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Abstract

In this paper we study the optimal control problem of a firm that may operate in two different
modes, one being more risky than the other, in the sense that in case the demand decreases,
the return of the risky mode is lower than with the more conservative mode. On the other side,
in case the demand increases, the opposite holds. The switches between these two alternative
modes have associated costs. In both modes, there is the option to exit the market.

We focus on two different parameter scenarios, that describe particular (and somehow ex-
treme) economic situations. In the first scenario, we assume that the market is expected to
increase in such a way that once the firm is producing in the more risky mode, it is never opti-
mal to switch to the more conservative one. In the second scenario, there is a hysteresis region,
where the firm is waiting in the more risky mode, in production, until some drop or increase in
the demand leads to an exit or changing to the more conservative mode. This hysteresis region
cannot be attained under continuous production.

We then address the problem of the optimal time to invest when the firm knows, a priori,
that may invest in one of these two modes and then may switch. Depending on the relation
between the switching costs (equal or different from one mode to another), it may happen that
the firm invests in the hysteresis region.
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Extended Abstract

In this paper we consider the classical real option problem, the investment decision under un-
certainty (see e.g. Arrow and Fisher (1974), McDonald and Siegel (1986), Trigeorgis et al. (1996)).
We will focus on the choice between two investments (or modes). This problem is usually studied
under assumptions of partially irreversible investments with simple functions for the payoffs.(see,
e.g. Dixit et al. (1994), Décamps et al. (2006)). In our set-up the firm can invest in one of the two
projects (or modes) and after the investment has a possibility to switch as many times as necessary
between them. We want to study how this possibility of switching will impact the investment
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decision. We will use the developed techniques for the valuation of mothballing option, which is
characterized in the literature as sequential switching problem. (see e.g. Duckworth and Zervos
(2001), Zervos (2003), Zervos et al. (2018), Guerra et al. (2018a)).
The uncertainty is modelled by a geometric Brownian motion for the price Pt (the only economic
indicator)

dPt = µPtdt+ σPtdBt,

on a filtered probability space (Ω,Ft,P), where µ ∈ R is the instantaneous drift that satisfies
r − µ > 0 for the risk free rate r and σ > 0 is the instantaneous volatility. The two possible
investments for the firm, (the only risk-neutral decision maker), denoted by I1 (the risky one)
and I2 (the safe one). The payoff of the investment in Ii during the period of time [t1, t2] is∫ t2
t1
e−rsΠi(Ps)ds, where Πi(p) are the instantaneous profit functions set as Πi(p) = αip− βi. The

coefficients βi can be interpreted as (instantaneous) costs of production for the project i, βi > 0,
also, since the project I1 is the risky one the relationship that hold are α1 > α2 ≥ 0 and β1 > β2.
After the investment, the firm can exit the market, the exit is permanent. The state space after
investment is {I1, I2, ex}, where Ii are transitory states and ex is a stationary (absorbing) state.
The firm can switch between investments incurring in costs: K12 to transition between the states
I1 and I2, and K21 in the opposite direction. The cost of exiting either of the investments is the
same and is denoted by Kex.
The infinitesimal generator of the process is denoted by L. The state of the firm process is denoted
by Zt. The transition between states times are denoted by T a,bj , the exit times by τi and S denotes
the set of all admissible strategies. For each s ∈ S the payoff is given by

Js(z, p) = Ex
[∫ ∞

0
e−rt

(
Π1(Pt)I{Zt=I1} + Π2(Pt)I{Zt=I2}

)
dt −K12

∞∑
j=1

e−rT
12
j I{T 12

j <∞}

K12

∞∑
j=1

e−rT
12
j I{T 12

j <∞} −K21

∞∑
j=1

e−rT
21
j I{T 21

j <∞} −Kexe
−rτ1I{τ1<∞} −Kexe

−rτ2I{τ2<∞}


where IA is the indicator function.
To avoid the continuous switching we assume that K12 +K21 > 0.
Problem 1 (Switching problem) Find the value function V ∈ C1(0,+∞)

V (z, p) = sup
s∈S

Js(z, p) (1)

For the convenience will divide the function (1) into: v1 := V (1, p) and v2 := V (2, p). After solving
the problem 1 and equipped with its solution we will approach the investment problem. Starting
with a simpler case, when entering the market the firm pays K for either of the investments. Let
us denote by

v∗ = max(v1, v2) (2)

and by T the set of all (Markov) stopping times. Then, we can formulate our first investment
problem as follows.

Problem 2 (Investment problem - same costs) Find the value function Ws ∈ C1(0,+∞)

Ws(p) = sup
τ∈T

Ep
[
e−rτ (v∗(Pτ )−K)

]
(3)

A more general case, when entering market has different costs, investing in project I1 costs Ke1

and Ke2 in I2, can be formulated as follows.
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Problem 3 (Investment problem - different costs) Find the value functionWd ∈ C1(0,+∞)

Wd(p) = sup
τ∈T

Ep
[
e−rτ max{v1(Pτ )−Ke1, v2(Pτ )−Ke2}

]
(4)

Switching problem (the firm is already on the market)

We will solve the problem 1 by proposing the solution to it and then show that it verifies the
general verification theorem (see e.g. Knudsen et al. (1998), (Zervos, 2003), Lamberton et al.
(2013), (Guerra et al., 2018b) and the references therein).
The associated HJB equations (coupled quasi-variational inequalities) will take form:

[1] [2] [3]

max {Lv1 − rv1 + Π1, v2 − v1 −K12,−v1 −Kex} = 0 (5)

max {Lv2 − rv2 + Π2, v1 − v2 −K21,−v2 −Kex} = 0 (6)

The HJB naturally divide the space into several ‘action’ regions, depending on where each of the
parcels of the above equations is equal to zero. These are: production region, switching region, stop-
ping region, hysteresis region. We will not give a complete classification (division of the parameter
set) as it was done in Zervos et al. (2018)[Section 4.4], as the proofs are similar and calculations
are long, our objective is to illustrate the two interesting (in our opinion) cases.

Case: No downgrading

This is the case illustrated in Figure 1, where it is never optimal to switch from I1 to I2. We
introduce the following price points for the space division: Pi,ex - for lower values of p it is more
profitable to exit Ii, P21 - for higher values it is more profitable to switch from I2 to I1.

Figure 1: Case 2

1© -uP1.ex

(exit) (production)

2© -u
P2,ex

(exit)

u
P21

(production)

6 6 6

(change to I1)

Lemma 4 For the parameter conditions:

i) rKex − β1 < 0,K12 > 0,K12 +K21 > 0

ii) rKex + α2P2,ex − β2 < 0

iii) K21 ≥ K†21, where K
†
21 = AP d12,ex + α1

r−µP2,ex − β1
r +Kex,
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iv)

α1

α2
>
Kex − (β1r +K21)

Kex − β2
r

, (7)

there are unique constants A,C,D > 0, P21 > P2,ex > 0 and P21 > P1,ex > 0, such that the value
function (1) is given by:

v1(p) =

{
−Kex, p < P1,ex

Apd1 + α1
r−µp−

β1
r , p ≥ P1,ex

(8)

v2(p) =


−Kex, p < P2,ex

Cpd1 +Dpd2 + α2
r−µp−

β2
r , P2,ex ≤ p < P21

Apd1 + α1
r−µp−

β1
r −K21, p ≥ P21

(9)

The proof is similar to (Zervos et al., 2018), the sketch is as follows.

1. From the verification theorem we know that functions vi have to be of class C1 in p, we use
continuity of the functions and their derivatives to set up a system of equations, in this case
two equations with two unknowns for v1 and four equations with four unknowns for v2.

2. We prove that the system has a unique solution for the conditions P21 > P2,ex > 0 and
P21 > P1,ex > 0.

3. Then we show that constructed this way functions (8) and (9) satisfy the HJB (5) and (6).

It is worth to give a special attention to condition (7) as it is specific to our case and serves a pur-
pose to eliminate ‘bad behaviour’ of the solutions. The relative gain α1

α2
is higher then the relative

increase in costs
Kex−(β1r +K21)

Kex−β2r
. If (7) was not true, there would be no advantage from switching to

a more risky project.

Case: Hysteresis

In this case there is an hysteresis region, where the firm is producing although waiting for the price
either drop then exit, or go up then switch to I2. This region cannot be attained under continuous
production.

Lemma 5 For the set of parameter conditions. There are unique constants A,C1, C2, D1, D2 > 0,
P21 > P12 > Ph > P1,ex > 0 and P21 > P2,ex > 0, such that the value function (1) is given by:

v1(p) =


−Kex p < P1,ex

C1p
d1 +D1p

d2 + α1
r−µp−

β1
r P1,ex ≤ p < Ph

C2p
d1 +D2p

d2 + α2
r−µp−

β2
r −K12 Ph ≤ p < P12

Apd1 + α1
r−µp−

β1
r P12 ≤ p

v2(p) =


−Kex p < P1,ex

C2p
d1 +D2p

d2 + α2
r−µp−

β2
r P1,ex ≤ p < P21

Apd1 + α1
r−µp−

β1
r −K21 P21 ≤ p
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Figure 2: Case - Hysteresis
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Investment problem

For problem 2 we will use the functions (8)- (9) to construct the function (2). This is a classical
optimal stopping problem (see e.g. Peskir and Shiryaev (2006)).

Case no downgrading - same costs

The function Ws has to satisfy the quasi-variational inequality

max {LWs − rWs, (v
∗ −K)−Ws} = 0.

We have to look into two different scenarios

1) P1,ex < P2,ex v∗(p) = v1 (10)

Lemma 6 Under the conditions of lemma 4, assuming that P1,ex < P2,ex and −Kex − K < 01,
then there are constants B1 > 0 and γ > 0 such that

Ws(p) =

{
B1p

d2 p < γ

Apd1 + α1
r−µp−

β1
r −K p ≥ γ

(11)

1If this condition is not verified it is always optimal to invest, independently of p, i.e. τ ≡ 0, making the problem
trivial
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Figure 3: Case: no downgrading, presented in lemma 6, the values for cut points are P1,ex = 1, P2,ex = 0.89,
P21 ≈ 3.26, p̂ ≈ 1.7,γ ≈ 5.45.

2) P2,ex < P1,ex < P21

v∗(p) =


−Kex p < P2,ex

Cpd1 +Dpd2 + α2
r−µp−

β2
r , P2,ex ≤ p < p̂

Apd1 + α1
r−µp−

β1
r p ≥ p̂

(12)

Where the p̂ is the solution to the equation Cpd1 +Dpd2 + α2
r−µp−

β2
r = Apd1 + α1

r−µp−
β1
r .

Although theoretically it can be possible to have solutions of the form (13) described later, eco-
nomically (without free lunches) every solution will be of the form (11) as illustrated on figure 3
There will be three different situations in this case:

i) −Kex −K > 0 free lunch

ii) −Kex −K < 0 and K > K∗ only invest in I1

iii) −Kex −K < 0 and K < K∗ it might be optimal to invest in I2

Case Hysteresis - same costs

v∗(p) =


−Kex p < P2,ex

C2p
d1 +D2p

d2 + α2
r−µp−

β2
r P2,ex ≤ p < p̄

Apd1 + α1
r−µp−

β1
r p ≥ p̄

,

where p̄ is a solution to C2p
d1 +D2p

d2 + α2
r−µp−

β2
r = Apd1 + α1

r−µp−
β1
r .
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Lemma 7 Under the conditions of lemma 4, assuming that P2,ex < P1,ex and −Kex−K > 0, then
there are constants A1, B1, B2 > 0 and γ3 > p̂ > γ2 > γ1 > 0 such that

Ws(p) =


B1p

d2 p ∈ [0, γ1)

C2p
d1 +D2p

d2 + α2
r−µp−

β2
r −K p ∈ [γ1, γ2]

A1p
d1 +B2p

d2 p ∈ (γ2, γ3)

Apd1 + α1
r−µp−

β1
r −K p ∈ [γ3,+∞).

(13)

Case Hysteresis - different costs

This is problem 3. The preliminary results indicate that it might be possible to be optimal to invest
during the hysteresis region.
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