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Investment and Financing Decisions with Learning-Curve Technology 

 

 

Abstract 

 

The learning curve has a significant impact on production cost (hence corporate profit) in a number of industries. 

While it is well recognized in the Economics literature and its effect on operating costs and production decisions 

has been widely studied, its effect on corporate investment has been largely unexplored. To our knowledge, there 

is one paper that examines this issue, but it is limited to unlevered firms. We therefore examine a levered firm’s 

optimal investment and financing choices when using learning-curve technology. The main findings are as 

follows. The effect of leverage on the investment decision depends on the level of debt. Using the optimal debt 

level will result in earlier investment, whereas the investment size might be smaller or larger depending on the 

speed of learning; however, investment overall (taking into account both timing and size) will be higher than an 

unlevered firm, and the difference an increasing function of learning speed. The optimal leverage ratio is an 

increasing function of learning speed, but with a borrowing constraint it is, in general, initially increasing and 

subsequently decreasing in learning speed. Moreover, it is a decreasing function over a wider range for a more 

stringent borrowing constraint, for decreasing-returns-to-scale technology and for a less volatile product market. 
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Investment and Financing Decisions with Learning-Curve Technology 

1. Introduction 

Learning-curve technology plays an important role in a number of industries, such as chemicals (Lieberman, 

1983), semiconductors (Irwin and Klenow, 1994), aircraft manufacturing (Benkard, 2000), shipbuilding 

(Thornton and Thompson, 20001), Ethanol (Goldemberg et al., 2004), Photovoltaic Cells and Electric/hybrid cars 

(Seta et al., 2012). After the idea of a “learning curve” was introduced by Wright (1936), a large body of research 

has studied the learning curve and its role in production analysis, in various industrial sectors such as electronic, 

automotive, software and chemicals (Anzanello and Fogliatto, 2011). With learning-curve technology, the average 

production cost declines with production, because workers and managers absorb new technological information as 

they become more experienced (and more effective) at their jobs. As a result of this “learning,” the production 

cost per unit of output falls as the cumulative output rises, resulting in higher profits and firm values. This is the 

“learning-curve effect” studied by Majd and Pindyck (1989) and Seta et al. (2012).1 

With learning-curve technology, unit operating cost falls as the cumulative output rises; the rate at which 

the cost declines is given by the speed or intensity of learning. Since cost reduction implies higher profit, the 

learning curve has a significant impact on the valuation and competitive position of the company; for instance, the 

learning curve seems to have made Ethanol competitive in Brazil (Goldemberg et al., 2004). However, there is 

great heterogeneity in the rate or speed of learning across industries (Argote and Epple, 1990, Gruber, 1992), 

hence there will be significant cross-sectional differences in learning-curve effects across various industries. 

Naturally, the learning curve can be expected to impact investment decisions. For instance, it can be 

argued that the large investments made in green technology were partly driven by learning effects (of course, they 

could also be partly driven by government incentives such as support prices, investment subsidies and tax breaks, 

since many governments are keen to encourage corporate investment in such industries). The effect of the 

 
1 Although there are other reasons that contribute to the decline in average production cost, such as economies of scale, the 

learning curve effect is an important factor because of its large magnitude. For instance, in the chemical industry, for each 

doubling of plant scale (economies of scale) the average production cost falls by 11% whereas for each doubling of 

cumulative output (learning-curve effect) the average production cost falls by 27% (Lieberman, 1984).  
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learning curve on corporate investment decisions should be of interest to governments, economists and 

corporations. However, there is only one paper on the effect of the learning curve on investment, and that is the 

real-option model of Seta, Gryglewicz and Kort (2012, SGK hereafter).2 

 Real-option models in general focus on the timing of investment (Dixit and Pindyck, 1994). For learning-

curve technology, however, it is important to look at both timing and size of investment, because a larger 

operating scale hastens learning and the resulting cost reduction; hence SGK (2012) examine both optimal timing 

and scale of investment. The learning curve will provide an incentive to invest earlier (more time to learn) and 

also to invest on a larger scale (expedited learning).3 SGK (2012) show that the speed of learning has a significant 

effect on both the timing and the size (or scale) of investment; the investment trigger is a decreasing function, and 

the investment size an inverted-U shaped function, of the speed of learning. Compared to the traditional (no-

learning) case, the firm will make a delayed and larger investment if the learning speed is low, but an accelerated 

and smaller investment if the learning speed is high. That is, the firm will exploit the scale option if learning is 

slow and the timing option if learning is fast. 

The SGK (2012) study leaves two questions unanswered: 

(i) If the learning curve causes investment to be earlier but smaller (or delayed but larger), as in SGK (2012), 

what is the overall effect on investment? 

(ii) How would the learning curve affect investment when the firm uses debt financing? 

The first question arises because early (late) investment implies a positive (negative) effect, while smaller 

(larger) investment size implies a negative (positive) effect. Since timing and size have conflicting effects, the 

overall effect on investment is not clear. This is of interest to governments and policymakers, who would like to 

encourage corporate investment, particularly in knowledge-based industries (which are more likely to use 

learning-curve technology). To address this issue, we use a composite measure of investment, the EPVI (see 

 
2 There are papers that examine other aspects of learning-curve technology, such as the effect of the learning curve on 

production policy (Majd and Pindyck, 1989), pricing policy (Cabral and Riordan, 1994), market structure and performance 

(Ghemawat and Spence, 1985) or competitive strategy (Spence, 1981). However, these papers do not study the important 

effect that the learning curve might have on corporate investment. 
3 SGK (2012) call them the “timing option” and “scale option” respectively. 
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Sarkar, 2019), that incorporates both timing and size effects. This helps us analyze the overall effect of the 

learning curve on investment, which was not possible in the SGK (2012) model because it considered timing and 

size effects separately. 

 The second question arises because SGK (2012) study an unlevered firm while most firms in practice use 

some leverage. Since corporate investment and financing policies are inter-related (Dotan and Ravid, 1985, Mauer 

and Triantis, 1994, Dammon and Senbet, 1988), it is likely that a levered firm’s investment decision will differ 

from that of a unlevered firm. 

We will therefore try to address the following research questions: 

- How does the levered firm’s investment decision differ from the unlevered firm’s? 

- How does the levered firm’s investment decision depend on the speed of learning? 

- How does the speed of learning affect the firm’s leverage ratio? 

We extend the SGK (2012) model to identify the investment decision of a levered firm that uses learning-curve 

technology; in addition to timing and size, we also look at a composite measure of investment (EPVI) that takes 

into account both size and timing (discussed in detail in Section 2.4). Also, we identify the optimal leverage ratio 

and examine how it is affected by the learning curve.4 

Our paper brings together the learning-curve-investment literature (Seta et al., 2012) and the dynamic 

investment-financing literature (Hackbarth and Sun, 2017, Shibata and Nishihara, 2012, Sundaresan et al., 2015). 

We show that debt financing can have a large impact on the investment decision, with the exact effect depending 

on the level of debt. A firm using the optimal debt level will invest earlier than an unlevered firm, but the 

investment size can be smaller, larger or the same as an unlevered firm, depending on the speed of learning. 

Investment overall (taking into account both timing and size) with the optimal leverage ratio is always higher than 

an unlevered firm, and the difference is an increasing function of learning speed. The optimal leverage ratio is an 

 
4 Deb and Balasubramanian (2016) empirically examine the effect of learning curve on capital structure, but they do not 

analyze the investment decision. 
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increasing function of the speed of learning. However, under a borrowing constraint (which is very likely for such 

firms, see Deb and Balasubramanian, 2016), the leverage ratio is an inverted-U-shaped function of learning speed. 

 The rest of the paper is organized as follows. Section 2 describes the model, and derives the optimal 

investment and financing policies with learning-curve technology. Section 3 presents and discusses the numerical 

results from the model. Section 4 concludes. 

 

2. Model Setup 

SGK (2012) examine the investment decision of an unlevered firm that uses learning-curve technology. We 

extend their model to a levered firm, thus our starting point is the SGK model. 

2.1. Model Basics 

A firm holds an option to build a production facility with learning-curve technology. Its investment decision 

consists of the timing (or investment trigger) and the size (or investment scale). The investment scale is given by 

the amount of capital K, which can be acquired at a cost of $i per unit, so the total investment cost is $iK. The 

production capacity is given by the transformation q = Kη (where η < 1 is the returns-to-scale parameter).5 

The output price is given by x, which evolves randomly as a lognormal process:6 

     dx = μxdt + σxdZ,      (1) 

 
5 This transformation is consistent with a Cobb-Douglas production function with decreasing returns to scale, and is widely 

used in the production and contingent-claim literature, e.g., Bar-Ilan and Strange (1999), Bertola and Caballero (1994), Chen 

et al. (2018), Carlson et al. (2004), Tserlukevich (2008), Aguerrevere (2009), Hackbarth and Johnson (2015). In some of 

these papers, the price is derived endogenously as a function of stochastic demand; however, their revenue function is similar 

to our reduced-form expression. Bertola and Caballero (1994) show that this reduced form of revenue function is consistent 

with empirical data. 
6 The SGK (2012) model has a downward-sloping demand curve, so the firm is not a price-taker. However, they state (their 

footnote 5) “The results presented are not driven by the model specification. In particular, all the main results are also present 

in another popular specification in these types of models: a price taking firm with decreasing returns to scale technology 

(price is an exogenous diffusion process and the rate of production with capital K is Kα, α < 1).” We abstract from 

competition and demand effects and assume a price-taking firm with decreasing returns to scale, in order to focus on the joint 

investment-leverage decision. 
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where μ and σ are the expected growth rate and volatility, respectively, of the process, and Z is a standard Wiener 

process. The production project is infinitely-lived, and will operate at full capacity; thus the production quantity 

will be q = (Kη) units of the output per unit time.7 The variable operating cost per unit is given by the time-varying 

cost ct, which exhibits learning-curve effects as in SGK (2012): 

     𝑐𝑡  = 𝑐0𝑒−𝛾𝑄𝑡,      (2) 

where c0 is the starting or initial cost, γ is the speed or intensity of learning, and Qt is the cumulative output by 

time t. That is, because of the learning curve, the unit production cost falls with cumulative production. Since 

capacity is fully utilized, the cumulative output is given by Qt = (Kη)t. 

The firm’s profits are taxed at a constant corporate tax rate of τ (0 < τ < 1), and all cash flows are 

discounted at a constant interest rate of r. The after-tax profit flow from the project can then be expressed as: 

   𝜋𝑡 = (1 − 𝜏)(𝑥𝑡 − 𝑐𝑡)𝐾𝜂       (3) 

2.2. Unlevered Firm 

As in SGK (2012), the (post-investment) project value is given by: 

𝑉(𝑥, 𝑄) = 𝔼 ∫ (1 − 𝜏)(𝑥𝑠 − 𝑐0𝑒−𝛾𝑄𝑠)𝐾𝜂
𝑇

𝑡

𝑒−𝑟(𝑠−𝑡)𝑑𝑠 

which simplifies to: 

    𝑉(𝑥, 𝑄) = (1 − τ)𝐾𝜂 (
𝑥

𝑟−𝜇
−

𝑐0𝑒−𝛾𝑄

𝑟+𝛾𝐾𝜂 )     (4) 

The optimal investment trigger, as a function of capital, is x*(K): 

    𝑥∗(𝐾) = (𝑟 − 𝜇)
𝛼

𝛼−1
(

𝑐0

𝑟+𝛾𝐾𝜂 +
𝑖𝐾1−𝜂

1−𝜏
)     (5) 

 
7 In real life, it might be possible for the firm to produce at reduced rates (leaving some of the capacity idle) when demand is 

low. However, as Seta et al. (2012) explain, in many industries firms make production plans before the actual realization of 

market demand, and may find it difficult to produce below capacity due to fixed costs. Also, even when firms can keep some 

capacity idle, a temporary suspension of production is often costly, because of maintenance costs needed to avoid 

deterioration of the equipment. 
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Finally, the optimal investment scale K* is the solution to the equation: 

    
1

𝛼−1

𝑐0

𝑟+𝛾𝐾𝜂 + (
𝛼

𝛼−1
−

1

𝜂
)

𝐼

𝐾𝜂−1(1−τ)
+

𝛾𝑐0 𝐾𝜂

(𝑟+𝛾𝐾𝜂)2 = 0    (6) 

As in SGK (2012), an all-equity firm choosing both optimal investment timing and optimal investment size will 

solve equations (5) and (6) simultaneously. This gives the optimal investment decision for an unlevered firm. We 

examine the levered firm next. 

2.3. Levered Firm 

In this section, we extend the SGK (2012) model to identify the optimal investment decision of a levered firm 

with learning-curve technology. Accordingly, we assume that the investment is (partially) financed with perpetual 

debt, which will pay a constant coupon at a rate of $b per unit time in perpetuity (unless the firm declares 

bankruptcy). For a levered firm, we must consider the possibility of bankruptcy. We therefore assume that when 

conditions deteriorate sufficiently (or x falls to a low enough level, say xb) the company declares bankruptcy, as is 

standard in the corporate finance literature (Goldstein, et al., 2001, Leland, 1994). At bankruptcy, bondholders 

take over the assets of the company after incurring fractional bankruptcy cost of ω, and shareholders exit with 

zero payoff. 

Since the production cost ct is dependent on the cumulative output Qt, the bankruptcy trigger will also 

depend on Qt; the bankruptcy trigger is therefore written as xb(Qt). This implies equity and debt values will be a 

function of Q as well as x; let the equity value be E(x, Q) and the debt value D(x, Q). 

2.3.1. Equity Valuation 

As shown in Appendix A, equity value E(x, Q) will be the solution to the following partial differential equation 

(PDE): 

( ) )Q,x(rE]b)ecx(K)[1()Q,x(EK)Q,x(xE)Q,x(Ex5.0 Q
0Qxxx

22 =−−−+++ −      (7) 

The equity value must also satisfy the following boundary conditions. 
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(i) At the bankruptcy trigger xb(Q): When the firm declares bankruptcy, the payoff to equity holders is zero. This 

gives the value-matching condition: 

    E(xb(Q),Q) = 0, Q       (8) 

Also, xb is endogenously chosen by the firm. For it to be optimal, it has to satisfy the smooth-pasting condition:  

     Ex(xb(Q),Q) = 0, Q       (9) 

(ii) As x → ∞: When the output price x becomes very large, the risk of bankruptcy becomes negligible, hence 

equity value is simply the project value less the (riskless) bond value, or: 

Q,r/b)Q,x(V)Q,x(Elim
x

−=
→

     (10) 

where the project value V(x, Q) is given by equation (4). 

(iii) As Q → ∞: As shown in Appendix B, when the cumulative output reaches very high levels (Q → ∞), we get 

the boundary condition: 




→
+














−

−
−= Ax

r

b

r

xK
)1()Q,x(Elim

Q
     (11) 

where 
( )( )

)r(

xK)1(
A

1
b

−

−
−=

−




, 
)/11(K

)r/1(b
x b

−

−
=

 , and 
2

2

22

r2

2

1

2

1


+












−−




−= . 

The equity value is obtained by solving equation (7) subject to the above boundary conditions (equations (8) – 

(11)). Since there is no analytical solution, we use numerical methods to solve for equity value (Appendix C). 

2.3.2. Debt Valuation 

Similarly, it can be shown that debt value D(x, Q) is the solution to the following PDE: 

( ) )Q,x(rDb)Q,x(DK)Q,x(xD)Q,x(Dx5.0 Qxxx
22 =+++   
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subject to the following boundary conditions: 

(i) At the default trigger xb(Q): D(xb(Q),Q) = (1–ω)V(xb(Q),Q), Q  (value-matching condition). 

(ii) As x → ∞: when the demand parameter becomes very large, the risk of bankruptcy becomes negligible, hence 

the debt becomes equivalent to a risk-free bond: D(x, Q) → b/r. 

(iii) As Q → ∞: As shown in Appendix B, when the cumulative output reaches very high levels, the boundary 

condition is:  lim
𝑄→∞

𝐷(𝑥, 𝑄) =
𝑏

𝑟
+ 𝐵𝑥𝛽 ,where ( ) ( ) −


 −−−−= bb xr/b)r/(xK)1)(1(B . 

The above PDE is solved numerically, along with the boundary conditions, for the debt value D(x,Q). 

We have shown above how to compute equity value E(x,Q) and debt value D(x,Q) for a levered firm after 

investment. Since we are interested in the investment decision, we next look at the option to invest and how to 

exercise this option (i.e., how to invest) optimally. 

2.3.3. Option to Invest and the Optimal Investment Decision 

The investment decision can be viewed as the exercise of an (American) option to invest. Prior to investment, 

shareholders have this (perpetual) option to invest; the value of the option will be a function of just the state 

variable x, say F(x). Then it can be shown that the option value is given by: 

F(x) = H xα,       (12) 

where H is a constant to be determined by boundary conditions, and 
2

2

22

r2

2

1

2

1


+












−+




−=  (note that 

α > 1). The firm value prior to investment is just the option value Hxα. Thus the constant H can be used as a time-

independent proxy for the ex-ante (pre-investment) firm value or shareholder value. 

When the option is exercised (i.e., the investment is made), say, at x = x*, shareholders issue debt and 

receive the proceeds D(x*,Q). The remaining investment cost is paid by the shareholders; thus the shareholders 

have to invest an amount {iK – D(x*,0)}, since Q = 0 at investment. Then the shareholders’ net payoff at 
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investment is E(x*, 0) – {iK – D(x*, 0)}, or {E(x*, 0) + D(x*, 0) – iK}. The value-matching condition for the 

option exercise decision is: 

F(x*) = E(x*, 0) + D(x*, 0) – iK      (13) 

For the option to be exercised optimally, the smooth-pasting condition must also be satisfied (see Dixit and 

Pindyck, 1994): 

F’(x*) = E’(x*, 0) + D’(x*, 0)      (14) 

In addition to choosing the best time to invest (or the optimal investment trigger x*), the firm also chooses the 

investment scale or capacity K. The optimal capacity is given by K*: 

 iK)0,x(D)0,x(EmaxargK
K

* −+=      (15) 

We now have the optimal investment decision, (x*, K*), with an exogenously-specified debt level. From the above 

discussion, it is clear that the optimal investment policy will depend on the debt level. Then the question of 

interest is: what is the appropriate debt level, or what level of debt is the firm likely to use? Most of the literature 

seems to agree that the appropriate debt level is the optimal level (Leland, 1994, Mauer and Sarkar, 2005, etc), 

since managers are rational and hence likely to optimize. We therefore identify the optimal debt level next. 

2.3.4. Optimal Debt Level 

The optimal debt level will maximize the total value of the firm (Leland, 1994, Mauer and Sarkar, 2005); that is, 

the firm must choose b so as to maximize {E(x*, 0)+D(x*, 0)}. Then the optimal debt level is given by: 

 )0,x(D)0,x(Emaxargb **

b

* +=      (16) 

and the corresponding (optimal) leverage ratio: 

Lev* = D(x*,0)/[E(x*,0) + D(x*,0)]     (17) 
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It is clear from the above discussion that the optimal debt level and optimal leverage ratio will depend on the 

speed of learning. 

The optimal investment-financing decision (x*, K* and b*) and the resulting value H are obtained by 

solving equations (13), (14), (15) and (16) simultaneously. There is no analytical solution to this system of 

equations, hence it is solved using numerical methods. 

2.3.5. With Borrowing Constraint 

In practice, the firm is likely to face a limit on how much it can borrow (or how much debt financing it can use). 

Such an external borrowing constraint might arise from asymmetric information, credit rationing, agency 

problems such as risk-shifting, etc (Deb and Balasubramanian, 2016, Koussis and Martzoukous, 2012, Shibata 

and Nishihara, 2012). Debt constraints have already been introduced in real-option models. Shibata and Nishihara 

(2012), for instance, study the investment timing decision and the leverage decision with an external borrowing 

constraint of $qI, where q is a friction parameter and $I is the amount to be invested in the project. 

 The borrowing constraint will be particularly relevant for a firm using learning-curve technology, because 

a significant fraction of the firm’s value comes from future earnings growth caused by the decline in operating 

cost as the firm moves down the learning curve. Future earnings growth resulting from learning cannot be claimed, 

ex ante, hence such a firm will have relatively fewer tangible assets to pledge as collateral (Deb and 

Balasubramanian, 2016). Since learning-curve firms have relatively more intangible assets, they are more likely to 

be subject to a borrowing constraint. 

To incorporate the borrowing constraint, we follow Shibata and Nishihara (2012), and assume the firm 

can borrow a fraction q of the investment amount, thus the borrowing constraint is: D(x*,0) ≤ qiK* (since Q = 0 at 

investment), and the firm’s capital structure decision becomes: 

  qiK)0,x(D.t.s)0,x(D)0,x(Emaxargb ***

b

** +=     (18) 
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where b** is the constrained-optimal debt level, and the resulting leverage ratio is the constrained-optimal leverage 

ratio. Because the financing package is different, the investment decision might also be different from the 

unconstrained optimal-leverage investment decision studied above. 

2.4. The Expected Present Value of Investment (EPVI) 

As SGK (2012) show, earlier investment is generally smaller and delayed investment is larger in size. (This is 

consistent with the other studies (with no learning curve), e.g., Bar-Ilan and Strange, 1999, Huberts et al., 2012). 

This makes it difficult to gauge the overall effect of the learning curve on investment, as discussed in the 

introductory section, because the timing and size effects act in opposite directions. What is needed is an overall 

measure of investment that takes into account both the size and timing of the investment, because delayed 

investment is equivalent to smaller investment (or underinvestment) in present-value terms (Lukas and Thiergart, 

2019). Thus, from the SGK (2012) results, we are unable to say whether the overall effect of the learning curve on 

investment is negative or positive. 

We therefore use the composite measure Expected Present Value of Investment (EPVI), which takes into 

account both the size and timing of investment.8 The EPVI is just the expected present value of the amount of 

investment (to be) made by the company.9 The company will invest $iK* when x rises to x* (or at the first passage 

time of x to x*), the expected present value of which is given by: ( )*
0

* xxiK , as shown by Leland (1994, 

footnote 16). This depends on the current price x0. We ignore the dependence on price (which is stochastic) and 

focus on the time-independent part that depends on exogenous parameters. Therefore, we normalize the 

expression to x0 = 1, to obtain the time-independent measure: 

     

( )
=

*x

iK
EPVI       (19) 

This will be our measure of overall investment. 

 
8 This measure, or some variant of it, has recently been used by Lukas and Thiergart (2019), Nishihara et al. (2019) and 

Sarkar (2019).  
9 Expected, because the time of investment is not known with certainty (see Leland, 1994). 
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3. Numerical Results 

3.1. Parameter Values 

Since we use numerical methods to identify the optimal investment and financing decisions, the input parameter 

values need to be specified. We use parameter values similar to Seta et al. (2012): expected demand growth rate μ 

= 1%, demand volatility σ = 10%, discount rate r = 5%, returns-to-scale parameter η = 0.5, initial production cost 

c0 = 1, and unit price of capital i = 5. In addition, the two financing-related variables tax rate (τ) and bankruptcy 

cost (ω) are taken from Leland (1994), hence τ = 15% and ω = 50%. Finally, we use a base-case value of the 

speed of learning of γ = 0.1; this is for illustrative purposes, since we repeat the computation with a range of 

values of γ. 

3.2. With Exogenously Specified Debt Level 

With the base-case parameter values specified above, we computed the investment decision and the resulting 

EPVI for an unlevered firm (b = 0) and a levered firm (b = 1), using the procedure of Sections 2.3.3 and 2.4. The 

results are given below. 

Unlevered (b = 0): x* = 1.08, K* =5. 23; and EPVI= 21.1224. 

Levered (b = 1): x* = 0.86, K* = 3. 47; and EPVI= 26.4909. 

From these results, it is clear that debt financing can have a significant impact on investment timing, investment 

size, and investment overall (EPVI). Below we repeat the numerical computations with different debt levels and 

different learning speeds to get a better idea of the effect of debt financing on investment with a learning curve. 

Figure 1 shows how the investment decision varies with the debt level, for the “no-learning” case (γ = 0) 

and the “learning” case with three different learning speeds, γ = 0.01, 0.1 and 0.2. From parts (a) and (b) of Figure 

1, we see that both optimal investment trigger x* and optimal investment size K* are initially decreasing and 
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subsequently increasing in debt level. For instance, with γ = 0.1, x* falls from 1.048 to 0.86 and then rises to 1.86, 

and K* falls from 4.69 to 3.47, and then rises to 22.97, as debt level goes from 0 (unlevered) to 1 and then to 8. 

Figure 1 about here 

Thus, as the debt level is increased, the investment is initially smaller and accelerated, and subsequently 

larger and delayed. This leverage effect can be explained by the well-known trade-off theory of capital structure, 

according to which debt financing has two effects – tax benefits and bankruptcy costs. Because of the valuable tax 

shield associated with leverage, debt financing makes the project more attractive, resulting in earlier investment 

(lower x*). However, earlier investment results in smaller size K*, as shown by Bar-Ilan and Strange (1999), 

Hagspiel et al. (2016), and Huberts et al. (2015). The tax effect will then result in smaller x* and K* (earlier and 

smaller investment) as debt level is increased. On the other hand, the bankruptcy cost associated with debt has the 

opposite effect; it makes the project less attractive, resulting in delayed investment (higher x*) and hence larger 

size K*. Thus the bankruptcy-cost effect results in larger x* and K* (delayed and larger investment) as debt level is 

increased. 

Because of the two opposing effects, the overall impact of debt financing on the investment decision is 

difficult to identify unambiguously, and will depend on which of the two dominates. For low debt level, the 

probability of bankruptcy is small, hence the tax effect dominates, and the overall effect of increasing the debt 

level is earlier but smaller investment. For high debt level, probability of bankruptcy is high, hence the 

bankruptcy cost effect dominates, and the overall effect of a higher debt level is delayed but larger investment. 

Thus, both trigger and size are initially decreasing and subsequently increasing in debt level. 

From Figure 1(a) and (b), we also note the following: (i) the investment trigger with debt financing can be 

higher or lower than the unlevered firm; (ii) the investment size with debt financing can be higher or lower than 

the unlevered firm; and (ii) in both cases, the difference between levered and unlevered firm can be quantitatively 

significant. 
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The EPVI (from equation (19)) is shown in part (c) of Figure 1. We note that EPVI is insensitive to debt 

financing for no learning (γ = 0) and very slow learning (γ = 0.01). Thus, for very low learning rates, while debt 

financing does affect the timing and size of investment, it has no significant effect on investment overall. In other 

cases, EPVI is initially an increasing function and subsequently a decreasing function of debt level. Moreover, 

EPVI can be quite sensitive to debt financing; with γ = 0.1, for instance,  EPVI rises from 20.68 to 25.49 and then 

falls to 21.48 as debt level goes from 0 to 3 and then to 8. 

The intuition behind the inverted-U shape of the EPVI curve is as follows. A smaller (larger) x* results in 

a larger (smaller) EPVI, everything else remaining the same; hence the U-shaped relationship between x* and debt 

level will translate to an EPVI curve that is inverted-U-shaped in debt level. Similarly, a smaller (larger) K* 

results in a smaller (larger) EPVI, so a U-shaped K* curve will lead to a U-shaped EPVI curve. Thus, we have the 

two opposing effects on EPVI – the timing (x*) effect and scale (K*) effect. Recall that ( )= *xiKEPVI ; since 

α > 1, the timing (x*) effect will be stronger than the scale (K*) effect. Thus the net effect on EPVI will be closer 

to the former; this explains why EPVI is generally inverted-U-shaped in debt level. For very slow learning, the 

scale effect becomes relatively more important (SGK, 2012), hence the inverted-U shape is weaker. 

Figure 2(d) shows the ex-ante firm value (H) as a function of debt level. As mentioned in the introductory 

section, this is what the shareholders/manager would like to maximize. As expected from the trade-off theory, this 

is initially rising and subsequently falling in debt level, giving an optimal debt level.10 In the rest of the paper, we 

focus on the EPVI rather than the value. 

Result 1. The effect of debt financing, in the presence of a learning curve, can be summarized as follows: 

- Investment trigger and investment size can be higher or lower with debt financing than with no debt 

financing, and the difference can be quantitatively significant. 

- Both investment trigger and size are U-shaped functions of debt level, while both investment overall 

(EPVI) and firm value are, in general, inverted-U-shaped functions of debt level. 

 
10 For γ = 0 and 0.01, the optimal debt level exceeds b = 8 and hence does not show up in the graph. 
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It is clear from the above results that the effect of the learning curve on investment depends on the level 

of debt. This leads to the question: what would be an appropriate level of debt? It is common in the literature to 

assume that managers, being rational decision-makers, choose the debt level optimally, i.e., to maximize total firm 

value (Leland, 1994, Mauer and Sarkar, 2005). Therefore, we next look at the numerical results when the firm 

optimizes jointly the investment and financing decisions under learning-curve technology. 

3.3. With the Optimal Debt Level 

In addition to the optimal investment decision (x*, K*) discussed above, the optimal debt level b* and the 

corresponding leverage ratio are also computed from equations (16) and (17). Thus, both investment (timing and 

size) and capital structure are chosen optimally in this section. 

3.3.1. Investment 

The optimal leverage ratio (hence the optimal investment size and timing as well) will depend on the speed of 

learning γ. The numerical results with the base-case parameter values and γ = 0.1 are shown below. 

Optimal financing: b* = 1.66, leverage ratio = 71.63%; 

Optimal investment: x* = 0.97, K* = 5.14, EPVI = 27.62. 

For comparison with the unlevered firm, we give below the results for b = 0. 

Optimal unlevered investment: x* = 1.08, K* = 5.23, EPVI = 21.12. 

While the investment size is only slightly smaller for the optimally-levered firm, the investment trigger is 

significantly lower, 1.08 versus 0.97. The overall effect on investment, measured by the EPVI, is significantly 

higher for the optimally-levered firm, likely because of the earlier investment. From the above results, it is clear 

that, for γ = 0.1, the optimally-levered firm’s investment decision will be substantially different from the 

unlevered firm. To see how this difference varies with γ, the computations were repeated with different values of 

γ, and the results shown in Figure 2. 
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Figure 2 about here 

 Figure 2 shows a comparison of unlevered and optimally-levered firms’ investment decisions over a range 

of learning speed (γ = 0 to 0.3). The optimally-levered firm has a lower investment trigger x* than the unlevered 

firm over the entire range of γ, and in both cases the trigger is a decreasing function of γ. Thus, the optimally-

levered firm will invest earlier than the unlevered firm, and learning speed has a similar effect on investment 

timing in both cases. Also, as discussed above, the difference between the two can be significant. 

 The effect on investment size K* is more ambiguous, and the optimally-levered firm’s investment size can 

be larger, smaller or approximately equal to that of the unlevered firm, depending on the speed of learning. For 

low learning speed (γ < 0.01), the investment size is larger with optimal leverage. For intermediate learning speed 

(0.01 < γ < 0.1), the unlevered firm’s investment size will be larger, and for faster learning (γ > 0.1) there is 

virtually no difference between the two. 

The learning speed γ affects investment size K* differently in the two cases; K* is an inverted-U-shaped 

function of γ for unlevered, but a decreasing function of γ for optimally-levered. This means the optimally-levered 

firm will not rely on the “scale option,” unlike the unlevered firm (SGK, 2012). For rapid learning (large γ), the 

difference between unlevered and optimally-levered size is small, e.g., for γ = 0.15, we have K* = 3.6 and 3.5 for 

unlevered and optimally-levered, respectively. But for slow learning, optimally-levered size can be significantly 

smaller than unlevered size, e.g., for γ = 0.01, K* = 34.62 and 25.18 for unlevered and optimally-levered, 

respectively. Thus, the optimally-levered firm’s investment decision can be significantly different from the 

unlevered firm’s investment studied by SGK (2012). 

 As discussed in the previous paragraph, for an unlevered firm the “scale option” dominates for low γ. 

This is because with slow learning the firm needs more capacity in order to produce more (to achieve faster 

learning). This outweighs the negative effect of smaller x* (which causes small K*); thus the net effect is a larger 

K*, that is, the scale option dominates. However, in the optimally-levered firm, the scale option does not dominate 

even for very small γ. This is because optimal leverage ratio increases with γ (Section 3.3.2), which results in 
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higher bankruptcy risk and makes the firm less willing to invest in large capacity. This causes K* to go down, 

hence K* is a decreasing function of γ, thus the scale option does not dominate. 

 Figure 2(c) shows the EPVI of unlevered and optimally-levered firms as functions of γ. There are three 

points worth noting: (i) for both, EPVI is an increasing function of γ (but increasing at a decreasing rate); (ii) the 

optimally-levered EPVI is higher than unlevered EPVI over the entire range of γ; and (iii) the difference between 

the two is an increasing function of γ. Clearly, therefore, using the optimal amount of debt financing will have a 

positive effect on investment overall. 

Thus the investment decision by an optimally-levered firm can be significantly difference from an 

unlevered firm. These differences persist for a wide range of parameter values (not reported here, for brevity). The 

results of this section are summarized in Result 2 below. 

Result 2. Comparison of unlevered and optimally-levered firms: 

- The optimally-levered firm’s investment trigger is lower, but its investment size can be larger, smaller or 

the same, depending on the speed of learning; in both cases, the difference might be substantial. 

- The effect of learning speed on investment trigger is the same, but the effect on investment size can be 

quite different. 

- The optimally-levered firm’s overall investment (measured by EPVI) is higher, and the difference 

increases with learning speed. 

3.3.2. Financing 

The optimal debt level b* and corresponding leverage ratio are computed using equations (16) and (17). Figure 3 

shows the optimal debt level b* and the optimal leverage ratio as functions of learning speed γ. The optimal debt 

level is a decreasing (at a declining rate) function of learning speed; this is not surprising since debt level 

generally moves in the same direction as investment size (since smaller investment can only support a lower debt 

level). 
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Figure 3 about here 

The optimal leverage ratio, on the other hand, is an increasing (at a declining rate) function of learning 

speed. This is because operating costs will fall with a learning curve, resulting in higher project value per dollar 

invested; therefore the project can support more debt per dollar of assets, as a result of which the optimal leverage 

ratio is higher. The effect of γ in both cases flattens out as γ is increased, because the learning effect gets smaller 

as γ is increased, resulting in a flattening of the optimal debt level and leverage ratio curves. This gives: 

Result 3. The optimal leverage ratio is an increasing function of learning speed γ. 

 As mentioned at the beginning of Section 3.3.1., for γ = 0.1, the optimal debt level (from Section 2.3.2) is 

1.66 and the corresponding leverage ratio is 71.63%; this results in a debt value (at issue) of $31.71. The 

investment cost is iK* = 5(5.14) = $25.70. That is, when x rises to x* the firm will optimally borrow $31.71 from 

bondholders and invest $25.70 in the project. The optimal financing policy thus requires the firm to borrow an 

amount exceeding the investment amount. This might make theoretical sense because of the growth in future 

profits as the firm moves down the learning curve. In real life, however, this is not feasible, particularly since the 

future growth in profits represents intangible assets; hence it is likely that there will be a constraint on the amount 

the firm can borrow, as discussed in Section 2.3.5. In the next section, we look at the investment and financing 

decisions with a borrowing constraint. 

3.4. With a Borrowing Constraint 

3.4.1. Base Case Results 

We start with a friction parameter of q = 1 (as in Deb and Balasubramanian, 2016), i.e., a borrowing constraint of 

D(x*,0) ≤ iK*. With this constraint and the base-case parameters, we get the following results for γ = 0.1: 

b* = 1.30, leverage ratio = 59.51%, x* = 0.96, K* = 5.12 and EPVI = 28.5848. 

Comparing the above numbers with those of the unconstrained optimization in Section 3.3.1, we note first that the 

financing decision is quite different, with both debt level and leverage ratio being significantly lower than the 
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unconstrained optimal case. This is not surprising, given that there is a constraint on borrowing. The investment 

decision, however, is very close to the unconstrained. The computations are repeated for different learning speed 

and the results shown in Figure 4 (investment) and Figure 5 (financing). 

Figures 4 and 5 about here 

 Figure 4 shows the investment outcomes (x*, K* and EPVI) for unlevered, optimally-levered, and 

constrained-levered (constraint of D(x*,0) ≤ iK*) firms. For all three outcomes, the difference between optimally-

levered and constrained-levered is negligible over the entire range of learning speeds. This is also true for all other 

parameter values examined (not reported here). Thus the borrowing constraint makes no significant difference to 

the investment decision. 

 Figure 5 shows the financing decision with the borrowing constraint, along with the financing decision of 

the optimally-levered firm. Part (a) shows the debt level as a function of γ, and part (b) the leverage ratio. As 

expected, both debt level and leverage ratio are now considerably lower than the unconstrained case. In both cases, 

the debt level is a decreasing function of γ. However, unlike the unconstrained case, the leverage ratio now is 

initially an increasing and subsequently a decreasing (inverted-U-shaped) function of γ. The borrowing constraint 

has a negative effect on leverage ratio, the magnitude of which increases with γ. 

The reason for this inverted-U-shaped effect is as follows. A higher γ means a larger fraction of firm 

value is intangible, which will have a more negative effect on debt on borrowing ability. Thus, the speed of 

learning will have two opposing effects in the constrained optimization problem – a higher γ will raise the 

leverage ratio because it increases value, but it will also have a negative effect because it increases the asset 

intangibility. Thus we cannot unambiguously sign the learning-speed-leverage-ratio relationship. However, 

intangibility will be less important for small γ, hence the second effect will be less relevant and the overall 

relationship should be positive. For large γ, the intangibility aspect becomes important, hence the second effect 

dominates and leverage ratio is a decreasing function of learning speed. That is, the leverage ratio will be an 

inverted-U shaped function of γ. We now state: 
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Result 4. With a borrowing constraint: 

- the investment decision is not significantly different from the (unconstrained) optimally-levered firm; 

- the leverage ratio is an inverted-U-shaped function of the learning speed γ. 

We repeated the computations with different borrowing constraints and different parameter values, to 

establish the robustness of the leverage ratio – learning relationship. These are discussed below. 

3.4.2. Some Comparative Static Results for Constrained Borrowing 

In the above computations, we had assumed q = 1 (as in Deb and Balasubramanian, 2016). However, creditors 

will generally not lend the entire amount needed to invest in the project; for instance, Shibata and Nishihara (2012) 

use q = 0.2 and 0.6 in their numerical illustrations. With a more realistic (tighter) borrowing constraint (q < 1), the 

“intangibility effect” mentioned above will be stronger while the “value effect” will be unchanged, hence the 

leverage ratio should start falling earlier (at a smaller value of γ). Thus the downward-sloping portion of the curve 

will be more prominent, because the curve will be downward-sloping over a wider range of γ. 

Figure 6(a) shows the results with q = 0.4; it can be noted that leverage ratio starts falling much earlier (at 

γ = 0.05 instead of 0.13). Thus, with a tighter borrowing constraint, we are more likely to observe a negative 

relationship between learning speed and leverage ratio. 

Figure 6 about here 

Figure 6(b) and (c) show the results with different values of returns-to-scale parameter η and demand volatility σ 

(but retaining the earlier assumption of q = 1). With a higher η the option value (or firm value, since prior to 

investment the firm has only the option to invest) will be higher, hence the “value effect” mentioned above will be 

more dominant relative to the “intangibility effect;” thus the leverage ratio will be rising for a longer stretch as γ is 

increased. For higher returns-to-scale, therefore, leverage ratio starts falling later; as shown in Figure 6(b), when η 

= 0.55 the leverage ratio starts falling at γ = 0.2 (instead of 0.13). Also, higher volatility increases the value, so it 

has the same effect as a higher η (above). Thus, the leverage ratio should start falling later with higher demand 
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volatility. This is indeed the case, as shown in Figure 6(c) where the leverage ratio starts falling at γ = 0.17 with a 

higher volatility of σ = 15%. This gives: 

Result 5. With a borrowing constraint, we are more likely to observe a negative relationship between learning 

speed (γ) and leverage ratio with a tighter constraint, smaller returns-to-scale and lower demand volatility. 

 There is only one empirical study, to our knowledge, on the effect of the learning curve on capital 

structure, Deb and Balasubramanian (2019). They find that leverage ratio is negatively related to learning 

intensity. However, their finding does not necessarily contradict the inverted-U-shaped relationship predicted by 

our model, because their study does not consider possible non-linearity in the relationship. In order to 

appropriately test our model’s implication regarding leverage ratio, the regressions would have to include the 

squared term of learning speed in the list of explanatory variables. 

 

4. Conclusion 

This paper extends the SGK (2012) investment model with learning curve to the case of a levered firm. To take 

into account both the size and timing of investment, we use a composite measure of overall investment (the 

expected present value of investment or EPVI). We show that debt financing can make a significant difference to 

the investment decision, but the exact effect depends on the level of debt used. 

With the optimal debt level, investment is always made earlier than the unlevered firm; investment size, 

however, can be (i) larger than the unlevered firm if the speed of learning is low enough, (ii) smaller than 

unlevered for higher learning speed, or (iii) roughly equal to unlevered for high learning speed. 

We also identify the optimal capital structure with a learning curve. The optimal debt ratio is an 

increasing function of the speed of learning. However, in the presence of a borrowing constraint, leverage ratio is 

an inverted-U-shaped function of learning speed, the downward-sloping part of which becomes more prominent 
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when the borrowing constraint is tighter, when the technology is more decreasing-returns-to-scale and when 

demand volatility is lower. 

Our model has some implications for leverage ratios with a learning curve, and these can be tested 

empirically. Also, as in SGK (2012), our model does not allow the firm to change its output rate. The model can 

be extended to allow the firm to raise or lower its output rate in response to demand fluctuations. Finally, we 

examine lumpy investment as in SGK (2012); the model can be extended to study incremental investment, where 

the firm can increase capacity gradually as demand rises. 
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Appendix A. Derivation of Partial Differential Equation (7) 

We are interested in the value of equity, or E(x, Q). The two state variables evolve as follows: dx = μxdt + σxdZ 

and dQ = Kηdt, and the cash flow to shareholders is: ( )( ) bKecx)1( Q
0 −−− −  per unit time. 

 Let dE be the change in equity value over the next instant dt. Then, dE = Ex dx + 0.5 Exx (dx)2 + EQ 

dQ, from Ito’s lemma (the other terms drop out because (dt)2 = 0, (dQ)2 = 0, and (dt dQ) = 0). Substituting for dx 

and dQ, we get: dE = Ex (μx dt + σx dz) + 0.5 Exx (σ2x2 dt) + EQ Kη dt. Taking expectations (and keeping in mind 

that E(dz) = 0), we get the expected value of dE: 

E(dE) = [Ex μx + 0.5 Exx (σ2x2) + EQ Kη] dt. 

This is the expected capital gain from holding the equity over the next instant dt. There is also a cash inflow (or 

dividend) of ( )( ) bKecx)1( Q
0 −−− − dt, over this time period. Thus, the total instantaneous return is: 

( ) ( )( ) 
E

bKecx)1(EKxEEx5.0 Q
0Qxxx

22 −−−+++ −

 

From the Local Expectations Hypothesis, this is equal to the risk-free rate r. Setting the above return equal to r, 

we get: ( ) rE]b)cex(K)[1(EKxEEx5.0 Q
Qxxx

22 =−−−+++ − , which is  equation (7) of the paper. 

 

Appendix B. Boundary Conditions for Q → ∞. 

When the cumulative output is very large, or Q → ∞, the production cost becomes very small, i.e., c = c0e-γQ → 0, 

hence the profit stream π → (1-τ)[Kηx – b]; that is, the problem becomes time-independent. Then the equity and 

debt values are given by: E(x) = 

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Boundary conditions: 

At the bankruptcy trigger xb∞, there are two boundary conditions for equity value: 

 Value-matching: E(xb∞) = 0, and Smooth-pasting: E’(xb∞) = 0. 

Also at bankruptcy trigger xb∞, there is one condition for debt value: 
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 Value-matching: 
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The three boundary conditions are solved for the three unknowns A, B and xb∞, giving: 
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Appendix C. Numerical methods to solve PDE 

We use finite difference method to solve the equation since it has been proven to be quite efficient and stable in 

dynamic corporate finance modelling (e.g. Carverhill and Anderson 2012). Specifically, we apply Crank-Nicolson 

discretization scheme coupled with Successive-Over-Relaxation (SOR) to ensure computational stability. The 

mesh grid is constructed as (xi, tj) with i = 1, 2….n and j = 1, 2….m, where  

𝑥𝑖 = 0, 𝛥𝑥, 2𝛥𝑥 … … 𝑛𝛥𝑥 

𝑡𝑗 = 0, 𝛥𝑡, 2𝛥𝑡 … … 𝑚𝛥𝑡 

𝑉𝑥 =
1

2
(

𝑉𝑖+1,𝑗−1 − 𝑉𝑖−1,𝑗−1

2𝛥𝑥
+

𝑉𝑖+1,𝑗 − 𝑉𝑖−1,𝑗

2𝛥𝑥
) 

𝑉𝑥𝑥 =
1

2
(

𝑉𝑖+1,𝑗−1 − 2𝑉𝑖,𝑗−1 + 𝑉𝑖−1,𝑗−1

(𝛥𝑥)2
+

𝑉𝑖+1,𝑗 − 2𝑉𝑖,𝑗 + 𝑉𝑖−1,𝑗

(𝛥𝑥)2
) 

𝑉𝑡 =
𝑉𝑖,𝑗−𝑉𝑖,𝑗−1

𝛥𝑡
 and 𝑉 =

𝑉𝑖,𝑗+𝑉𝑖,𝑗−1

2
 

In general, the smooth pasting conditions, for bankruptcy timing, can be realized by searching the first time that 

the equity equal or larger than the zero (for instance eq. 9) along the discretization scheme. For reader’s 

replication, we adopt a mesh grid of, x ∊ [0, 30] with 1200 steps, and T ∊ [0, 200] with 1000 steps, the scheme is 

selected to balance off cumbersome CPU time and results precision. The only challenge in the computation 

probably comes from the time horizon T because we have to reinterpret the PDE as function of calendar time t to 

solve optimal capital K. To compare with SGK (2012) we choose infinite length T. Another reason is that 

previous studies have shown finite project life T has great impact on investment decisions (Gryglewicz, Huisman, 

Kort 2008). Thus the question is that how large T can be considered as close as much to inifinite? To give a best 

estimation, we firstly solve SGK(2012) investment decision with finite T, and then we compare how large T is 

good? For example, the solutions to 𝑣 = 𝔼 ∫ (1 − 𝜏)(𝑥 − 𝜑𝐾 − 𝑐𝑒−𝛾𝑄𝑠)𝐾
𝑇

𝑡
𝑒−𝑟(𝑠−𝑡)𝑑𝑠 are 

𝑉(𝑇, 𝑡) = (1 − τ) [
𝑥𝐾

𝑟−𝜇
(1 − 𝑒−(𝑟−𝜇)(𝑇−𝑡)) −

𝜑𝐾2

𝑟
(1 − 𝑒−𝑟(𝑇−𝑡)) −

𝑐𝑒−𝛾𝑄𝐾

𝑟+𝛾𝐾
(1 − 𝑒−(𝑟+𝛾𝐾)(𝑇−𝑡))]                      
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Note for the finite-horizon case, we implicitly assume the scrap value of assets at T is zero. We emphasize this 

since it will also be applied in the levered case 

The investment timing and size are solved with 

𝑥∗(𝑇, 0) =
𝑟 − 𝜇

1 − 𝑒−(𝑟−𝜇)𝑇

𝛼

𝛼 − 1
[
𝜑𝐾

𝑟
(1 − 𝑒−𝑟𝑇) +

𝑐

𝑟 + 𝛾𝐾
(1 − 𝑒−(𝑟+𝛾𝐾)𝑇) +

𝑖

1 − 𝜏
] 

And the optimal size is solved with 

𝑖

(1 − τ)𝑐
= (𝛼 − 2)

𝜑𝐾∗

𝑐𝑟
(1 − 𝑒−𝑟𝑇) −

𝑟 + 𝛼𝛾𝐾∗

(𝑟 + 𝛾𝐾∗)2 (1 − 𝑒−(𝑟+𝛾𝐾)𝑇) + (𝛼 − 1)
𝛾𝑇

𝑟 + 𝛾𝐾
𝑒−(𝑟+𝛾𝐾)𝑇 

And the investment option is 

𝑓(𝑇, 0) =
1 − τ

𝛼

𝑥∗𝐾

𝑟 − 𝜇
(

𝑥

𝑥∗
)

𝛼

(1 − 𝑒−(𝑟−𝜇)𝑇) 

Conclusion: it discloses that T = 200 has an enough approximation of infinite solution with error tolerance on the 

magnitude of 10-5. Thus in the numerical scheme, we assume T = 200. 
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 (a)      (b) 

 

     

(c)      (d) 

 

Figure 1. The effect of debt level b on optimal trigger (x*), optimal size (K*), overall investment (EPVI), and 

project value (H) for four learning speeds: γ = 0 (thin black line), 0.01 (red dotted line), 0.1 (thick blue line) and 

0.2 (broken black line). The base-case parameter values are used: μ = 1%, σ = 10%, r = 5%, η = 0.5, c0 = 1, i = 5, 

τ = 15% and ω = 50%. 
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Figure 2. The effect of learning speed (γ) on optimal investment trigger (x*), optimal size (K*) and overall 

investment (EPVI), for unlevered firm (broken line) and optimally-levered firm (solid line). The base-case 

parameter values are used: μ = 1%, σ = 10%, r = 5%, η = 0.5, c0 = 1, i = 5, τ = 15% and ω = 50%. 
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Figure 3. Optimal financing. Effect of learning speed (γ) on (10 times) the optimal debt level (broken line) and 

optimal leverage ratio (solid line). The base-case parameter values are used: μ = 1%, σ = 10%, r = 5%, η = 0.5, c0 

= 1, i = 5, τ = 15% and ω = 50%. 
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Figure 4. The effect of learning speed (γ) on optimal investment trigger (x*), optimal investment scale (K*) and 

investment overall (EPVI), for the three cases: unlevered (thin black line), optimally-levered (thick blue line) and 

constrained-optimal (broken black line). The base-case parameter values are used: μ = 1%, σ = 10%, r = 5%, η = 

0.5, c0 = 1, i = 5, τ = 15% and ω = 50%, and the borrowing constraint is D ≤ iK. 
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Figure 5. Optimal financing versus borrowing-constrained financing. Effect of learning speed (γ) on the 

financing decision, for an optimally-levered firm versus a firm that is borrowing-constrained (D ≤ iK). Part (a) 

shows the debt level and part (b) shows the leverage ratio. In both cases, the broken blue line is the optimally-

levered firm, and the solid red line the firm facing the borrowing constraint. The base-case parameter values are 

used: μ = 1%, σ = 10%, r = 5%, η = 0.5, c0 = 1, i = 5, τ = 15% and ω = 50%. 
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Figure 6. Part (a) shows leverage ratio for unconstrained borrowing and two cases of constrained borrowing (D ≤ 

iK and D ≤ 40%iK). Part (b) shows constrained leverage ratio (D ≤ iK) for η = 0.4, 0.5 and 0.55. Part (c) shows 

constrained leverage ratio (D ≤ iK) for σ = 5%, 10 and and 15%. The base-case parameter values are used: μ = 1%, 

σ = 10%, r = 5%, η = 0.5, c0 = 1, i = 5, τ = 15% and ω = 50%. 
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