper the
project as such has infinite length.
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scenarios. First, a firm’s investment in a plant to produce the current product, could at the same

time be a significant boost of the development process ultimately leading to the launch of the

disruptive product. This situation is most likely the case when the firm’s current product arose

from a revolutionary innovation (Stibel, 2011). Revolutionary innovations are innovations of

products that no one else has thought of before. Here we think for example of the first automobile,

the phonograph, and the first smartphone. In such a situation the investment option life is long

where in our theoretical model we take the extreme case of an infinite investment option life,

thereby implicitly assuming that the development of the disruptive product replacing the current

one is starting only after the firm’s investment in the current product.

Second, this development process could already have started before the firm has undertaken

the investment, resulting in a finitely lived investment option. Here we think of evolutionary

innovation (Stibel, 2011), like better engines for cars, better sound systems for the phonograph,

or the next generation smartphones. The point is that at the time a new innovation has arrived,

one is already working on the next innovation. The exercise time of this investment option hardly

affects the process of evolutionary innovation.

Competition is of prime importance for the profitability of today’s investment projects. For in-

vestment projects of exogenously given size, frameworks including competition have elaborately

been taken into account within the theory of real options, as emphasized in survey contributions

by Grenadier (2000), Chevalier-Roignant et al. (2011), and Azevedo and Paxson (2014). Hell-

mann and Thijssen (2018) extend this literature by allowing for ambiguity. Competition is for

sure an important element when determining the size of an investment project. Focusing on

flexibility, Anupindi and Jiang (2008) present duopoly models where firms decide on capacity

under demand uncertainty, but they do not consider investment timing. Recently, a research

line started in which competing firms have to simultaneously determine timing and size of their

investments (see Huisman and Kort (2015), Sarkar (2020) and also the survey article by Huberts

et al. (2015)).4 The present paper belongs to this strand of research, where our extension lies in

the consideration of finite time projects. To our knowledge, the combination of competing firms

that can decide about their investment size and finite time projects has not been studied yet

within one model.

A paper that comes close to our work is Chevalier-Roignant et al. (2019). They focus on an

oligopolistic industry, where firms develop product innovations that arrive according to a Poisson

process with an endogenously determined Poisson parameter. This so-called development stage

is not modeled by us. Instead, we let the firms decide about the timing and the size of the

investment, which is not considered in Chevalier-Roignant et al. (2019).

4These works form a theoretical basis to underpin the empirical analysis of entry deterrence in the casino industry
by Cookson (2018).
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We study a framework where future demand is subject to stochastic shocks, which admit a

geometric Brownian motion process. Firms are not active initially but have an opportunity to

enter the market. They have to determine the optimal time to do so and at the same time decide

about the size of the production capacity. The product market is considered to be homogeneous

and firms produce up to capacity. The characteristics we focus on are that, first, the project has a

finite life. At some unknown point in the future an event takes place due to which the firms have

to stop selling the product. Such an event could be, for instance, the launch of an innovative

product by an outside firm that destroys demand of the current product. The moment this

occurs is uncertain and cannot be influenced by the firms under consideration. We assume that

its timing satisfies a Poisson process. Second, we make a distinction between revolutionary and

evolutionary innovations. In the first case the option to invest has an infinite lifetime, whereas in

the case of evolutionary innovation the lifetime of the option to invest is finite. Then the option

expires at a point in time determined by the same Poisson process. This can be motivated by the

fact that in our example the launch of an innovative product does not only end the life of the

project after market entry, but also before the investment takes place it destroys the value of the

option to invest in a plant producing that particular product.

We start off with a monopoly framework in which the project has a finite life and, in addition,

the life of the option to invest is also finite, reflecting evolutionary innovation. This will lead to an

earlier investment because as long as the firm does not invest, it runs the risk of not being able

to invest at all due to the possibility that the option will vanish. The firm speeding up investment

implies that it will invest at the moment that the output price is smaller. For this reason the firm

decides to invest less when the option could expire in finite time. If the investment option exists

forever as long as the firm has not exercised it, as is the case for revolutionary innovation , we

find that the optimal size of the investment is not affected by the probability that the project will

end in finite time. However, at the same time the investment threshold goes up, implying that it

is optimal for the firm to invest later.

When we turn to a duopoly framework, we first distinguish between the first investor (or

leader), who becomes the incumbent upon investing, and the second investor (or follower),

who becomes the potential entrant once the other firm has invested. We first again consider

the scenario where the investment option life is finite for both, i.e., evolutionary innovation.

Hence, we impose that when the unforeseen event takes place, for both firms this implies that

the life of the project as well as the investment option life comes to an end. Second, we analyze

the situation in which the investment option life is infinite for the incumbent, which resembles

revolutionary innovation. For the potential entrant we impose that, as long as it has not invested

yet while the incumbent has already done so, the life of its investment option ends at the moment

that the project of the incumbent comes to an end. The motivation is that when this event takes
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place due to which selling this product stops, also the option to invest becomes worthless.

As soon as the entrant will invest, the first investor is already in and has taken its decisions,

namely when to invest and how much. Therefore, the entrant in fact faces the same decision

as the monopolist in the case of a finite project and option life, while taking into account that

the market size has reduced because the incumbent has already taken part of it. So in such a

situation, as for the monopolist it also holds for the entrant that when the probability that the

project and the option life stops increases, the entrant will invest earlier and less.

For the incumbent it also holds that it invests earlier and less. As in the monopoly case

without entry threat, the incumbent wants to preempt the event that the investment option will

expire. For the entrant, the fact that the incumbent invests less implies that for a given quantity

the output price is larger, which makes investing more attractive. As a result, the entrant will

invest earlier and more compared to the situation where the incumbent’s option life had infinite

length.

When analyzing such a situation, we get that, when the investment option life is infinite, the

project life being finite induces the incumbent to invest the same amount but later compared

to a situation with the project life being infinite. In addition, the leader invests earlier than the

monopolist without entry threat, facing a project with the same length.

If in the duopoly investment game firm roles are endogenous, both firms are entitled to

invest first. We know already from Fudenberg and Tirole (1985) that there will be a preemption

equilibrium with an early investment of the first investor. Since the investment payoff is lower if

the project life is shorter, firms are less inclined to become the first investor. Therefore, a finite

project life mitigates the preemption effect. Finally, we check what will happen if, in taking their

investment decisions, firms make the mistake to ignore that project lives are finite. We show

that the reduction in value is huge, and even loss-making strategies can be expected in case of

sufficiently short project lives. This value loss will be considerably enlarged by the preemption

effect just mentioned.

The paper is organized as follows. Section 2 presents the model setting, whereas the monopoly

problem is studied in Section 3. In Section 4 we extend the analysis towards a duopoly. The

duopoly investment game with endogenous firm roles, and the value losses resulting from

mistakenly not taking into account that the project life is finite, are analyzed in Section 5 and

Section 6 concludes this paper.
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2 Model setting

Consider a homogeneous product market where the output price is given by

P (t ) = X (t ) f (Q(t )) , (1)

in which Q(t) is the market quantity and f ′ (Q(t )) < 0. Future demand is uncertain, which is

modeled by letting X (t ) follow the geometric Brownian motion process

d X (t ) =µX (t )d t +σX(t )d z(t ), (2)

where µ is a parameter reflecting the trend, σ is the uncertainty parameter, and d z(t) is the

increment of a Wiener process. As such the inverse demand function contains multiplicative

demand shocks (Anupindi and Jiang (2008)).

There are two firms having an option to invest in production capacity denoted by KL for the

first investor and KF for the second investor. The subscript L stands for the first investor being

the leader in the investment game, and the subscript F indicates that the second investor is

the follower. Both KL and KF are endogenous, i.e., both the leader and the follower can decide

on their investment size. Firms produce up to capacity, implying that Q(t) = KL after the first

investor has invested, and Q(t ) = KL +KF after the second investor also has done so.

For both firms the investment cost is sunk and proportional to the acquired capacity. If

the capacity size is K , investment costs are equal to δK , with δ being the unit investment cost.

The firms are risk neutral and discount with a fixed rate r. As usual (see, e.g., Dixit and Pindyck

(1994)), we impose that r >µ.

For both firms it holds that their project has a finite life. To do so we introduce a parameter

λ> 0, and assume that during the next time instant d t the probability that the project stops is

λd t . This is different from, e.g., Huisman and Kort (2015) in which investment project lives are

infinite.

Concerning the option to invest we distinguish between scenarios where innovation is

revolutionary and thus the investment option exists forever, and where innovation is evolutionary

and thus for both firms the investment option ceases to exist over the next time instant d t with

probability λd t . This is the same parameter λ as the one that governs the project life. The idea

is that with probability λd t some exogenous event happens that makes the current market

obsolete. Here we can think of a product innovation resulting in a new product that takes all

demand away from the current product. This ends the project life when the firm has already

invested, and makes the option to invest in this project worthless in case the firm has not invested

yet. Following this interpretation the parameter λ can be interpreted as the “creative destruction
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parameter”. When innovation is evolutionary, demand follows the process

d XE (t ) =µXE (t )d t +σXE (t )d z(t )−XE (t )d q(t ), (3)

where

d q(t ) =
1 with probability λd t

0 with probability 1−λd t
, (4)

while revolutionary innovation implies the process to follow

d XR (t ) =
 µXR (t )d t +σXR (t )d z(t ) if T < T ∗

µXR (t )d t +σXR (t )d z(t )−XR (t )d q(t ) if T ≥ T ∗
, (5)

where T ∗ is the first passage time related to the investment threshold X ∗:

T ∗ = min
T

{
X (t ) ≥ X ∗}

. (6)

As we already stated, we assume that firms always produce up to capacity, i.e., the market

quantity Q(t ) is equal to the total available capacity acquired by the firms that have invested by

time t . Alternatively, volume flexibility can be assumed where either capacity can be left idle

(e.g. Van Mieghem (1998)) or the firm can produce above capacity level against extra costs (e.g.

Besanko et al. (2010)). Departing from our production up-to-capacity assumption the analysis is

considerably simplified, especially in a duopoly framework. On the other hand, based on the

analysis developed in, e.g., Hagspiel et al. (2016), we expect it will not change the qualitative

aspects of our results when we relax this constraint. In reality it both can happen that firms always

produce up to capacity, due to e.g. fixed costs associated to labor, commitment to suppliers, and

production ramp-up (Goyal and Netessine (2007)), or that they can leave some capacity idle in

case of a downturn. Typical examples where firms produce up to capacity are the steal industry

and the semiconductor industry. When demand falls, a semiconductor fabrication plant keeps

producing at its maximum. Running costs are low, because these plants are highly automated

with few staff. Therefore, a policy of producing up to capacity makes sense but also results in

decreasing prices. This happened through most of the year 2019.5

5The Economist, Jan 16th 2020 edition.
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3 Monopoly

Let us first consider the evolutionary setting, i.e. that the "creative destruction" parameter λ

relates to the project life and to the investment option. The idea is that with probability λd t

an outside product innovation makes the current product obsolete. This ends not only the

project life when the firm has already invested, but also makes the option to invest in this project

worthless in case the firm has not invested yet describing an evolutionary innovation. The firm

has to determine the optimal time to invest and the optimal size of the investment. In other

words, a profit-maximizing firm faces the following maximization problem:

max
T≥0,K≥0

(
V (X (T ),K )−e−r TδK

)
, (7)

in which

V (X (T ),K ) = E

(∫ ∞

T
e−r t X (t ) f (K )K d t | X (0) = X

)
, (8)

where T is the time of the investment, and K is the capacity level that the firm acquires at time

T. The expectation sign is there because future cash flows are uncertain. This is due to the fact

that the output price X (t ) f (K ) depends on the geometric Brownian motion process X (t ), and

that with probability λd t the project will stop during the next time instant d t .

As explained in, e.g., Dixit and Pindyck (1994), we treat this problem as an optimal stopping

problem. To do so we distinguish between a continuation region, where X , and thus also the

output price X f (K ) , is too low for an investment to be optimal, and a stopping region where

X is large enough for the firm to invest. In between the two regions we have the boundary X ∗

being the threshold value triggering investment. At the moment of the investment the firm has

to determine the investment level K ∗. To determine X ∗ and K ∗ we use the following conditions.

First, for a given X we maximize the stopping value with respect to K . Then, to determine X ∗ we

value match and smooth paste the value functions of the stopping and the continuation region

at the “free boundary” X ∗.

3.1 Evolutionary innovation

Let us first consider the case of evolutionary innovation. Then it holds that in both the continua-

tion and the stopping region we have to take into account that the investment option as well as

the project can become worthless with probability λd t , we denote this by a subscript E referring

to evolutionary innovation. For a more elaborate mathematical derivation we refer to the proof

of Proposition 1. The proofs of all propositions and corollaries can be found in the appendix.
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Proposition 1. In case of evolutionary innovation, the optimal investment threshold satisfies

X ∗
E (K ) = βλ

βλ−1

δ
(
r +λ−µ)

f (K )
, (9)

and the corresponding capacity level is given by

βλ
K ∗

E f ′ (K ∗
E

)
f
(
K ∗

E

) +1 = 0, (10)

where βλ is the positive root (larger than one) of the quadratic equation

1

2
σ2β2

λ+
(
µ− 1

2
σ2

)
βλ− (r +λ) = 0. (11)

An explicit expression of the capacity size can be obtained once we specify f (Q(t )) . In the

duopoly model that we analyze in the next section, we take inverse demand to be linear in the

quantity:

P (t ) = X (t )
(
1−ηQ(t )

)
, (12)

which, due to the fact that the firm produces up to capacity, implies that after investment of the

monopolist the output price is given by

P (t ) = X (t )
(
1−ηK

)
. (13)

For the linear inverse demand case Proposition 1 translates into the result presented in the

following corollary.

Corollary 1. If the inverse demand function is given by (12), the optimal investment threshold

satisfies

X ∗
E = βλ+1

βλ−1
δ

(
r +λ−µ)

, (14)

and the corresponding capacity level is given by

K ∗
E = 1

η
(
βλ+1

) . (15)

Following Dixit and Pindyck (1994, p. 200) we can view finite project lives as infinite project

lives with increased discount rates, i.e., “Formally, we can regard the project as infinite-lived, but

augment the rate at which future profits are discounted by adding the Poisson death parameter,

so that the discount rate increases from r to r +λ”. In this way the results of Huisman and Kort

(2015) directly translate to the optimal capacity and threshold from Corollary 1.
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3.2 Revolutionary innovation

We now consider the revolutionary scenario where the project life is finite while the option to

invest remains existent as long as the firm has not invested yet. To analyze this problem we

again distinguish between the stopping and the continuation region. In the stopping region

nothing has changed. However, in the continuation region we have to take into account that the

investment option has an infinite life. Analogous to Proposition 1 we get the following result.

Proposition 2. In case of revolutionary innovation, the optimal investment threshold equals

X ∗
R (K ) = β

β−1

δ
(
r +λ−µ)

f (K )
, (16)

whereas the investment size implicitly satisfies

β
K ∗

R f ′ (K ∗
R

)
f
(
K ∗

R

) +1 = 0, (17)

where β is the positive root of the quadratic equation

1

2
σ2β2 +

(
µ− 1

2
σ2

)
β− r = 0. (18)

An important conclusion we can draw from the expression for the investment size (17) is that

capacity size K ∗
R does not depend on λ. Hence, this holds despite of the fact that at each time

instant the project ends with probability λd t . Still, the creative destruction parameter λ has an

effect on the investment decision, because expression (16) learns that the investment threshold

goes up with λ, which implies that the monopolist will invest later, provided that the initial level

of the process X , which is X0, falls below the threshold level X ∗
R (K ) . This means that the reduced

project length causes that the firm invests later in the same capacity size.

For the linear inverse demand case, Proposition 2 translates to

X ∗
R (K ) = β

β−1

δ
(
r +λ−µ)
1−ηK

, (19)

and

K ∗
R = 1

η
(
β+1

) . (20)

This straightforwardly leads to the result specified in the next corollary.

Corollary 2. If the inverse demand function is given by (12), the optimal investment threshold
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satisfies

X ∗
R = β+1

β−1
δ

(
r +λ−µ)

, (21)

and the corresponding capacity level is given by

K ∗
R = 1

η
(
β+1

) . (22)

From the two quadratic polynomials (11) and (18) it is obtained that

βλ >β. (23)

Comparing, for the linear inverse demand function, the investment decision for evolutionary

innovation, (14)-(15), with revolutionary innovation, (21)-(22), we conclude that for the finite

time option the investment threshold is lower, X ∗
E < X ∗

R , indicating an earlier investment, and

that the size of the investment is smaller, K ∗
E < K ∗

R . The reason is that the monopolist wants to

preempt the event that the option to invest is not available anymore. Investing earlier implies

that at the moment of the investment the output price is lower, given the capacity size. Therefore,

the firm will spend less on investing so that it acquires a smaller capacity.

Note that the optimal decisions under an infinite option life do not correspond to the work of

Huisman and Kort (2015) with a higher perceived discount rate. Still it is true that the perceived

discount rate in the stopping region equals r +λ. However, since the option life is infinite, in the

continuation region the λ does not play a role so that we still have r as the discount rate there.

4 Duopoly

We consider a scenario with two firms competing for a market share. Both have to decide on

when to invest, i.e., when to enter the market, and on how much to invest, which determines the

size of the production capacity. Throughout this section we impose that the inverse demand

function is the one of expression (12).

One firm is assigned to be the leader, which has the right to invest first. The other firm is

the follower, which has the choice to invest at the same time as the leader or to invest later. In a

situation where the leader has invested and the follower still waits, we in fact have an incumbent-

entrant situation. For this reason we sometimes call the leader the incumbent and the follower

the (potential) entrant.

Hence, what we consider here is a situation of exogenous firm roles in the sense that be-

forehand we assign the leader role to one firm and the follower role to the other firm. The next

section analyzes a duopoly scenario with endogenous firm roles. This means that both firms are
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able to invest first, giving rise to so-called preemption equilibria.

We first treat the scenario where both the project life is finite and the investment option has

a finite life, followed by an analysis of the case where the investment option for the leader is

infinite.

4.1 Evolutionary innovation

We consider an evolutionary situation in which the product market has a finite life also before

the current product is launched. Hence, already when the current product is not produced yet,

product innovation carried out by outside firms can wipe away demand for this product. The

implication is that not only after investment the project ends with probability λd t , but also

before the investment the option to invest will vanish with probability λd t . This holds for both

the leader and the follower.

We first consider the follower’s decision in a situation that the leader already has invested

and acquired a capacity level KL . After determining the follower’s optimal investment decision

we turn to the leader’s problem. We derive the leader’s optimal investment decision, taking

into account how the follower will react. The next proposition specifies the optimal investment

decision of the follower.

Proposition 3. The value function of the follower at the moment of investment is equal to

VF (X ,KL ,KF ) = X KF
(
1−η (KL +KF )

)
r +λ−µ . (24)

Given the capacity level KL of the leader, the optimal investment threshold of the follower, in case

of evolutionary innovation, is given by

X ∗
F,E (KL) = βλ+1

βλ−1

δ
(
r +λ−µ)
1−ηKL

, (25)

whereas the capacity level equals

K ∗
F,E (KL) = 1−ηKL

η
(
βλ+1

) . (26)

The decision of the follower is qualitatively similar as the one of the monopolist when the

option life is finite. The only change is that due to the investment of the leader, the reservation

price has reduced by a factor ηKL . This explains that, apart from this factor ηKL , the investment

decision is the same as the monopolist’s investment decision expressed in (14)-(15). For the

leader the follower’s investment decision (25)-(26) provides important information in the sense

that increasing its capacity KL not only reduces the follower’s capacity but also lets the follower
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invest later, so that the leader enjoys a longer period during which it is the monopolist in the

market. Hence, as already concluded by Huisman and Kort (2015), the leader has two reasons to

overinvest.

Turning to the leader’s problem we first have to remark that, based on the fact that the

follower can invest at the same time or later than the leader, we have to distinguish between an

entry deterrence and an entry accommodation strategy. With an entry deterrence strategy the

leader invests so much that it will generate a monopoly period for itself due to the fact that the

follower will invest later. From (25) we obtain that the acquired capacity level should then be

such that

KL > K̂ (X ) = 1

η

(
1− βλ+1

βλ−1

δ
(
r +λ−µ)

X

)
. (27)

If the capacity size does not satisfy this constraint, the follower will invest at the same time as the

leader and then we are in the entry accommodation scenario.

Under the entry deterrence strategy the leader value in the stopping region is given by

V det
L (X ,KL)−δKL = KL

(
1−ηKL

)
r +λ−µ X −δKL −

(
X

X ∗
F,E (KL)

)βλ KLηK ∗
F,E (KL)

r +λ−µ X ∗
F,E (KL). (28)

The first two terms represent the leader value if the leader were a monopolist until the end of

the project. The last term is a negative correction for the fact that the follower will enter as

soon as X reaches the follower threshold X ∗
F,E . Then the output price will be reduced by an

amount ηK ∗
F,E X ∗

F,E , leading to an instantaneous revenue reduction of KLηK ∗
F,E X ∗

F,E . This negative

correction needs to be properly discounted, because it follows from the entry of the follower

taking place at a later point in time. In fact, this discounting is achieved by the term
(

X
X ∗

F,E

)βλ
denoting the stochastic discount factor, that is, it holds that

(
X

X ∗
F,E

)βλ = E
(
e−(r+λ)(t−TF )

)
, where

TF is the (stochastic) entry time of the follower, taking place as soon as the stochastic process X

reaches the follower threshold X ∗
F,E for the first time. Comparing this to the analogous term in

expression (29) of Huisman and Kort (2015), we see that in their paper “our” βλ is replaced by β.

This implies that, because βλ >β (see (23)) and X < X ∗
F,E (which holds in the region considered

here), the negative correction due to the follower’s entry is smaller in our case. The finiteness of

the project works here: it may be possible that the project is stopped already before the follower

enters. This mitigates the strategic effect in the sense that the negative correction of the leader

value due to the possible follower entry is lower.

Application of the value matching and the smooth pasting conditions, and maximizing (28)

with respect to KL, where we have to take into account that X ∗
F,E and K ∗

F,E depend on KL as

obtained from (25)-(26), gives the following result.
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Proposition 4. The leader will consider the entry deterrence strategy whenever X is in the interval(
X det

1 , X det
2

)
, where X det

1 is implicitly given by

X det
1

r +λ−µ −δ+
(

X det
1

X ∗
F,E (0)

)βλ
δ

βλ−1
= 0, (29)

and

X det
2 = βλ+1

βλ−1
2δ

(
r +λ−µ)

. (30)

The leader’s entry deterrence investment threshold, in case of evolutionary innovation, equals

X det
L,E (KL) = βλ

βλ−1

δ
(
r +λ−µ)
1−ηKL

, (31)

and the investment size K det
L,E (XL) is implicitly determined by

1−2ηK det
L,E

r +λ−µ XL −δ+
(

XL

X ∗
F,E (K det

L,E )

)βλ K det
L,EηK ∗

F,E (K det
L,E )X ∗

F,E (K det
L,E )

r +λ−µ
1− (

βλ+1
)
ηK det

L,E

K det
L,E

(
1−ηK det

L,E

) = 0. (32)

Expression (31) is an important one, because it helps to understand the various effects of

the creative destruction parameter λ. If we take into account that λ also influences K det
L,E , as

becomes apparent from expression (32), three effects can be distinguished, namely an NPV

effect via λ itself, a quantity effect via K det
L,E , and a strategic effect via βλ. The NPV effect takes

into account that the project is expected to last shorter if λ increases, implying a smaller period

during which revenues are earned. This makes the project less attractive, implying that the

investment threshold X det
L,E will increase.

The quantity effect results from the fact that we can obtain from (32) that K det
L,E decreases in

λ, having the obvious interpretation that the leader will invest less in the project when it has a

shorter expected duration. A smaller investment means that the firm has a lower cash outflow,

implying that revenues need not be that high to make an investment profitable. Hence, due to

the quantity effect X det
L,E will decrease.

The strategic effect is the effect coming from the fact that finite project duration results in

a positive probability that the project has already stopped before the follower will enter. This

mitigates the effect of competition on the leader’s investment decision, and thus the negative

effect of future follower entry on the expected net present value of the investment. For this

reason investing becomes more attractive so that the strategic effect reduces the leader threshold

X det
L,E .

In total, the leader threshold X det
L,E is positively influenced by the NPV effect, and negatively
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by the quantity and the strategic effect. In principle the two expressions (31)-(32) can be used

to solve for the threshold X det
L and the investment size K det

L,E . The next proposition presents the

outcome.

Proposition 5. Under an entry deterrence strategy the leader’s investment threshold is, in case of

evolutionary innovation, given by

X det
L,E = βλ+1

βλ−1
δ

(
r +λ−µ)

, (33)

and the corresponding capacity size is equal to

K det
L,E = 1

η
(
βλ+1

) . (34)

Similar as in the monopoly setting with finite option life, also here expressions (33) and (34)

are analogous to the comparable results in Huisman and Kort (2015), but then with augmented

discount rate r +λ. To analyze the effects of the creative destruction parameter λ, note that,

since βλ is increasing in λ, the effect of λ on K det
L,E is negative. The effect of λ on X det

L,E can be

determined by the sign of the derivative of X det
L,E as given in the following corollary.

Corollary 3. The derivative of (33) with respect to λ is

∂X det
L,E

∂λ
= δβλ

(
σ2

(
β2
λ
−1

)+2
(
r +λ−µ))(

βλ−1
)(

2(r +λ)+σ2β2
λ

) > 0. (35)

Corollary 3 implies that taking into account creative destruction, delays market entry of the

leader. In other words, the NPV effect dominates the quantity and the strategic effect.

We refrain from analyzing the entry accommodation strategy as it is similar to the strategy in

Huisman and Kort (2015) where r is replaced by r +λ.

4.2 Revolutionary innovation

Now we consider a revolutionary situation in which the product market has a finite life only

from the moment the leader has invested. This situation could arise when the launch of the

current product triggers outside firms to start developing a new project that makes the current

product obsolete. The probability that these firms obtain a breakthrough in their innovation

process is assumed to be equal to λd t . The implication is that the lifetime of the option to

invest is infinite for the leader, but after the leader has invested, due to creative destruction

the project will end with probability λd t . For the follower this implies that once the leader has

invested, the lifetime of the follower’s investment option becomes finite. This is because, once
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the outside firms accomplish the breakthrough that makes the current product obsolete, the

opportunity to invest in the current product market also becomes worthless. Hence both the

follower’s project and the follower’s investment option life is finite. Since also in the previous

section there was a finite option life for the follower, the follower’s investment decision is exactly

the same as in Proposition 3. Hence, X ∗
F,R (KL) = X ∗

F,E (KL) and K ∗
F,R (KL) = K ∗

F,E (KL). Of course, KL

can be different, which we will find out below, so that the follower could still invest at a different

time in a different capacity size.

In case of an entry deterrence strategy the leader invests as in the following proposition.

Proposition 6. The leader will consider the entry deterrence strategy whenever X is in the interval(
X det

1 , X det
2

)
, where X det

1 is implicitly given by (29) and X det
2 is given by (30). The leader’s entry

deterrence investment size, in case of revolutionary innovation, equals

K det
L,R = 1

η
(
β+1

) , (36)

and the investment threshold X det
L,R is implicitly determined by

(
X det

L,R

)βλ (
βλ−β

)
δ

β
(
βλ−1

) (
β

(
βλ−1

)(
1+β)(

1+βλ
)
δ

(
r +λ−µ))βλ +X det

L,R

(
β−1

)(
r +λ−µ)(

β+1
) −δ= 0. (37)

Concerning the entry deterrence investment strategy we have an explicit expression for the

investment size, whereas the investment threshold is implicitly determined. As in the monopoly

case with infinite option life (Corollary 2), also here the investment size (36) is not influenced by

the creative destruction parameter λ. The capacity K det
L,R is in fact the Stackelberg leader quantity

level, because due to the production-up-to-capacity assumption, the leader, or incumbent,

is committed to produce the quantity K det
L,R at any time after the investment. The follower, or

(future) entrant, will adjust its capacity level accordingly (see (26)).

Although we do not know X det
L,R explicitly, from the implicit expression (37) we can derive that

the threshold is between certain bounds, as the following corollary shows.

Corollary 4. Under an entry deterrence strategy, in case of revolutionary innovation, the leader’s

investment threshold X det
L,R , which is implicitly defined by (37), is in between the following values

X det
L,E = βλ+1

βλ−1
δ

(
r +λ−µ)< X det

L,R < β+1

β−1
δ

(
r +λ−µ)= X ∗

R . (38)

From the upper bound of X det
L,R in (38), and expression (21) we obtain that the leader in-

vests earlier than the monopolist without entry threat. The lower bound of X det
L,R in (38), which

coincides with the evolutionary threshold X det
L,E , shows that the leader will invest later if the
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investment option will not expire in finite time. It makes sense that, as in the monopoly case, if

the investment option will expire in finite time, this will accelerate the investment decision of

the leader.

From the results of the last proposition and corollary and Proposition 5, we obtain that, when

the leader’s investment option could expire in finite time, he invests earlier and therefore less.

Note that for the follower this is a good situation, since it holds that for any follower quantity the

output price will be higher. Therefore, the follower will respond by investing earlier and more

compared to the situation where the investment option of the leader has infinite life.

Turning to the entry accommodation strategy, it holds that the investment capacity size

K acc
L (X ) is such that K acc

L (X ) ≤ K̂ (X ) where K̂ (X ) is given by (27). We then are in a situation that

the leader invests at the same time as the follower. However, despite the fact that leader and

follower invest at the same time, it is still the case that the leader acts first, where the follower

has the choice to invest later or to follow suit, where it chooses for the latter option in the entry

accommodation case. As a result we obtain the Stackelberg equilibrium in investment quantities.

In this situation, one reason for overinvestment, namely that the follower will invest later if the

leader quantity is higher, does not exist. However, we still have the mechanism that a larger

value of KL will result in a smaller capacity of the follower, as confirmed by expression (26). The

following proposition contains the leader’s entry accommodation strategy.

Proposition 7. For the accommodation strategy, the value function of the leader is given by

V acc
L (X ,KL) = KL

(
1−η(

KL +K ∗
F (X ,KL)

))
r +λ−µ X . (39)

The leader will consider the entry accommodation strategy, in case of revolutionary innovation,

whenever X ≥ max
(

X acc
1 , X acc

L,R

)
, where

X acc
1 = 3+βλ

βλ−1
δ

(
r +λ−µ)

, (40)

X acc
L,R = 1+β

β−1
δ

(
r +λ−µ)

, (41)

and the corresponding capacity size is equal to

K acc
L (X ) = 1

2η

(
1− δ

(
r +λ−µ)

X

)
. (42)

The optimal accommodation threshold from the perspective of the leader is X acc
L,R , whereas

X acc
1 is the minimum level of X for which the follower is willing to invest at the same time as the

leader. The conclusion is that only when X ≥ max
(

X acc
1 , X acc

L,R

)
, both firms are willing to invest at
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the same time.6

If the probability that the project will end goes up, the effect on X acc
1 is positive because

∂X acc
1
∂λ > 0 (see Appendix A.8 where a = 3). A shorter expected project life reduces the investment’s

net present value (NPV), due to which the follower wants to invest later. However, the follower

also has an incentive to invest earlier because with probability λd t it can happen that the option

disappears within the next time period of length d t . Apparently, the NPV effect dominates here.

Furthermore, X acc
L,R increases with λ, because due to the NPV effect simultaneously investing

with the follower is less profitable. Further, we see that an increase of λ will result in the leader

to invest less because of the obvious reason that the project is expected to last during a shorter

period of time.

5 Duopoly with Symmetric Firm with Endogenous Firm Roles

Since the option life for the follower is always finite, we already concluded in the previous section

that the strategies of the follower are independent of the scenario involving evolutionary or

revolutionary innovations. It also holds that the optimal capacity size of the leader K det
L (X )

follows from the first order condition of the leader value in the stopping region, which thus

does not depend on the option value. Moreover, in the resulting preemption equilibrium, which

is explained later, the timing also only depends on the leader value in the stopping region.

Therefore, we can conclude that the resulting equilibrium outcome is the same for revolutionary

and evolutionary innovations. Hence, in this section we can drop the subscripts E and R , so that

X ∗
F (KL) = X ∗

F,R (KL) = X ∗
F,E (KL),

K ∗
F (KL) = K ∗

F,R (KL) = K ∗
F,E (KL),

K acc
L (X ) = K acc

L,E (X ),

K det
L (X ) = K det

L,E (X ).

We analyze a situation where the firms are completely symmetric, which implies that both

firms are entitled to invest first. This means that it is not known beforehand which firm will be

the leader or the follower. Hence, firm roles are endogenous in the duopoly investment game. To

determine the equilibrium for such a scenario we follow the approach of, originally, Fudenberg

and Tirole (1985) (see also Thijssen et al. (2012) and Riedel and Steg (2017)), which starts out

with developing two different curves, as depicted in Figure 1. Note that we actually see four

curves there, but this is because we depict two different situations: finite and infinite project life.

6Note that in case the project has infinite life, i.e. λ= 0, it always holds that X acc
L,R < X acc

1 , implying that for X >
X acc

1 the leader accommodates entry in the sense that the leader and the follower will invest at the same time.
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For the infinite variant we refer to Huisman and Kort (2015), which can be obtained by setting

λ = 0. We denote the latter strategies by small letters x and k rather than capitals. For each

situation a leader and a follower curve is drawn. The leader curve connects points representing

the leader value that results from investing immediately, taking into account that the follower

invests at the corresponding follower threshold (see Proposition 3). Note that for small values

of the geometric Brownian motion process, i.e. X < X det
1 , the leader value equals zero, which is

because the output price is too low for the leader to profitably invest in a capacity level larger

than zero.

The follower curve connects follower values resulting from investing at the follower threshold.

This explains why the follower curve is situated above the leader curve for small values of X .

In between the values X det
1 and X̂ the leader applies the entry deterrence strategy, whereas for

X > X̂ entry accommodation is applied (see also Huisman and Kort (2015)). Thus X̂ is defined by

X̂ = min
{

X ∈
(

X acc
1 , X det

2

)∣∣∣V acc
L

(
X ,K acc

L (X )
)−δK acc

L (X ) =V det
L

(
X ,K det

L (X )
)
−δK det

L (X )
}

.

Note that the follower curve jumps upwards for X = X̂ . This is because, if the leader moves from

an entry deterrence to an entry accommodation strategy, the leader’s investment size jumps

down, because one reason for overinvestment, namely that by investing more the follower invests

later, disappears.

Having determined the curves representing the leader and the follower value, we can deter-

mine the equilibrium, i.e., the level of X at which the first investor will invest and its capacity size,

which then, by Proposition 3, in turn determines the follower’s investment decision. We do this

for the situation where the market is small initially, i.e. X0 < XP , in which XP is the point at which

the leader curve intersects the follower curve from below, see Figure 1. The firms will refrain from

investing immediately, because as long as the follower curve is situated above the leader curve,

a better strategy is to wait and invest at the follower threshold. On the other hand, if the firms

wait with investing until X > XP , a first mover advantage arises, because the leader value exceeds

the follower value. In such a situation it would be better for one firm to invest at a slightly lower

value of X to preempt its competitor so that it obtains the leader value. Therefore, in equilibrium

the first investor invests at XP , in capacity K det
L (XP ) (see Proposition 4) and the second investor

waits with investment until X reaches the corresponding follower threshold X ∗
F (K det

L (XP )) and

invests K ∗
F (K det

L (XP )). Because the preemption effect is so dominantly present, this equilibrium

is called a preemption equilibrium and XP the preemption point determined by

V det
L

(
XP ,K det

L (XP )
)
−δK det

L (XP ) = FF (XP ) . (43)

All small X -values x in Figure 1 represent the case of λ= 0, which corresponds to the infinite
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Figure 1: Optimal value functions for the leader and follower as a function of X . The parameter values are

r = 0.1;µ= 0.06;δ= 0.1;η= 0.05;λ= 0.02;σ= 0.1. The gray lines represent the case of an infinite project length and

the black lines represent the case of a finite project life. The black solid line and gray dashed represent the value

function of the leader and the black dotted and gray dot-dashed line the value function of the follower.

project life variant. The preemption effect is less dominant if the project life is finite, which can

be inferred from the fact that XP > xP . The finiteness of the project implies that the investment

payoff is lower, and therefore firms are less inclined to be the first investor. So, like in the case of

exogenous firm roles treated in Section 4, also here we get that the first investor will invest at a

later point in time.

It is important to notice that both the leader and the follower curve, and thus also the

corresponding preemption equilibrium, do not depend on whether the option to invest has a

finite or infinite life for the first investor. The leader curve does not change because it is based on

the leader investing immediately. The follower curve is based on the follower investing later or at

the same time as the leader. This implies that at the moment of the investment the option life of

the follower is finite in both situations so there is no change either. This confirms what we stated

in the beginning of the section, namely that the equilibrium outcome does not depend on the

innovation being revolutionary of evolutionary.

5.1 How important is it to realize project life is finite

Mainstream real options contributions consider the lifetime of an investment project to be

infinite. However, in every day life we more and more realize that innovations are abound

(McGrath (2019)) and product lifetime is mostly finite due to creative destruction. The analysis
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in this paper takes account of that and this section explores how important it is to explicitly

model finite lifetime. To quantify, we derive the relative loss in value when the project life is

finite, whereas firms ignore this feature in their investment decisions. To do so, we compare the

value functions in two situations. First, we take the value functions of the monopolist, leader

and follower based on the strategies earlier derived in this paper. Second, we consider value

functions resulting from standard real options strategies, i.e. firms invest assuming that the

project life is infinite, whereas in fact the project can end at each time with probability λd t . As

a result, we define the relative loss as the value of the investor based on the optimal time and

size decisions taking the finitiness of the project into account and discounted to some common

value X0, minus the value of the investor based on the suboptimal time and size decisions which

would have been optimal if the project lives were infinite and discounted to the same X0, divided

by the optimal value. The stochastic discount factor is influenced by βλ in case of evolutionary

innovation and by β in case of revolutionary innovation. We denote the optimal investment

decisions, i.e., the optimal threshold and capacity strategy dependent on λ, by capital letters and

the suboptimal decisions which ignore the fact that the project is finite by small letters.

So far the value functions were defined without the direct inclusion of the costs, therefore we

introduce V n =V −δK as the net value function. For the monopolist the net value is defined as

V n
M (X ,K ) = K (1−ηK )X

r +λ−µ −δK . (44)

And the loss of the monopolist in case of evolutionary innovation is then

`(E)
M (λ) =

(
X0
X ∗

E

)βλ
V n

M

(
X ∗

E ,K ∗
E

)− (
X0
x∗

)βλ
V n

M (x∗,k∗)(
X0
X ∗

E

)βλ
V n

M

(
X ∗

E ,K ∗
E

) , (45)

and in case of revolutionary innovation the relative loss of the monopolist of ignoring the

finiteness of the project is

`(R)
M (λ) =

(
X0
X ∗

R

)β
V n

M

(
X ∗

R ,K ∗
R

)− (
X0
x∗

)β
V n

M (x∗,k∗)(
X0
X ∗

R

)β
V n

M

(
X ∗

R ,K ∗
R

) . (46)

For the duopoly strategies we introduce the notation SL and SF as the optimal decision sets

at the preemption point of the leader and follower, respectively,

SL =
{

XP , X ∗
F (K det

L (XP )),K ∗
F (K det

L (XP )),K det
L (XP )

}
= {XP ,SF } , (47)
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and sL and sF as the suboptimal equivalent under the assumption that projects have an infinite

length

sL =
{

xP , x∗
F (kdet

L (xP )),k∗
F (kdet

L (xP )),kdet
L (xP )

}
= {xP , sF } . (48)

Recall that the decisions at the preemption point for evolutionary and revolutionary innovations

coincide. The net value of the leader is defined as

V n
L (X , XF ,KF ,KL) = KL(1−ηKL)

r +λ−µ X −
(

X

XF

)βλ KLηKF

r +λ−µXF −δKL , (49)

and the net value of the follower as

V n
F (XF ,KF ,KL) = XF KF (1−η(KL +KF ))

r +λ−µ −δKF . (50)

Now, the loss of the leader for evolutionary innovation is defined as

`(E)
L (λ) =

(
X0
XP

)βλ
V n

L (SL)−
(

X0
xP

)βλ
V n

L (sL)(
X0
XP

)βλ
V n

L (SL)
, (51)

and for revolutionary innovation as

`(R)
L (λ) =

(
X0
XP

)β
V n

L (SL)−
(

X0
xP

)β
V n

L (sL)(
X0
XP

)β
V n

L (SL)
. (52)

The losses of the follower are in case of evolutionary and revolutionary innovations

`(E)
F (λ) =

(
X0
XP

)βλ
V n

F (SF )−
(

X0
xP

)βλ
V n

F (sF )(
X0
XP

)βλ
V n

F (SF )
, (53)

and

`(R)
F (λ) =

(
X0
XP

)β
V n

F (SF )−
(

X0
xP

)β
V n

F (sF )(
X0
XP

)β
V n

F (SF )
, (54)

respectively.

Note that the initial value of X0 ∈ (0, XP ), X0 ∈ (0, X ∗
E ) or X0 ∈ (0, X ∗

R ) to which the values are
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discounted, is irrelevant as it drops out in the definition of the loss function. Since discounting

takes place in the continuation region, the stochastic discount factor is influenced by βλ for

evolutionary innovation and by β for revolutionary innovation. As we saw earlier, the strategies

of the leader and follower at the preemption point are independent of the type of innovation.

For the monopolist, the threshold and size are different for evolutionary and revolutionary

innovations.

The loss of not taking the finiteness of the project into account is shown in Figure 2. Figure 2a

shows the losses in case of evolutionary innovation and Figure 2b in case of revolutionary

innovation. We conclude that, if the expected lifetime is shorter than 15 or 45 years (note that

expected lifetime equals 1/λ), the resulting suboptimal decisions lead to a loss that is more than

100% for both the follower and monopolist, and the leader respectively.

In Table 1 we show the strategies, net firm values and losses for three values of λ coinciding

with an infinite expected lifetime, and an expected lifetime of 50 years and 10 years corresponding

to the values of λ being equal to {0.1,0.02,0}. Table 1a presents the moment of entry of the leader

– the preemption point – XP , how long the follower subsequently waits until entering the market,

X ∗
F (K det

L (XP )), and for both the associated capacity, K det
L (XP ) and K ∗

F (K det
L (XP ). When λ= 0 we

are in the scenario in which projects have infinite lives, SL = sL , resulting in early market entries

and large capacities. If those strategies are still implemented although in reality projects are finite,

the associated percentage losses are provided by `(E)
L (λ),`(E)

F (λ) for evolutionary innovation and

`(R)
L (λ),`(R)

F (λ) for revolutionary innovation.

The relative loss of the leader is bigger than the loss of the follower, because, when thinking

that project life is infinite (λ= 0) while it is in fact not (λ= 0.1 or λ= 0.02), it is investing far too

much (5.53 rather than 3.48 or 4.90) at a too early stage (0.0105 rather than 0.0228 or 0.0132).

The follower also enters the market too early and invests too much compared to the optimal

strategies, but the relative loss of the follower is not so high as that of the leader. The reason is that

in infinite time the leader invests a lot, implying that, since capacities are strategic substitutes,

the follower is already a cautious investor even when it thinks that time is infinite while it is not.

The strategic effect causing the leader’s relative loss to be much higher is due to the pre-

emption effect, resulting in a strategy where the leader has to overinvest at an early point in

time. Introducing this finite project life makes that the leader will invest at a considerable later

time in a significantly smaller capacity size. Both of these effects result in a huge loss if the fact

that project life is finite is not taken into account when the leader decides about its investment

strategy. However, even for the follower it holds that the infinite strategy is loss-making when the

expected lifetime in reality is 10 years, which is the case when the net value is negative.

The monopolist’s relative loss is comparable to that of the follower which is depicted in

Table 1b. Here we see that for a given λ, the monopolist will enter the market sooner and invest
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Figure 2: Loss due to ignoring finiteness of project for the leader, follower and monopolist as a function of λ. The

parameter values are r = 0.1;µ= 0.06;δ= 0.1;η= 0.05;σ= 0.1. The solid line represents the case of leader `(i )
L (λ),

the dotted line represents the loss function of the follower `(i )
F (λ), and the dashed line represents the monopolist

value reduction `(i )
M (λ). The upper figure shows these losses for i = E , the evolutionary scenario, and the lower figure

for i = R, the revolutionary scenario.

less when the option can vanish. The earlier market entrance is incentivised by the fact that the

option can disappear, which on its turn causes the firm to invest less to still ensure a profitable

project at the lower demand and price level.

We can conclude that it is of high importance to incorporate the finiteness of the lifetime of

projects when determining the optimal entry and capacity strategies under uncertainty.

Figure 3 depicts the leader and follower curve for two different values of σ. An increase in

uncertainty results in the follower investing later. This is because more uncertainty increases

the value of waiting with investment (see, e.g., Dixit and Pindyck (1994)). For the leader the

same holds but on the other hand the investment project has become more attractive for the

leader: the follower investing later means that the leader’s monopoly period lasts longer. As a
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Strategies
λ XP K det

L (XP ) V n
L (SL) V n

L (sL) `(E)
L (λ) `(R)

L (λ)
0.1 0.0228 3.48 0.0658 -0.276 3983.1% 1531.5%
0.02 0.0132 4.90 0.169 0.0174 84.2% 85.2%
0 0.0105 5.53 0.2511 0.2511 0% 0%

λ X ∗
F (K det

L (XP )) K ∗
F (K det

L (XP )) V n
F (SF ) V n

F (sF ) `(E)
F (λ) `(R)

F (λ)
0.1 0.0350 4.26 0.226 -0.128 261.3 % 200.8 %
0.02 0.0263 5.27 0.609 0.447 15.0 % 16.8 %
0 0.0243 5.59 0.950 0.950 0% 0%

(a) Duopoly

λ X ∗
E K ∗

E V n
M (X ∗

E ,K ∗
E ) V n

M (x∗,k∗) `(E)
M (λ)

0.1 0.0289 5.15 0.274 -0.177 369.7%
0.02 0.0199 6.98 0.806 0.617 3.94%
0 0.0176 7.73 1.312 1.312 0%

λ X ∗
R K ∗

R V n
M (X ∗

R ,K ∗
R ) V n

M (x∗,k∗) `(R)
M (λ)

0.1 0.0616 7.73 1.312 -0.177 198.6%
0.02 0.0264 7.73 1.312 0.617 10.41%
0 0.0176 7.73 1.312 1.312 0%

(b) Monopoly

Table 1: For three different λs, the preemption point, the threshold of the follower and the capacity decisions of

the leader of follower are shown in the upper panel. The lower panel shows the optimal threshold and capacity

of the monopolist as given by Corollary 1 and 2. The net value function V n
i is shown when the investors take the

finiteness of the projects into account, and also the suboptimal values are shown when the investors make their

decisions based on the assumption that the projects have infinite length. The associated losses are provided for

evolutionary and revolutionary innovations. The parameters are again r = 0.1;µ= 0.06;δ= 0.1;η= 0.05;σ= 0.1.
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Preemption: Uncertainty
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Figure 3: Optimal value functions for the leader and follower where the gray lines represent the case when σ= 0.2

and the black lines when σ= 0.1. The black solid line and gray dashed line represent the value function of the leader

and the black dotted and gray dot-dashed line the value function of the follower.

result, the preemption point is delayed but only a little. The subscript σ indicates the higher

σ= 0.2 compared to the assumption of σ= 0.1 that we used for the other numerical examples.

Similarly, in Figure 4 we depict the losses when uncertainty is increased. The figure shows that,

if firms invest as if the project life is infinite while it is not, the losses become smaller for both

firms, as well as for the monopolist, when uncertainty goes up. Presumably this is because under

increased uncertainty, firms not only invest later but also more (Dixit (1993)), and therefore

investment sizes get closer to the level corresponding to the infinite project life case.

6 Conclusions

An often overlooked characteristic in economic research is the finiteness of investment projects.

Due to technological progress drastic innovations appear that make current products obsolete.

We show that having a finite life of the project delays the investment in a monopoly market while

the investment size remains the same. If we take into account the possibility of future entry of a

competitor, we see a similar picture.

Interesting is the case of evolutionary innovation, where besides a finite project life, also the

investment option will expire in finite time. We show that then there are multiple contradictory

effects on the investment timing of the incumbent, such as an NPV effect, which delays the

firm’s investment, a quantity effect, and a strategic effect. The latter two accelerate the firm’s
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Losses: Uncertainty
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Figure 4: Loss due to ignoring finiteness of project for the leader, follower and monopolist as a function of λ for

two different values of σ. The parameter values are r = 0.1;µ= 0.06;δ= 0.1;η= 0.05 and σ= 0.1 for the black lines

and σ= 0.2 for the gray lines. The black solid and gray long-dashed lines show `(i )
L (λ), the black dotted and gray

dash-dotted lines show `(i )
F (λ), and the black dashed and gray dotted lines show `(i )

M (λ) in the upper figure for i = E

and in the lower figure for i = R.

investment, but still the total effect is such that also here investment is delayed. In general it

holds that, compared to the scenario of revolutionary innovation where the project life is finite

and the option life is infinite, the firm will invest earlier and less.

In the duopoly game with endogenous firm roles there is an incentive to become the first

investor, and a preemption equilibrium results. We show that this preemption effect is mitigated

by the project life being finite. However, when firms mistakenly ignore the finiteness of the

project when taking their investment decisions, the preemption effect considerably enlarges the

already large value loss.

Future research could point to different aspects. First, the present paper considers that the

lifetime of a product can end due to the occurrence of more innovative products on the market.
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If such an innovation is drastic, this event essentially stops all activities related to the current

product not only of the focal firm, but also of its competitors. As an alternative it would be

interesting to consider the finiteness of the economic lifetime of production factors. In such a

case, the end of a project owned by one firm would not mean the end of the project of other

firms too, instead these could still be continued. We intend to analyze such a scenario with

independent events triggering the termination of projects in our future research. Second, a

scenario could be considered where the firms themselves control the innovation activities with

the implication that the innovation speed λd t , and thus the probability that the lifetime of

the current product will end, will depend on the level of R&D activities (see also Martzoukos

and Zacharias (2013)). Third, effects of ambiguity could be studied, in the sense that firms are

ambiguous about the true values of the drift and the uncertainty parameters governing the

demand system (see, e.g., Sarkar (2020)).
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A Appendix

This appendix contains the proofs of the propositions.

A.1 Proof of Proposition 1

Consider first the continuation region and denote by F (X ) the value of the option to invest. In

the continuation region we have to take into account that the investment option can become

worthless with probability λd t . Application of Ito’s lemma gives

E (dFE (X )) =
(
µX F ′

E (X )+ 1

2
σ2X 2F ′′

E (X )−λFE (X )

)
d t . (55)

Combining this with the Bellman equation results in the following differential equation that

FE (X ) has to satisfy:

(r +λ)FE (X ) = 1

2
σ2X 2F ′′

E (X )+µX F ′
E (X ) . (56)

Solving the differential equation, while taking into account that FE (0) = 0, gives

FE (X ) = AE X βλ , (57)

in which AE is an unknown constant.

In the stopping region the value of the firm V (X ,K ) satisfies the following differential equa-

tion:

r V (X ,K ) = K f (K ) X + 1

2
σ2V ′′ (X ,K )+µV ′ (X ,K )−λV (X ,K ) , (58)

where the last term on the right-hand side results from the fact that with probability λd t the

project ends and thus its value jumps down from V (X ,K ) to zero. Taking into account that

V (0,K ) = 0 and that we abstract away from speculative bubbles, solving the differential equation

gives

V (X ,K ) = K f (K ) X

r +λ−µ . (59)

So, it is clearly seen that the larger the probability the project ends, the lower the value of the

firm after investment, as reflected by the presence of λ in the denominator.

Maximizing value function V (X ,K )−δK with respect to K gives the optimal capacity size K ∗

for every given level of X : (
f (K )+K f ′(K )

)
X

r +λ−µ −δ= 0. (60)

Standard real options analysis, shows that the value of the option to invest, denoted by F is equal

to (57). To determine the optimal trigger X ∗, we employ the value matching and smooth pasting
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conditions:

FE (X ∗) = V (X ∗,K )−δK , (61)

F ′
E (X )X=X ∗ = V ′(X ,K )X=X ∗ . (62)

Substituting (57) and (59) into (61) and (62) leads to V ′(X ,K )X = (V (X ,K )−δK )βλ. Solving for

X ∗
E gives the first result. If we plug (9) into the first-order condition with respect to K as given by

(60), then we get the implicit function (10).

A.2 Proof of Corollary 1

If the inverse demand is linear in the quantity as given by (12) then f (K ) = 1−ηK . Substituting

this into the implicit function of Proposition 1 and solving for K gives both results.

A.3 Proof of Proposition 2

Now that the option has an infinite life, expression (55) has to be replaced by

E (dFR (X )) =
(
µX F ′

R (X )+ 1

2
σ2X 2F ′′

R (X )

)
d t . (63)

Inserting this in the Bellman equation results in the differential equation

r FR (X ) = 1

2
σ2X 2F ′′

R (X )+µX F ′
R (X ) , (64)

and the solution

FR (X ) = AR X β, (65)

Similar as in the proof of Proposition 1, the first-order condition with respect to K remains (60).

The value matching and smooth pasting conditions now lead to V ′(X ,K )X = (V (X ,K )−δK )β.

Solving for X ∗
R gives the results.

A.4 Proof of Corollary 2

If the inverse demand is linear in the quantity as given by (12) then f (K ) = 1−ηK . Substituting

this into (17) and solving for K gives both results.
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A.5 Proof of Proposition 3

Maximizing VF (X ,KL ,KF )−δKF , where VF (X ,KL ,KF ) is given by (24), with respect to KF gives

the optimal capacity size of the follower, given the level X and the capacity size of the leader KL :

K ∗
F (X ,KL) = 1

2η

(
1−ηKL −

δ
(
r +λ−µ)

X

)
. (66)

Before the follower has invested, thus when X < X ∗
F (KL), the firm holds an option to invest. The

option value is

FF (X ) = AF X βλ . (67)

Solving the corresponding value matching and smooth pasting conditions gives

X ∗
F (KL ,KF ) = βλ

βλ−1

δ
(
r +λ−µ)

1−η (KL +KF )
. (68)

After solving the system of equations we obtain (25) and (26).

A.6 Proof of Proposition 4

The value function of the leader at the moment of investment for the deterrence strategy is given

by (28). Substituting (25) and (26) into this equation results in

V det
L (X ,KL)−δKL = KL

(
1−ηKL

)
r +λ−µ X −δKL −

(
X

(
βλ−1

)(
1−ηKL

)(
βλ+1

)
δ

(
r +λ−µ))βλ KLδ

βλ−1
.

Maximizing with respect to KL gives the following first-order condition:

φ (X ,KL) =
(
1−2ηKL

)
r +λ−µ X −δ

−
(

X
(
βλ−1

)(
1−ηKL

)(
βλ+1

)
δ

(
r +λ−µ))βλ (

1− (
βλ+1

)
ηKL

)
δ(

βλ−1
)(

1−ηKL
) = 0. (69)

Solving (69) gives K det
L (X ) as given by (32). Setting KL = 0 in equation (69) gives equation

X det
1 . Furthermore, the leader cannot use the deterrence strategy anymore if we have that

X ∗
F

(
K det

L (X )
)≤ X . Let us define X det

2 as

X ∗
F

(
K det

L (X det
2 )

)
= X det

2 . (70)

To determine X det
2 we substitute equation (25) for X into (69) which solves for KL

KL = 1

2η
. (71)
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Substituting this into (25) gives

X det
2 = βλ+1

βλ−1
2δ

(
r +λ−µ)

. (72)

Before the leader has invested, thus when X < X det
L , the firm holds an option to invest. The

option value is

F det
L,E (X ) = Adet

L,E X βλ , (73)

when the option life of the investment is of finite length. The value matching and smooth pasting

conditions to determine X det
L,E lead together to the condition V ′(X ,K )X − (V (X ,K )−δK )βλ = 0.

Define

ϕ(X ,KL) =V ′(X ,KL)X − (V (X ,KL)−δKL)βλ,

=
(

KL
(
1−ηKL

)
r +λ−µ X −βλ

(
X

(
βλ−1

)(
1−ηKL

)(
βλ+1

)
δ

(
r +λ−µ))βλ KLδ

βλ−1

)
−

βλ

(
KL

(
1−ηKL

)
r +λ−µ X −δKL −

(
X

(
βλ−1

)(
1−ηKL

)(
βλ+1

)
δ

(
r +λ−µ))βλ KLδ

βλ−1

)
,

= KL
(
1−ηKL

)
r +λ−µ X

(
1−βλ

)+βλδKL ,

= 0, (74)

which solves for (31).

A.7 Proof of Proposition 5

Substituting (31) into (69) and solving for K gives (33). The corresponding threshold X det
L,E can be

calculated by substituting the optimal quantity into (31).

A.8 Proof of Corollary 3

Let

X = βλ+a

βλ−1
δ

(
r +λ−µ)

, (75)

where βλ > 1 is the positive root that solves (11) and is given by

βλ =
−(µ− σ2

2 )+
√

(µ− σ2

2 )2 +2σ2(r +λ)

σ2
. (76)
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The derivative is

∂X

∂λ
=− 1+a

(βλ−1)2

∂βλ

∂λ
δ(r +λ−µ)+ βλ+a

βλ−1
δ, (77)

where

∂βλ

∂λ
= 1√

(µ− σ2

2 )2 +2σ2 (r +λ)
> 0. (78)

By rewriting (11) and (76), we can also express the derivative of βλ with respect to λ as

∂βλ

∂λ
= βλ

r +λ+ 1
2σ

2β2
λ

. (79)

Plugging (79) into (77) leads to

∂X

∂λ
= δ(

βλ−1
)2 (

2(r +λ)+σ2β2
λ

)Υ, (80)

where

Υ=−2a (r +λ)−4

(
r +λ− 1

2
µ (1+a)

)
βλ+(

2(r +λ)−aσ2)β2
λ−σ2 (1−a)β3

λ+σ2β4
λ. (81)

We have to show that this derivative is positive. Since βλ > 1,δ> 0 and r >µ we thus concentrate

onΥ. By applying twice the equality of (11) and rewriting, we obtain the following equalities that

simplify the derivative to (82),

Υ=
use (11)︷ ︸︸ ︷

−2a (r +λ)−4

(
r +λ− 1

2
µ (1+a)

)
βλ+(

2(r +λ)−aσ2)β2
λ−σ2 (1−a)β3

λ+σ2β4
λ,

=βλ
σ2β2

λ

(
βλ−1

)+aσ2 (
βλ−1

)2 −2

 use (11)︷ ︸︸ ︷
(r +λ)−µ

+2(r +λ)
(
βλ−1

) ,

=βλ
(
βλ−1

)(
σ2β2

λ+aσ2 (
βλ−1

)−2

(
µ+ 1

2
σ2βλ

)
+2(r +λ)

)
,

=βλ
(
βλ−1

)(
σ2 (

βλ+a
)(
βλ−1

)+2
(
r +λ−µ))

.

Hence,

∂X

∂λ
= δβλ

(
βλ−1

)(
σ2

(
βλ+a

)(
βλ−1

)+2
(
r +λ−µ))(

βλ−1
)2 (

2(r +λ)+σ2β2
λ

) . (82)
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Since r >µ it follows that r +λ−>≥ 0 and because βλ > 1 it follows that the derivative is positive

for a >−1. Hence it holds for both X det
L,E when a = 1 and X acc

1 when a = 3.

A.9 Proof of Proposition 6

This proof is similar to the proof of Proposition 4, though here the option life is finite. The

derivations are identical up to (72). Before the leader has invested, thus when X < X det
L , the firm

holds an option to invest. The option value is

F det
L,R (X ) = Adet

L,R X β, (83)

when the option life of the investment is of infinite length. The value matching and smooth past-

ing conditions to determine X det
L,R lead together to the condition V ′(X ,K )X −(V (X ,K )−δK )β= 0.

Define

ϕ(X ,KL) =V ′(X ,KL)X − (V (X ,KL)−δKL)β,

=
(

KL
(
1−ηKL

)
r +λ−µ X −βλ

(
X

(
βλ−1

)(
1−ηKL

)(
βλ+1

)
δ

(
r +λ−µ))βλ KLδ

βλ−1

)
−

β

(
KL

(
1−ηKL

)
r +λ−µ X −δKL −

(
X

(
βλ−1

)(
1−ηKL

)(
βλ+1

)
δ

(
r +λ−µ))βλ KLδ

βλ−1

)
,

= KL
(
1−ηKL

)
r +λ−µ X

(
1−β)

− (
βλ−β

)( X
(
βλ−1

)(
1−ηKL

)(
βλ+1

)
δ

(
r +λ−µ))βλ KLδ

βλ−1
+βδKL ,

= 0. (84)

We now solve (69) and (84) simultaneously by the fact that φ(X ,KL) = 0 and ϕ(X ,KL) = 0. Let

Z =
(

(βλ−1)(1−ηKL)
(βλ+1)δ(r+λ−µ)

)βλ
then

ϕ(X ,KL) =−(
βλ−β

)
Z

KLδ

βλ−1
X βλ + KL

(
1−ηKL

)
r +λ−µ

(
1−β)

X +βδKL = 0,

φ (X ,KL) =−Z

(
1− (

βλ+1
)
ηKL

)
δ(

βλ−1
)(

1−ηKL
) X βλ +

(
1−2ηKL

)
r +λ−µ X −δ= 0. (85)

These two equations are equal to each other when the capacity is equal to

K det
L,R = 1

η
(
β+1

) . (86)
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Plugging this into φ(X ,K det
L,R ) = 0 and ϕ(X ,K det

L,R ) = 0 leads to the implicit function for X = X det
L,R

solving (37).

A.10 Proof of Corollary 4

Define (37) asΦ(X )

Φ(X ) = X βλ

(
βλ−β

)
δ

β
(
βλ−1

) (
β

(
βλ−1

)(
1+β)(

1+βλ
)
δ

(
r +λ−µ))βλ

+X

(
β−1

)(
r +λ−µ)(

β+1
) −δ. (87)

We show that the implicit function that determines the leader’s threshold is in between duopoly

threshold under a finite option and the monopoly threshold under an infinite option. Plugging

(33) intoΦ(X ) leads to

Φ

(
βλ+1

βλ−1
δ

(
r +λ−µ))=

(
βλ−β

)
δ

((
β+1

)( β
1+β

)βλ −2β

)
β

(
1+β)(

βλ−1
) < 0, (88)

since βλ >β> 1. While plugging (21) intoΦ(X ) leads to

Φ

(
β+1

β−1
δ

(
r +λ−µ))= (

βλ−β
)
δ

β
(
βλ−1

) (
β

(
βλ−1

)(
β−1

)(
βλ+1

))βλ > 0. (89)

Moreover, for X > 0,

∂Φ(X )

∂X
=βλX βλ−1

(
βλ−β

)
δ

β
(
βλ−1

) (
β

(
βλ−1

)(
1+β)(

1+βλ
)
δ

(
r +λ−µ))βλ

+
(
β−1

)(
r +λ−µ)(

β+1
) > 0. (90)

Hence, the optimal threshold of the leader under an infinite option, which is implied byΦ(X ) = 0,

is in between these two strategies as displayed in (38).

A.11 Proof of Proposition 7

Substituting (66) into (39) and maximizing V acc
L (X ,KL)−δKL with respect to KL gives (42)

K acc
L (X ) = 1

2η

(
1− δ(r +λ−µ)

X

)
. (91)
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The leader will only use its accommodation strategy if the optimal quantity K acc
L (X ) leads to

immediate investment of the follower. So it should hold that X ∗
F (K acc

L (X )) ≤ X . We define X acc
1 as

X ∗
F,R (K acc

L (X acc
1 )) = X acc

1 . (92)

Substitution of (25), where we use that X ∗
F,R (KL) = X ∗

F,E (KL), and (91) into (92) and rearranging

gives

X acc
1 =

(
βλ+3

)
δ

βλ−1

(
r +λ−µ)

. (93)

For the accommodation strategy, the value matching and smooth pasting conditions with an

infinite option to invest leads to the condition V ′(X ,K )X − (V (X ,K )−δK )β= 0 we obtain two

roots of which X = δ(r +λ−µ) is not a valid solution and thus we have that X acc
L,R

X acc
L,R = 1+β

β−1
δ

(
r +λ−µ)

. (94)

Thus the leader will consider the entry accommodation strategy whenever X ≥ max
(

X acc
1 , X acc

L,R

)
.
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