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Abstract

A firm whose capital is relatively divisible invests incrementally to

maintain a rival on the brink of entry and enters the product market at a

time which is both a myopic optimum and a preemptive equilibrium. This

conduct is both the optimal policy of a firm that regulates its rival’s entry

threat through capital accumulation and the limit of equilibrium outcomes

of asymmetric preemption as investment steps become arbitrarily small. If

the price of capital follows a stochastic process option value overrides the

strategic investment motive so greater volatility delays the firm’s jump to

completion. An emblematic historical example of strategic commitment

is discussed in light of this analysis.
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1 Introduction

Consider for a moment the following scenario. Two entrepreneurs plan to build

competing rail lines between a pair of distant cities. These projects are both

economically sound as the demand for travel between these destinations is suf-

ficient to sustain a duopoly. Currently the cost of the necessary capital goods

—the cost of building either of the proposed rail links—is prohibitively high so

it is not viable to build even one. But this fixed cost is expected to decrease

steadily over time so that building a first line and then the second will even-

tually become profitable. The entrepreneurs are identical for all intents and

purposes, their routes are of equal length and run through comparable terrain,

but their projects differ in one critical respect. Of the two ways to connect the

cities, the Northern route that one entrepreneur plans to follow runs through an

expanse of uninhabited land, whereas the Southern route selected by the other

runs through a more populated region. The farmers whose fields lie along this

other route are too few to have an impact on the railroad either as workers or as

passengers, but keep a keen eye on their surroundings and gossip enough among

themselves that should a section of track be built in their backyards, word of

this will quickly travel back to both cities.

Under such conditions one expects economics to explain which entrepreneur

likely succeeds in completing a railroad first, and to a large extent it does. The

asymmetry in information sets —the only public information available up until

the cities have been connected by one railroad or another is the advancement of

the line that runs through the populated region—favors the Southern firm by al-

lowing it to make a strategic commitment that the Northern firm cannot. What

is less clear, if one takes a dynamic perspective, is the pattern this commit-

ment should follow over time as industry conditions evolve. Here the Southern

entrepreneur does not shift product market reaction functions as described in
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textbook treatments of strategic commitment, but instead uses his ability to

make strategic incremental investments to regulate the Northern entrepreneur’s

entry decision as the price of the capital good drops. The more interesting eco-

nomic question is not then whether the Southern firm gains an advantage, but

rather how it manages exactly to use the greater observability along its route

to secure a positional rent. Even if much has been written about both strategic

commitment and investment in continuous time, this latter question, that of

identifying characteristic properties of a leader’s strategic investment over time,

has not been as extensively addressed. This question is the main subject of

this article. Moreover, understanding firm conduct in this setting is of broader

relevance than a fictional railroad scenario, as similar conditions arise under im-

perfect competition whenever one firm has the capability of dividing investment

into finer pieces, or stages, than its rivals, an occurrence which we argue further

below is not so rare in practice.1 We establish that the conduct of leadership

under such conditions involves a phase of incremental investment during which

the leading firm ratchets up its threat to keep on discouraging preemption up

until a specific time is reached at which its level of capital jumps to completion

so as to capture a positional rent.

This pattern of capital accumulation can be understood intuitively by means

of Figure 1. Time is on the horizontal axis whereas the vertical axis represents

levels of capital in the unit interval for one of the firms in a duopoly, hereafter

referred to as firm 1, which correspond to possible fractions of the total route

that might be built by the Southern firm. Two loci which result from stan-

dard arguments involving optimal timing and preemption are drawn in grey.

The curve TL(κ) shows optimal monopoly investment times. In a well-behaved

model of investment where a unit of capital is required in order for a firm to

1Aside from railroads and capacity investment which is discussed further below in the text,
this analysis also applies to R&D investments where one firm’s research is public whereas the
other’s is shrouded in secrecy.
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start earning a constant profit flow, there is a negative relationship between a

firm’s existing capital and its optimal investment time. This optimal time re-

sults from a trade-off between the costs and benefits of waiting, which is in turn

sensitive to the firm’s existing capital stock κ. The greater is κ the smaller the

investment 1− κ necessary for product market entry, and therefore the lower is

the marginal benefit of delay, leading the firm to invest earlier. The other curve

kP (t) is best understood by adopting the perspective of firm 2 (the Northern

firm), which itself holds no capital and observes that its rival has accumulated a

stock of magnitude κ. Firm 2 can compare the profitability of investing before

firm 1, so as to enjoy a phase of monopoly profit up until a duopoly phase begins

once firm 1 joins it in the market, with the profitability of refraining from early

investment and entering after firm 1 as a duopolist. The greater is κ however,

the earlier is firm 1’s optimal duopoly investment time for the same reason as in

the monopoly situation above, namely that its marginal benefit from waiting is

relatively lower. All else equal therefore, the greater is κ, the shorter the span of

time that firm 2 can expect a monopoly profit flow if it enters first, and therefore

the weaker its incentive to enter first rather than second. A generally positive

relationship should therefore be expected to hold between the levels of capital

held by firm 1 and the times at which firm 2 is indifferent between preempting

its rival and investing as a follower. In addition to TL(κ) and kP (t), Figure 1

also depicts the preemption time TP before which entry is undesirable for any

firm, the optimal duopoly entry time TF at which firm 2 invests regardless of

firm 1’s capital stock and the capital stock κ above which no entry time earlier

than TF is desirable for firm 2.

With these elements in mind the optimal path of capital accumulation of firm

1, given its singular ability to invest incrementally, can be described. If the cost

of the capital input is relatively high, it should refrain from any investment. As
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Figure 1: TL (κ) relates optimal monopoly investment times to firm 1’s existing
capital stock while kP (t) is the preemptive capital accumulation policy that
keeps firm 2 indifferent between investing immediately and waiting until TF .
In black, the policy k∗1 (t) has firm 1 accumulating capital incrementally along
the schedule kP (t) from TP onward up until T̂ when it jumps to completion
whereas firm 2 invests as a follower at TF .
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soon as the price of capital drops suffi ciently for market entry to become desir-

able for its rival (time TP ), firm 1 should start investing. Accumulating capital

above the schedule kP (t) is excessively costly, whereas accumulating below this

schedule would allow the rival to enter the market preemptively. Capital accu-

mulation should therefore follow the path indicated by k∗1 (t) which runs along

kP (t) from TP onward. Naturally firm 1 must eventually complete its invest-

ment and enter the product market. A key insight is that this decision must be

instantaneously optimal given its current capital stock. At time T̂ therefore, the

remaining mass of capital required to operate in the product market is acquired

all at once. This time and the associated capital stock κ̂ = k∗1

(
T̂
)
are charac-

terized by being the only point at which the firm both effi ciently maintains its

rival indifferent between entering or not and finds it instantaneously optimal to

complete its own investment. The industry then functions as a monopoly up

until firm 2 enters (time TF ) and as a duopoly thereafter. A noteworthy fea-

ture of these industry dynamics is that the entry time T̂ identified here emerges

independently in asymmetric games of preemption, in which the capital stock κ̂

represents an exogenous degree of fixed cost asymmetry delimiting preemptive

and monopolistic investment outcomes.

To cast these ideas formally, this article models investment in continuous

time by two firms competing asymmetrically for leadership in a market. Demand

and variable cost are stationary and allow both firms to operate profitably. A

unit of the capital good is required to operate. Its price is initially high enough

for immediate investment to be unprofitable but decreases at a constant rate.

Investment is instantaneous and irreversible, capital does not deteriorate and

both firms have the same constant discount rate. The economics of the scenario

described in the opening paragraph are captured by assuming only firm 1 can

invest incrementally. Accordingly its feasible capital accumulation paths are
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nondecreasing and right-continuous functions from the non-negative reals into

a non-trivial subset of the unit interval. Firm 2’s investment is binary so its

capital accumulation path consists of a single step of unit height.2

The strategic investment problem firms face in this environment is approached

in two ways. First, to get an intuitive understanding of the dynamics of leader

investment, a single-firm decision problem is examined where firm 1 chooses its

capital accumulation policy under the constraint that it maintains enough cap-

ital for preemptive investment to be unprofitable for its rival. If firm 1’s capital

is infinitely divisible then its optimal policy is represented by the schedule k∗1(t)

in Figure 1. Second, a non-cooperative foundation for this pattern of investment

is obtained by studying an asymmetric preemption race in which firm 1 accumu-

lates its unit of capital in finite increments. From a formal standpoint this game

extends existing analyses of preemption to allow for multiple investment rounds.

The main result establishes that there is a unique equilibrium outcome, in which

firm 1 follows a capital accumulation policy involving incremental investments

up until a pivotal stage is reached at which it completes its investment and

enters. For arbitrarily small investment increments, the equilibrium outcome of

multistage preemption approaches k∗1(t). The last step in the analysis consists

in including a noise term in the input price process so as to model the option

value of waiting in an uncertain environment. The delay in initial product mar-

ket entry is then shown to increase with input price volatility, suggesting that

option value remains the driving motive of investment even in the presence of

competition.

The model rests on several simplifying assumptions. A first assumption is

that product market outputs are fixed. The issue of product market shares gen-

erally associated with leadership and sequential capacity choice is thus set aside

2Firm 2 might actually have the technical ability to invest incrementally but if firm 1
cannot observe firm 2’s capital accumulation prior to product market entry such investment
has no strategic effect and its capital may as well be assumed to be binary.
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to allow the analysis to focus on dynamic competition. A second assumption is

that asymmetry is imposed on the feasible capital accumulation strategies of the

two firms. As the objective here is to study the dynamic conduct of a leader in a

Stackelberg-like framework, it seems natural to postulate a strategic asymmetry

analogous to what is assumed in two-period models of capacity choice, even if

the grounds for this assumption can reasonably be questioned in other contexts.

Moreover a number of real-world circumstances can lead to such asymmetry

and warrant mention. First, there are often technological differences between

firms at a given point in time. Through chance or history, one firm may develop

a singular ability to make a modular use of an input or build it progressively

in-house. In the late 1990s for instance, the internet firm Google opted to accu-

mulate computing capacity by linking together commodity personal computers

rather than by procuring a high-end system from an external supplier, allowing

the clusters used by its search engine to be scaled incrementally with relative

ease (Barroso, Dean and Hölzle [2]). A firm may also be better able to stage

investment than a competitor because its relationship with a supplier allows it

to make nonrefundable deposit payments, because financial asymmetries allow

it more frequent access to input markets, or because it otherwise manages more

successfully than its rival to render its capital budgeting fractional, irreversible

and public.3

Broadly viewed, the analysis in this article contributes to the understanding

of the strategic role of investment in the presence of competition. This role is

generally formalized by means of the Stackelberg-Spence-Dixit model of capacity

choice, and constitutes a fundamental topic in the study of imperfect compe-

3Dixit and Pindyck observe ([6], p. 320) “Even investments that appear to involve only a
single decision can turn out to be sequential ... each dollar spent gives the firm an option —
which it may or may not exercise—to go ahead and spend the next dollar.”Smit and Trigeorgis
similarly assert that strategic investment is best viewed in practice as a compound option,
with projects constituting “links in a chain of interrelated investment decisions, the earlier of
which set the path for the ones to follow.” ([15], p. xxvii)
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tition (Tirole [18]). Accordingly, the central ideas regarding the commitment

value of capacity investment are typically derived in the literature in two-stage

games even if investment decisions are known to involve richer dynamics.4

In order to understand how a firm’s capital accumulation is conducted strate-

gically in continuous time, it is natural area to turn first to the dynamic capacity

accumulation game literature, such as Jun and Vives [10]. In such models how-

ever, firms invest in response to both short and long-run incentives which are

diffi cult to disentangle, whereas a distinctive feature of the introductory railroad

scenario is that it clearly separates capital accumulation and dynamic competi-

tion on the one hand from product market competition on the other. Mills [12]

studies a closely related dynamic capacity accumulation game, showing how the

realization of first-mover advantage necessitates strategic threats that are costly

precisely because they accelerate investment. Otherwise the analysis conducted

here is closer to game-theoretic models of technology adoption. Technology

adoption resembles capacity choice, but typically studies the timing of discrete

investment decisions. In the extreme case of infinite information lags, a charac-

teristic pattern known as diffusion equilibrium arises (Reinganum [14]). In such

an equilibrium the first firm invests at the optimal monopoly time and earns

a positional rent until the second firm invests at the optimal duopoly time,

after which the industry operates as a duopoly. Assuming the order of firm

investments to be predetermined and noting the analogy between investment

timing and output choices, the diffusion equilibrium provides a rough dynamic

representation of Stackelberg behavior, in which the positional rent the first

firm collects during its phase of monopoly profit substitutes for the first-mover

advantage a quantity leader obtains due to its greater static market share.

Continuing further within the technology adoption literature, Katz and Shapiro

4Dixit is explicit as to the simplifications involved: “It is as if the two players could see
through the whole problem and implement the solution immediately.” ([4], p. 96)
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[11] and Huisman [9] study preemption between asymmetric firms in a deter-

ministic and in a stochastic setting respectively. Although it differs from the

introductory example of this article, this interaction is closely related and it is

useful to describe it in some detail. Consider the railroad scenario again, but

assume instead that both routes run through unpopulated land but that it is

common knowledge that firm 1’s route is comparatively shorter, perhaps be-

cause it had previously built a stretch of track along its route. This means that

the investment decisions of both firms are binary, with a lower fixed cost of entry

for firm 1. If fixed costs are suffi ciently asymmetric, firm 1’s choice of invest-

ment timing is unconstrained by any rational action of firm 2, and the resulting

sequential equilibrium involves the same investment outcomes as the diffusion

equilibrium described in the last paragraph. If fixed costs are not too different

however, firms may race to enter. In the resulting preemptive equilibrium, the

lower cost firm still invests first and obtains a positional rent, but competition

affects the timing of its entry. Moreover there exists a critical degree of asym-

metry separating equilibria in which a leader firm invests unconstrained at a

monopoly threshold from equilibria in which its threshold is preemptive. This

critical asymmetry corresponds to a level of capital that emerges naturally in

the analysis of this article, as the degree of asymmetry κ̂ that the firm with

divisible capital chooses to build up to just before completing its investment.

The analysis of noncooperative choice of capital accumulation policies con-

ducted here rests squarely on existing work on preemption games, whose theory

is developed by Fudenberg and Tirole [8] in the deterministic case and has been

extended to the stochastic case, as well as along many other dimensions (see

Azevedo and Paxson [1] for a survey). A recent article by Steg [16] gives a

comprehensive account of preemption allowing for asymmetric firms. A slight

difference between the present model and the existing literature is that the pre-
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emption game is formalized here using a reduced form approach to simultaneous

investments. This alternative approach, which assumes effi cient rationing, does

not alter outcomes on the equilibrium path. It is therefore secondary to the

main analysis, but simplifies the exposition while providing economically intu-

itive payoffs involving differential rents instead of full rent dissipation.

Section 2 presents the main economic assumptions as well as standard ter-

minology and results involving asymmetric preemption. Section 3 discusses the

dynamics of leader investment intuitively by studying the optimal capital accu-

mulation policy of a firm that can invest incrementally under the constraint that

it regulates its rival’s preemption incentive. Section 4 provides a non-cooperative

foundation for these investment dynamics by deriving the equilibrium of an in-

vestment game in which one firm divides its investment into a finite number

of increments. Section 5 incorporates uncertainty by means of a stochastic in-

put price process. Section 6 concludes by discussing an emblematic historical

example of strategic commitment in light of the article’s analysis.

2 The model

The economic environment in which two firms engage in dynamic competition

is described in this section. The main assumptions are presented in Section 2.1,

the continuation payoffs that firms obtain when the first firm entry occurs in

Section 2.2, and Section 2.3 discusses a standard asymmetric preemption game

which is referred to throughout the rest of the article.

2.1 Assumptions

Two firms compete to enter a market which can ultimately accommodate both

but is initially profitable for neither. Demand and variable cost are stationary,

so active firms earn constant profit flows πM or πD depending on whether the
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product market operates as a monopoly or a duopoly, with πM ≥ 2πD > 0.

Both firms have the same positive and constant discount rate r so capitalized

monopoly and duopoly profits are ΠM = πM/r and ΠD = πD/r. A firm must

own an entire unit of capital to be active in the product market. The price

of a unit of capital X(t) decreases at a constant rate λ so X(t) = X(0)e−λt.

Investment is instantaneous and irreversible, there are no adjustment costs, and

capital does not depreciate. Assume X(0) ≥ ΠM so firms initially prefer to wait

rather than to enter.

Feasible capital stocks are assumed to differ for the two firms. Firm 1 has

the ability to accumulate capital incrementally, a costly choice as it raises av-

erage investment cost while bringing no immediate product market benefit in-

sofar as profit flows do not begin until the firm holds an entire unit, but which

has strategic value nevertheless. Firm 2 on the other hand does not have this

ability. The capital accumulation policies that the firms choose are accord-

ingly nondecreasing and right-continuous functions k1 (t) : R+ → Ω where

{0, 1} ⊂ Ω ⊆ [0, 1] and k2 (t) : R+ → {0, 1}. A policy ki(t) determines firm

i’s investment over time in the absence of rival entry and defines a planned

completion time Ti = inf { t ∈ R+| ki (t) = 1} or Ti = ∞ if ki (t) < 1 for all t.

If product market entry occurs any firm that has not entered updates its capi-

tal accumulation policy in a continuation phase which is a single-firm decision

problem. A firm which enters the product market first is said to be the leader

and a firm which enters second is said to be the follower.

2.2 Payoffs

The continuation payoffs that firm i, i ∈ {1, 2}, obtains as a leader or as a

follower once first entry occurs at time t are denoted Li
(
t;K1

)
and Fi

(
t;K1

)
,

and the payoffobtained if both firms enter simultaneously is denotedMi

(
t;K1

)
.
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These payoffs are measured in initial currency units and defined for a given

level of firm 1’s capital stock, denoted K1. They represent the discounted profit

streams that forward-looking firms expect when their roles as first or second

entrant have been determined.

We start with the follower payoffs Fi
(
t;K1

)
. These payoffs are obtained

by studying the decision problem faced by any remaining firm that updates its

capital accumulation policy once its rival has entered at a given time t.

Consider firm 2 first, whose problem is simpler as its capital stock before

entry is invariably zero. It chooses a time t2 ≥ t to invest so as to maximize the

value of entering as a duopolist,

∫ ∞
t2

πDe−rsds−X(t)e−rt2 =
(
ΠD −X(0)e−λt2

)
e−rt2

in initial currency units. This function is strictly quasiconcave in t2 and letting

TF =
1

λ
ln

(
λ+ r

r

X(0)

ΠD

)

denotes its unconstrained maximizer over R+, firm 2’s optimal policy as a fol-

lower is to invest at t∗2 = max
{
t, TF

}
. The continuation payoff, F2

(
t;K1

)
=(

ΠD −X(0)e−λt
∗
2

)
e−rt

∗
2 , is independent of K1. Because this function is a stan-

dard payoff in related models involving symmetric firms, both K1 and the firm

subscript are dropped hereafter yielding

F (t) =


λr

r
λ

(λ+r)
λ+r
λ

[ΠD]
λ+r
λ

[X(0)]
r
λ
, t < TF(

ΠD −X(0)e−λt
)
e−rt, t ≥ TF .

Consider firm 1 next, which faces a more involved problem as its capital stock

may be positive when its rival enters, so that it holds K1 ∈ [0, 1) at the onset

of the continuation phase. From the moment firm 2 invests onward, any further
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incremental investment short of the level required for product market entry only

raises firm 1’s average investment cost without providing any strategic benefit.

Since further incremental accumulation is wasteful, firm 1’s optimal policy as

a follower is therefore to decide at what time t1 ≥ t to acquire the remaining

amount of capital it needs to enter. Given K1, firm 1 thus maximizes

∫ ∞
t1

πDe−rsds−
(
1−K1

)
X(t)e−rt1 =

(
ΠD −

(
1−K1

)
X(0)e−λt1

)
e−rt1 .

Over R+ this is a strictly quasiconcave function whose unconstrained maximum

is attained at

TF1
(
K1

)
=


1
λ ln

(
λ+r
r

(1−K1)X(0)

ΠD

)
, K1 ≤ 1− r

λ+r
ΠD

X(0)

0, K1 > 1− r
λ+r

ΠD

X(0) .

As a follower firm 1 therefore invests at t∗1 = max
{
t, TF1 (K1)

}
. Its continuation

payoff is accordingly

F1

(
t;K1

)
=


λr

r
λ

(λ+r)
λ+r
λ

[ΠD]
λ+r
λ

[(1−K1)X(0)]
r
λ
, t < TF1

(
K1

)
(
ΠD −

(
1−K1

)
X(0)e−λt

)
e−rt, t ≥ TF1

(
K1

)
.

Observe that the expression of F1

(
t;K1

)
does not include any investment cost

incurred by firm 1 before t, which is sunk when firm roles are determined. This is

also the case for the functions L1

(
t;K1

)
and M1

(
t;K1

)
defined further below.

Once the follower investment thresholds TF1 (K1) and TF have been iden-

tified, the leader payoffs Li
(
t;K1

)
, i ∈ {1, 2}, can be defined. Again consider
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firm 2 first. Its continuation payoff from leading at time t is

L2

(
t;K1

)
=

∫ TF1 (K1)

t

πMe−rsds+

∫ ∞
TF1 (K1)

πDe−rsds−X(t)e−rt

=
(
ΠM −X(0)e−λt

)
e−rt −

(
ΠM −ΠD

)
e−rmax{t,TF1 (K1)}

in initial currency units. The second line expresses the continuation payoff as

the sum of two terms, the first corresponding to the net present value of a

perpetual monopoly and the second correcting for the reduction in flow profit

generated by firm 1’s anticipated entry, which occurs at the follower investment

threshold TF1 (K1) obtained above.

Observe that L2

(
t;K1

)
depends on firm 1’s capital accumulation through

firm 1’s follower investment time, with greater capital accumulation decreasing

TF1 (K1) and thus lowering L2

(
t;K1

)
over

[
0, TF1 (K1)

]
. This effect of firm 1’s

prior incremental investment on firm 2’s leader payoff plays a central role in the

analysis of this article and has an intuitive interpretation. As firm 1 accumulates

capital, it decreases the magnitude of the last step required for product market

entry. As a result its threat were it to have the follower role becomes more

aggressive, since it would find it optimal to enter relatively earlier in a duopoly.

This earlier threatened entry in turn reduces the duration of the monopoly phase

that firm 2 expects to enjoy by entering first, and thus its payoff from leading.

Consider firm 1 next. If it enters the product market at time t while holding

an accumulated capital stock K1, the magnitude of its remaining investment

step is 1−K1. Its continuation payoff from leading is therefore

L1

(
t;K1

)
=

∫ TF

t

πMe−rsds+

∫ ∞
TF

πDe−rsds−
(
1−K1

)
X(t)e−rt

=
(
ΠM −

(
1−K1

)
X(0)e−λt

)
e−rt −

(
ΠM −ΠD

)
e−rmax{t,TF}.

The difference Li
(
t;K1

)
−Fi

(
t;K1

)
measures firm i’s incentive to lead at a
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given time t rather than to follow. LetΘi

(
K1

)
=
{
t ∈
[
0, TF

]∣∣Li (t;K1

)
− Fi

(
t;K1

)
≥ 0
}
,

i ∈ {1, 2}, denote the times up until TF at which leading is individually rational

for firm i for a given level of firm 1’s capital, K1. An essential property of leader

and follower payoffs is that firm 1’s incentive is at least as large as firm 2’s, that

is L1

(
t;K1

)
− F1

(
t;K1

)
≥ L2

(
t;K1

)
− F (t) so that Θ2

(
K1

)
⊆ Θ1

(
K1

)
.5

Finally, the continuation payoffs resulting from simultaneous investments are

M1

(
t;K1

)
=

∫ ∞
t

πDe−rsds−
(
1−K1

)
X(t)e−rt

=
(
ΠD −

(
1−K1

)
X(0)e−λt

)
e−rt

and

M (t) =

∫ ∞
t

πDe−rsds−X(t)e−rt

=
(
ΠD −X(0)e−λt

)
e−rt

where the subscript is again omitted for firm 2 because this is a standard payoff

in related models.

2.3 Preemption with fixed cost asymmetry

This subsection describes the asymmetric preemption game referred to through-

out the rest of the article. Suppose here that firm 1’s investment is binary, so

its accumulation policy takes the form k̂1 (t) : R+ → {0, 1− κ} where κ ∈ (0, 1)

denotes a positive initial capital stock. The degree of asymmetry between the

firms is parameterized by κ, firm 1 having the comparatively lower entry cost

5To see intuitively why this holds observe that as TF ≥ TF1 (K1), the duopoly phase starts
later if firm 1 leads and firm 2 follows than if roles are reversed. As duopoly lowers the
industry’s profit flow, industry profit is therefore at least as large if firm 1 leads and firm 2
follows. Formally,

L1

(
t;K1

)
+ F (t) ≥ L2

(
t;K1

)
+ F1

(
t;K1

)
and rearranging yields the desired result.
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1 − κ. Firms simultaneously and non-cooperatively choose contingent capital

accumulation policies k̂1 (t) and k2 (t) (or extended distributions thereof, see

Fudenberg and Tirole [8], Steg [16]) that they update if rival entry occurs. Be-

cause the feasible capital stocks of both firms are binary, their policies k̂1 (t)

and k2 (t) are identified by the planned completion times T1 and T2.

As a benchmark consider the situation of symmetric firms (κ = 0). Then the

indifference conditions of each firm, L1 (t; 0)−F1

(
TF1 (0); 0

)
= 0 and L2 (t; 0)−

F
(
TF
)

= 0, are identical and have a unique solution in
(
0, TF

)
which is referred

to as the preemption time and denoted TP . The preemption time is the moment

at which the investment incentive of both firms becomes positive, and at which

positional rents from any subsequent monopoly phase are fully dissipated. The

interval
(
TP , TF

)
=int(Θi (κ)), i = 1, 2, over which the firms race to enter

just ahead of one another in an interaction that is similar to the undercutting

that occurs in the Bertrand model of price competition is referred to as the

preemption range. If capital accumulation policies are chosen non-cooperatively,

symmetric equilibrium strategies call for both firms to invest at TP and the

resulting outcome has either firm entering with equal probability whereas its

rival follows at TF .

To describe the equilibrium outcomes of the asymmetric preemption game

(κ > 0), it is useful to first define the myopically optimal time for monopoly in-

vestment. Suppose that roles were predetermined with firm 1 assured of leading,

so that it simply chose an entry time t to maximize the payoff L1 (t;κ) knowing

that firm 2 would subsequently enter at t∗2. Firm 1’s optimal completion time

in this case would be

TL (κ) =


1
λ ln

(
λ+r
r

X(0)(1−κ)
ΠM

)
, κ ≤ 1− r

λ+r
ΠM

X(0)

0, κ > 1− r
λ+r

ΠM

X(0) .
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Observe that dTL/dκ < 0 for κ < 1 −
(
rΠM/ ((λ+ r)X(0))

)
and let TL =

TL (0). In addition to this monopoly timing, the characterization of equilib-

rium involves a critical level of cost asymmetry κ beyond which firm 2’s pre-

emption range vanishes.6 There are two key continuation payoff configurations

and therefore two types of equilibrium, preemptive or sequential, depending on

the level of fixed cost asymmetry.

If κ ∈ (0, κ), then firm 2’s indifference condition L2 (t;κ)−F (t) = 0 has two

solutions tκ and tκ in
(
TP , TF1 (κ)

)
, with tκ < tκ, that delimit the preemption

range. The first of these is firm 2’s preemption time which is a function of

firm 1’s capital stock and is hereafter denoted TP (κ). Implicit differentiation

of L2

(
TP ;κ

)
− F

(
TP
)

= 0 establishes that dTP /dκ > 0 whereas similarly

dtκ/dκ < 0, so the preemption range shrinks with κ. In a (preemptive) equi-

librium, the outcome resulting from non-cooperative choice of accumulation

policies involves investment by firm 1 at min
{
TL (κ) , TP (κ)

}
and by firm 2 at

TF .

If κ ∈ [κ, 1), then either L2

(
TL;κ

)
= F

(
TL
)
whereas L2 (t;κ) < F (t) for

all t < TF , t 6= TL (if κ = κ) or L2 (t;κ) < F (t) for all t < TF (if κ > κ). As the

preemption range is empty, the game is in effect a single firm decision problem.

In a (sequential) equilibrium, the outcome resulting from non-cooperative choice

of accumulation policies consists of investment by firm 1 at TL (κ) and by firm

2 at TF .

As dTL/dκ < 0 whereas dTP /dκ > 0, the difference TL (κ) − TP (κ) is

strictly decreasing in κ and there exists a unique level of asymmetry κ̂ ∈ (0, κ)

such that TL (κ̂) = TP (κ̂). Let T̂ denote the corresponding time, which plays

6The preemption range vanishes at TL for κ = κ (see Appendix A.1) where

κ = 1−

 ΠM

ΠD
− 1(

ΠM

ΠD

)λ+r
λ − λ

λ+r


λ
r

.
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an important role in the analysis of the remainder of this article. To simplify

exposition, extend TP (κ) to include TP (0) = limκ→0 T
P (κ) = TP and TP (κ) =

limκ→κ T
P (κ) = TL, and furthermore set TP (κ) = TF for κ > κ. Hereafter

TP (κ) therefore denotes the first time at which leading becomes profitable for

firm 2, for any κ.

In equilibrium, firm 1 invests at min
{
TL (κ) , TP (κ)

}
(see Appendix A.2):

Proposition 1 If firm 1’s fixed cost is 1−κ, κ ∈ (0, 1), it invests at min
{
TL (κ) , TP (κ)

}
and earns a positive positional rent whereas firm 2 invests at TF .

2.3.1 Preemptive capital accumulation

Return now to the situation studied in the remainder of the article, with capital

being divisible for firm 1. Based on Proposition 1 a specific capital accumulation

policy, the preemptive capital accumulation policy, can be defined. This policy

is denoted kP (t) and describes the path firm 1’s capital accumulation should

follow over t ∈
[
0, TF

)
in order to suppress firm 2’s investment incentive.

Observe first that at any t ≤ TP firm 2 is necessarily outside or on the

boundary of the preemption range and no capital is required to discourage its

entry. At times in
(
TP , TL

)
firm 2’s investment incentive can take on positive

values. The preemptive capital accumulation policy is derived in this range by

viewing firm 2’s indifference condition as an identity. As TP (κ) is a strictly

decreasing function over (0, κ) it can be inverted, yielding an explicit form for

the level of firm 1’s capital stock that leaves firm 2 indifferent between obtaining

leader and follower payoffs. For κ = κ firm 2’s investment incentive vanishes

at TL and is negative at all other t < TF whereas for κ > κ this investment

incentive is negative at all t < TF , so by holding a capital stock κ firm 1 shuts

out investment by its rival up until the time TF at which firm 2 invariably

enters. The preemptive capital accumulation policy therefore has the specific
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form

kP (t) =



0, t < TP

1−
(

ΠM

ΠD
−1(

ΠM

ΠD
−X(t)

ΠD

)
(λ+r

r
X(t)

ΠD
)
r
λ− λ

λ+r

)λ
r

, TP ≤ t < TL

κ, TL ≤ t < TF .

Recall that firm 1’s capital accumulation makes its follower entry threat

more aggressive by lowering its duopoly investment time TF1 (κ) and hence firm

2’s leader payoff L2 (t;κ). Over
(
TP , TL

)
the intuition underlying kP (t) is that

as the input price decreases, leadership becomes relatively more attractive for

firm 2 all else equal, and by following this policy firm 1 offsets the decrease in

input price by raising its capital stock just enough to keep its threat suffi ciently

potent to discourage its rival’s entry. More generally any policy k1(t) that firm

1 chooses which satisfies the no-preemption constraint k1 (t) ≥ kP (t) keeps its

rival at bay, allowing it to postpone its own entry beyond the ineffi ciently early

time TP that preemption otherwise imposes.

3 Gradual leadership in response to an entry

threat

This section derives the dynamic pattern of leader investment discussed in the

introduction as the optimal policy of a firm under constant threat of entry, leav-

ing the task of explaining how this pattern arises from non-cooperative choices

of capital accumulation policies by duopoly firms up to the next section. To sim-

plify matters suppose that capital is perfectly divisible for firm 1 (Ω = [0, 1]).

Firm 2 is assumed to enter as soon as this is profitable (for instance because firm
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2 is not itself shielded from further entry if it does not instantly secure a place

in the industry). Firm 1 therefore has a first-mover advantage in the sense that

it can choose when to lead product market entry, provided that firm 2 does not

have an incentive invest preemptively.7 Solving the corresponding constrained

maximization problem yields a unique optimal capital accumulation path for

firm 1, k∗1(t), given in the next proposition (where 1A denotes the indicator

function which takes the value 1 if the condition A is true and 0 otherwise).

Proposition 2 Under an entry threat firm 1’s optimal capital accumulation

policy is k∗1(t) = kP (t)1t<T̂ + 1t≥T̂ .

Proof Observe first that up until firm 1 enters the product market, its

optimal capital accumulation policy must satisfy the no-preemption constraint

k1(t) ≥ kP (t) with equality, as additional capital accumulation is costly and un-

necessary to discourage entry by firm 2. Firm 1’s optimal policy must therefore

be of the form k1 (t) = kP (t)1s<t+1s≥t with t ∈
(
TP , TF

)
. Such a policy yields

it a leader continuation payoff L1

(
t; kP (t)

)
provided that t < TF , so that firm

1’s net present value measured in initial currency units is

V P (t) = L1

(
t; kP (t)

)
−
∫ t

0

X(s)e−rsdkP (s). (1)

Because it cannot be desirable to lead before TP and L1

(
t;K1

)
is decreasing be-

yond TL
(
K1

)
< TL forK1 > 0, firm 1’s optimal policy solvesmaxt∈(TP ,TL) V

P (t).

As kP (t) and hence V P (t) are differentiable over
(
TP , TL

)
, an interior optimum

7Firm 1 can ensure itself a payoff arbitrarily close to the leader value V P (t) defined further
below in the text by following a policy for which investment is never individually rational for
firm 2 such as kδ1(t) = k∗1(t+ δ) for small δ.
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is described by the first-order condition

∂L1

(
t∗; kP (t∗)

)
∂t

+
∂L1

(
t∗; kP (t∗)

)
∂K1

[
kP (t∗)

]′ −X(t∗)e−rt
∗ [
kP (t∗)

]′
=
∂L1

(
t∗; kP (t∗)

)
∂t

= 0.

Evaluating ∂L1/∂t yields

−rΠMe−rt
∗

+ (λ+ r)
(
1− kP (t∗)

)
X(0)e−(λ+r)t∗ = 0. (2)

The second derivative is

r2ΠMe−rt − (λ+ r)
2 (

1− kP (t)
)
X(0)e−(λ+r)t − (λ+ r)

[
kP (t)

]′
X(0)e−(λ+r)t,

and using the first-order condition to substitute for rΠMe−rt
∗
gives

− (λ+ r)
(
λ
(
1− kP (t∗)

)
+
[
kP (t∗)

]′)
X(0)e−(λ+r)t∗ < 0

as
[
kP (t)

]′
> 0 over

(
TP , TL

)
, so the objective is strictly quasiconcave.

The condition (2) admits a unique solution t∗ that satisfies

t∗ =
1

λ
ln

(
λ+ r

r

X(0)
(
1− kP (t∗)

)
ΠM

)
.

Comparing this expression with the definition of TL(κ) in Section 2.3 establishes

that t∗ is an optimal time to invest for a firm holding a capital stock K1 =

kP (t∗). Because the no-preemption constraint is satisfied with equality, it is

also the case that t∗ = TP
(
kP (t∗)

)
. t∗ therefore corresponds to the critical

time T̂ defined in Section 2.3. �

To interpret the optimal policy k∗1(t) observe that it involves a gradual form

of leadership which has firm 1 using preemptive capital accumulation to escalate
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its threat up until its desired investment time is reached. Because at the margin

the strategic investment that firm 1 must undertake to delay its leading entry

is exactly offset by a corresponding reduction in the investment required for

completion, the first-order condition determining the timing of firm 1’s market

entry just equates the instantaneous marginal cost of delay rΠM with the in-

stantaneous marginal benefit of delay given kP (t∗), (λ+ r)
(
1− kP (t∗)

)
X(t∗).

At the moment T̂ that firm 1 enters the product market, its investment is there-

fore instantaneously optimal. Firm 2 subsequently enters the product market

as a follower at TF . Figure 1 illustrates the locus of optimal monopoly invest-

ment times, the preemptive capital accumulation policy, and the optimal capital

accumulation policy. The leading entry time and corresponding sunk capital(
T̂ , limt→T̂− k

∗
1(t)

)
are the only point lying both on the optimal monopoly in-

vestment locus TL (κ) and on the no-preemption constraint kP (t).8

Consider an increase in the level of monopoly profit πM which raises the in-

centive to lead while leaving the baseline follower payoff unchanged. One would

expect a greater first-mover advantage to induce earlier entry by firm 1 in order

to lengthen the monopoly phase it enjoys, and therefore to result in more rapid

capital accumulation. This intuition must be verified though, since an increase

in monopoly profit also raises the cost of preemptive capital accumulation, as

firm 1 must compensate for firm 2’s greater preemption incentive. Dividing (2)

by re−rT̂ and substituting in the expression of kP (t), the condition becomes

−ΠM + ΠD

 ΠM

ΠD
− 1

ΠM

ΠD
− X(T̂)

ΠD
− λ

λ+r

(
r

λ+r
ΠD

X(T̂)

) r
λ


λ
r

= 0

8These dynamics contrast with those obtained by Mills [12], where a lower bound on the
lag between investment steps induces ε−preemption allowing one of the firms to invest near
the monopoly optimum.
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after cancelling X(0) terms inside and outside the brackets. Rearranging yields

X
(
T̂
)

ΠD
+

λr
r
λ

(λ+ r)
λ+r
λ

X
(
T̂
)

ΠD

−
r
λ

=
ΠM

ΠD
−
(

ΠM

ΠD

)1− rλ
+

(
ΠM

ΠD

)− rλ
.

The right-hand side is an increasing function of ΠM ,9 whereas the derivative of

the left-hand side with respect toX is
(

1−
(
rΠD/ (λ+ r)X

(
T̂
))(λ+r)/λ

)
/ΠD.

This expression is positive, as X
(
T̂
)
> XF so ΠD/X

(
T̂
)
< (λ+ r) /r. Be-

cause dX/dΠM > 0, it follows that dT̂ /dΠM < 0 so greater monopoly profit

does indeed result in accelerated capital accumulation and earlier product mar-

ket entry by firm 1. This comparative static can also be obtained geometrically.

Greater monopoly profit raises the marginal cost of waiting for a monopoly firm,

lowering its optimal investment threshold at any given level of pre-existing cap-

ital so that the locus of optimal investment times TL1 (κ) shifts left. However

greater monopoly profit also raises firm 2’s incentive to lead, so firm 1 must

hold more capital in order to maintain firm 2 indifferent between leading and

following, shifting the locus kP (t) upward. As a result the time T̂ at which

product market entry occurs decreases.

The limiting case ΠD = 0 where neither firm enters as a follower in the

continuation phase is of intrinsic interest. In this case the preemptive capital

accumulation policy converges to kP (t) = 1t≥TP so firm 1 cannot scale its

follower entry threat through incremental investment. The gradual leadership

dynamics described above unravel and both firms seek to enter at the break-

even time (1/λ) ln
(
X(0)/ΠM

)
, earning zero profits. This situation is of broader

relevance because the commitment value of strategic investment is closely related

9The derivative of this expression has the sign of(
ΠM

ΠD

)λ+r
λ

− λ− r
λ

ΠM

ΠD
− r

λ
,

which is zero if ΠM = ΠD and increasing in ΠM .

24



to an incumbent firm’s ability to deter entry (Dixit [4]). Suppose that the

industry environment allows the first entrant to make a complementary technical

or regulatory move, which is not prohibitively costly, that renders subsequent

entry unprofitable to its rival. Then if firms cannot commit beforehand not to

deter subsequent entry upon investment, the follower investment times become

TF1 = TF2 =∞ and preemptive capital accumulation cannot take place. The role

of incremental investment and the leadership dynamics described here therefore

hinge on the inability of firm 2 to deter firm 1 as a an incumbent in the product

market.

4 Preemption with endogenous asymmetry

Consider once again the entry race described in the introduction, with one of

two rival firms able to divide up its investment so as to progressively lower its

entry cost. If this firm’s feasible investment increments have an arbitrarily small

positive lower bound, the equilibrium outcome of such a race is approximated

by the gradual leadership policy k∗1(t) (see Figure 1 and Proposition 2). In order

to establish this claim, the entry race between the firms is represented in this

section as a noncooperative game in which firms make a sequence of quasi-static

decisions pertaining to the timing of their investments. By restricting dynamics

to firm decision-making rather than its implementation over time, this approach

allows the analysis to focus on the novel issues raised by the endogenous staging

of firm 1’s investments.

Suppose that firm 1’s feasible capital stock levels are Ω = {0, 1/N, ..., 1}, N

being a large integer. Dynamic competition between both firms determines lead-

ing entry into the product market. This process is represented as a multistage

game whose outcomes unfold over time. Stages are defined by the number of cap-

ital increments accumulated by firm 1, denoted by ξ, with ξ ∈ {0, 1, ..., N − 1}.
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In each stage, firms choose the timing of their next investment conditional upon

no rival investment having occurred. If they choose identical times, an effi cient

rationing rule determines the outcome of their decisions. Once an investment

occurs, either the play moves on to a subsequent stage if firm 1 invests and it

does not accumulate an entire unit or the game ends if one of the firms has

accumulated an entire unit of capital, in which case any firm that has not yet

accumulated a unit updates the timing of its next investment.

4.1 The stage game

In a given stage ξ of the investment game, a history hξ consists of the timing

and magnitude of any prior investments by firm 1. Set t0 = 0 and let tξ denote

the time of firm 1’s last investment for given hξ if ξ > 0. Stage ξ is thus reached

at time tξ with firm 1 holding a capital stock K1 = ξ/N . The firms choose

planned investment times T ξi ∈ A
ξ
i (hξ), i ∈ {1, 2} which they are able to revise

if they observe a rival investment has occurred, where Aξi (hξ) = [tξ,∞] is the

set of player i’s actions in stage ξ following history hξ, with ∞ denoting the

action “never invest”. If the plans of both firms call for investments at the

same moment, it is assumed that input provision is subject to an instantaneous

capacity constraint and a tie-breaking rule, described in greater detail further

below, determines the outcome of their choices. In all cases the next investment

in the industry occurs at min
{
T ξ1 , T

ξ
2

}
.

The last stage, ξ = N − 1, is particular and therefore discussed separately

before the other stages are described.

4.1.1 Stage ξ = N − 1

In stage N − 1, investment by any firm necessarily results in product mar-

ket entry. The firms therefore face the same situation as in the asymmetric

26



preemption game with κ = 1 − (1/N) (see Section 2.3 and Appendix A.2).

Moreover if N is large enough then 1 − (1/N) > κ, which means that the

degree of cost asymmetry is suffi cient for the game to reduce to a single-firm

decision problem involving firm 1. It sets T̂N−1
1 = max

{
tξ, T

L (1− (1/N))
}

whereas firm 2 chooses T̂N−1
2 ∈

[
max

{
tξ, T

L (1− (1/N))
}
,∞
]
. These choices

result respectively in the payoffs L1

(
max

{
tξ, T

L (1− (1/N))
}

; 1− (1/N)
)
and

F
(
max

{
tξ, T

L (1− (1/N))
})
.

4.1.2 Stages ξ < N − 1

In all other stages ξ < N − 1, the plans T ξ1 and T
ξ
2 that the firms adopt must

be mapped into outcomes in order to determine continuation payoffs.

If T ξ1 6= T ξ2 the outcomes are straightforward as firm i, i ∈ {1, 2}, leads if and

only if it has a strictly lower planned investment time than its rival. If T ξ1 < T ξ2

so firm 1 leads, it also determines the size of its investment. Let V̂ ξ
′

i denote

firm i’s continuation value if stage ξ′ > ξ is next reached. If firm 1 chooses

an investment of magnitude η ∈ {1, ..., N − ξ}, the resulting payoff profile is(
V̂ ξ+η1 − (η/N)X(T ξ1 )e−rT

ξ
1 , V̂ ξ+η2

)
if η < N − ξ and

(
L1

(
T ξ1 ; ξ/N

)
, F
(
T ξ1

))
if η = N − ξ. Let η∗ ∈ {1, ..., N − ξ} denote firm 1’s optimal investment size

(if there are multiple optimum solutions it can be assumed for simplicity that

firm 1 chooses the largest). The continuation payoff profile in this subcase, de-

noted
(
Lξ1

(
T ξ1

)
, F ξ2

(
T ξ1

))
, is therefore

(
V̂ ξ+η

∗

1 − (η∗/N)X(T ξ1 )e−rT
ξ
1 , V̂ ξ+η

∗

2

)
if η∗ < N − ξ and

(
L1

(
T ξ1 ; ξ/N

)
, F
(
T ξ1

))
if η∗ = N − ξ. If T ξ1 > T ξ2 so firm 2

leads, the continuation payoffprofile is
(
F ξ1

(
T ξ2

)
, Lξ2

(
T ξ2

))
=
(
F1

(
T ξ2 ; ξ/N

)
, L2

(
T ξ2 ; ξ/N

))
.

If T ξ1 = T ξ2 = T , static competition between the firms in the input mar-

ket supersedes dynamic competition. The firm whose investment incentive

Lξi (T )− F ξi (T ) is comparatively greater prevails but pays a premium amount-

ing to its rival’s valuation. It thus earns a differential rent similar in nature

to the equilibrium profit of a low-cost Bertrand duopolist. Such a differential
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rent is consistent with appropriation by upstream suppliers of the common part

of the positional rents either firm stands to earn from entry. If the firms have

identical incentives, the input is allocated to either with equal probability. Let-

ting Sξi (T ) = Lξi (T )−max
{
Lξj (T )− F ξj (T ) , 0

}
(if Lξi (T )−F ξi (T ) ≥ Lξj (T )−

F ξj (T )) or F ξi (T ) (if Lξi (T ) − F ξi (T ) < Lξj (T ) − F ξj (T )), i, j ∈ {1, 2}, i 6= j,

the continuation payoff profile in this case is accordingly
(
Sξ1 (T ) , Sξ2 (T )

)
.10

Summarizing, the stage payoffs for ξ < N − 1 are

V ξ1

(
T ξ1 , T

ξ
2

)
=


Lξ1

(
T ξ1

)
, T ξ1 < T ξ2

Sξ1 (T ) , T ξ1 = T ξ2 = T

F1

(
T ξ2 ; ξN

)
, T ξ1 > T ξ2

and

V ξ2

(
T ξ1 , T

ξ
2

)
=


L2

(
T ξ2 ; ξN

)
, T ξ2 < T ξ1

Sξ2 (T ) , T ξ1 = T ξ2 = T

F ξ2

(
T ξ1

)
, T ξ2 > T ξ1 .

10An alternative approach to simultaneous investments would be to posit the profile(
Mξ

1 (T ) ,Mξ
2 (T )

)
= (F1 (T ; (ξ + η∗)/N) −(η∗/N)X(T )e−rT , L2(T ; (ξ + η∗)/N)) (if η∗ <

N − ξ) or (M1 (T ; ξ/N) ,M (T )) (if η∗ = N − ξ) where η∗ ≥ 1 is an optimal investment size
for firm 1. However the use of such a payoff raises a standard issue in preemption games per-
taining to their representation in continuous time. There generally exist payoff configurations
where each firm prefers to invest first but simultaneous investments are jointly suboptimal
(i.e. Lξi (t) ≥ F ξi (t) > Mξ

i (t), i ∈ {1, 2}) and the timing of investments would in effect be
coordinated in an equilibrium of the discrete time game that the continuous time formulation
approximates. This issue is generally resolved either by expanding the strategy space to allow
a continuous time representation of such strategy coordination (Fudenberg and Tirole [8]) or
by positing a random assignment of leader and follower roles (Dutta and Rustichini [7]). The
former approach is parsimonious in its assumptions but involves notationally costly strategies,
whereas like the latter approach, the simultaneous investment profile in the text restricts the
economic environment but induces a unique equilibrium in pure strategies. So long as firm
1 can realize its first-mover advantage if a given stage is reached suffi ciently early, the choice
of approach to simultaneous investments does not alter outcomes along the equilibrium path
and is consequently secondary to the present analysis.
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4.2 Equilibrium

Let H denote the set of histories of the investment game. A strategy for firm

i is a map Γi : H →
⋃

ξ∈{0,...,N−1}

Aξi . Let Γh
ξ

i denote the restriction of Γi to

histories that include hξ. A subgame of the investment game is defined by firm

1’s capital stock K1 = ξ and a starting time tξ.11 A strategy profile (Γ1,Γ2) is

a subgame perfect Nash equilibrium of the investment game if and only if, for

all hξ ∈ H,
(

Γh
ξ

1 ,Γh
ξ

2

)
is a Nash equilibrium of the subgame starting at (ξ, tξ).

Many strategy profiles can constitute a subgame perfect Nash equilibrium, but

the main result of this section establishes that such strategy profiles identify

a unique path of equilibrium capital accumulation in the industry. Along this

path, firm 1 invests incrementally at a succession of preemptive times TP (ξ/N),

ξ = 0, 1, ..., bNκ̂c, up until it reaches a pivotal stage and enters the product

market at time T̂N = max
{
TL ((bNκ̂c+ 1) /N) , TP (bNκ̂c /N)

}
whereas firm

2 enters the product market subsequently at TF .

Proposition 3 Along a subgame perfect equilibrium path investment times sat-

isfy
(
T̂ ξ1 , T̂

ξ
2

)
=
(
TP (ξ/N) , TP (ξ/N)

)
for ξ ∈ {0, 1, ..., bNκ̂c}. The magnitude

of firm 1’s investment is η∗ = 1 for ξ < bNκ̂c, and for ξ = bNκ̂c either

η∗ = N − bNκ̂c if TP (ξ/N) = T̂N or η∗ = 1 if TP (ξ/N) < T̂N . In the

latter case firm 1 subsequently invests at T̂ bNκ̂c+1
1 = TL ((bNκ̂c+ 1) /N), with

η∗ = N − 1− bNκ̂c.

According to Proposition 3, firm 1’s capital accumulation follows the path

kN1 (t) =

bNκ̂c∑
j=0

1

N
1t≥TP ( jN ) +

N − 1− bNκ̂c
N

1t≥T̂N ,

whereas firm 2’s follows kN2 (t) = 1t≥TF .

11As actions are planned investment times which are not revised unless rival investment
occurs, for given

(
ξ, tξ

)
ξ′ > ξ and tξ′ ≥ tξ define a subgame but ξ′ = ξ and tξ′ > tξ do not.
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Having stated the main result, it is useful to return for a moment to the role

of the tie-breaking rule described further above in the section. Observe that in

any proper subgame, firm 1 could behave as if its capital were no longer divisible

and obtain an equilibrium asymmetric preemption payoff (with κ = ξ/N) by

just setting T ξ1 = max
{
tξ,min

{
TL (ξ/N) , TP (ξ/N)

}}
with η = N − ξ. Firm

1’s leader payoff in any stage ξ therefore satisfies Lξ1 (t) ≥ L1 (t; ξ/N) by revealed

preference, and by the same token in subsequent stages firm 1 holds firm 2 to a

follower payoff in equilibrium so that F ξ2 (t) = F (t). Using a standard property

of asymmetric preemption for the second inequality (see footnote 5) it follows

that

Lξ1 (t)− F1

(
t;
ξ

N

)
≥ L1

(
t;
ξ

N

)
− F1

(
t;
ξ

N

)
≥ L2

(
t;
ξ

N

)
− F (t) = L2

(
t;
ξ

N

)
− F ξ2 (t) .

The tie-breaking rule therefore ensures that firm 1 can realize its first-mover

advantage for ξ ≥ 1. The reasoning for ξ = 0 is slightly more involved, but

the proof of Proposition 3 establishes L0
1 (t) > L1 (t) for any t0 < T̂N which

allows firm 1 to realize its first-mover advantage in this case too. Alternative

approaches to simultaneous investments (see footnote 10) induce similar firm 1

behavior and therefore also support the equilibrium outcome in the proposition.

Proof

The argument involves identifying a profile of subgame perfect equilibrium

strategies that support the outcome described in the proposition and then veri-

fying that no other equilibrium outcomes arise. Let
(

Γ̂1, Γ̂2

)
denote the strategy

profile

T̂ ξ1 =

 max
{
tξ, T

P
(
ξ
N

)}
, ξ ∈ {0, 1, ..., bNκ̂c}

max
{
tξ, T

L
(
ξ
N

)}
, ξ ∈ {bNκ̂c+ 1, ..., N − 1}
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and

T̂ ξ2 =

 max
{
tξ, T

P
(
ξ
N

)}
, ξ ≤ bNκc and tξ ≤ tξ/N

max
{
tξ, T

F
}
, otherwise

for ξ ∈ {0, ..., N − 1}.12 It is necessary to verify that these strategies are mutual

best replies in every subgame. Observe first of all that if tξ ≥ TF equilibrium

decisions are straightforward, as they consist of immediate investments for both

firms that result in terminal payoffs (F1 (tξ; ξ/N) , F (tξ)). The analysis therefore

focuses on starting times tξ < TF .

Consider first subgames ξ > Nκ̂. The argument proceeds by induction on

firm 1’s possible capital stock levels.

For ξ = N − 1, the subgame starting at any tN−1 is an asymmetric preemp-

tion game (Section 4.1.1) of which
(
T̂N−1

1 , T̂N−1
2

)
is an equilibrium (Appendix

A.2).

Next, let ξ be given with Nκ̂ < ξ < N − 1 and tξ ≥ 0. For the induction

argument assume that for all ξ′ > ξ and any tξ′ ≥ tξ the restricted strategy

profiles
(

Γ̂
hξ′
1 , Γ̂

hξ′
2

)
are mutual best replies.

Consider firm 2 first. Either tξ < TP (ξ/N) in which case T̂ ξ1 < TP (ξ/N)

as TP (ξ/N) > TL (ξ/N), so setting T2 < T̂ ξ1 (leading) is unprofitable for firm

2 and it is indifferent between all T2 ≥ T̂ ξ1 that yield it a follower payoff (for

T2 = T̂ ξ1 this is due to the tie-breaking rule). Otherwise tξ ≥ TP (ξ/N) and

T̂ ξ1 = tξ so firm 2 cannot lead and is similarly indifferent between all T2 ≥ T̂ ξ1 .

In either case T̂ ξ2 in particular constitutes a (weak) best-response to T̂
ξ
1 .

Consider firm 1 next. There are two subcases to examine. If ξ > Nκ, T̂ ξ2 =

TF and firm 1 effectively faces a single-firm decision problem. Its continuation

payoffLξ1 (t) is determined as follows. If t ≥ TL ((ξ + 1)/N) then an investment

of size η with 1 ≤ η < N − 1 is followed by immediate entry in stage ξ + η by

12This strategy profile, which has firm 2 investing immediately whenever the preemption
range is reached, is chosen for consistency with an equilibrium in the extended mixed strategies
discussed in footnote 10.
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the induction hypothesis (T̂ ξ+η1 = t as TL ((ξ + η)/N) < TL (ξ/N)) so Lξ1 (t) =

L1 (t; ξ/N), which is maximized at t = TL (ξ/N). If t < TL ((ξ + 1)/N) then

η = N − 1 is not an optimal investment size as L1 (t; ξ/N) is increasing, and

for 1 ≤ η < N − 1, by the induction hypothesis, either T̂ ξ+η1 = t resulting

in a suboptimal payoff L1 (t; ξ/N) or T̂ ξ+η1 = TL ((ξ + η)/N) > t (firm 1’s

investments are staggered) in which case it obtains

L1

(
TL
(
ξ + η

N

)
;
ξ + η

N

)
− η

N
X (t) e−rt

= L1

(
TL
(
ξ + η

N

)
;
ξ

N

)
− η

N

(
X (t) e−rt −X

(
TL
(
ξ + η

N

))
e−rT

L( ξ+ηN )
)
.

If investing at t firm 1 would therefore set η∗ = 1 and obtain Lξ1 (t) = L1

(
TL ((ξ + 1)/N) ; (ξ + 1)/N

)
−(1/N)X (t) e−rt = L1

(
TL ((ξ + 1)/N) ; ξ/N

)
−(1/N)

(
X (t) e−rt −X

(
TL ((ξ + 1)/N)

)
e−rT

L((ξ+1)/N)
)

< L1

(
TL (ξ/N) ; ξ/N

)
, as TL (ξ/N) is a global maximum. In stage ξ firm 1’s

optimal choice (arg maxt≥tξ L
ξ
1 (t)) is therefore T̂ ξ1 . The second subcase to ex-

amine is Nκ̂ < ξ ≤ Nκ. The main difference is that T̂ ξ2 = max
{
tξ, T

P (ξ/N)
}

if tξ ≤ tξ/N , in which case firm 1 does not face a single-firm decision problem. If

tξ < TP (ξ/N) then T̂ ξ2 = TP (ξ/N) does not constrain firm 1’s optimal choice

T̂ ξ1 = max
{
tξ, T

L (ξ/N)
}
. If TP (ξ/N) ≤ tξ ≤ tξ/N , then T̂

ξ
2 = tξ and firm 1

earns Lξ1 (tξ)−
(
Lξ2 (tξ)− F (tξ)

)
by the tie-breaking rule if it sets T1 = T̂ ξ2 = tξ

and a lower follower payoff F1 (tξ; ξ/N) otherwise. If tξ > tξ/N then the argu-

ment is as in the previous subcase. For any given tξ therefore, firm 1’s optimal

choice is T̂ ξ1 . Hence, in any subgame with ξ > Nκ̂ investing at the times T̂ ξ1 and

T̂ ξ2 specified above is an equilibrium.

Consider next subgames with ξ ≤ Nκ̂. Take firm 2 first. Either tξ <

TP (ξ/N) in which case T̂ ξ1 = TP (ξ/N) so leading is unprofitable for firm 2

which is indifferent between all T2 ≥ TP (ξ/N), or T̂ ξ1 = tξ ≥ TP (ξ/N) and

firm 2 is similarly indifferent between simultaneous investment and following. In
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either case T̂ ξ2 in particular constitutes a (weak) best-response to T̂
ξ
1 . Next take

firm 1. If tξ > tξ/N , T̂
ξ
2 = TF and by the same argument as for ξ > Nκ̂, T̂ ξ1 = tξ.

If TP (ξ/N) ≤ tξ ≤ tξ/N then as T̂ ξ2 = tξ firm 1 obtains Sξ1 (tξ) > F ξ1 (tξ) by

setting T̂ ξ1 = tξ. Finally if tξ < TP (ξ/N) = T̂ ξ2 , firm 1’s continuation payoff

from leading is determined by an induction argument as for ξ > Nκ̂, so that

Lξ1 (t) = L1

(
T̂N ;

bNκ̂c+ 1

N

)
−1ξ<bNκ̂c−1

bNκ̂c∑
i=ξ+1

1

N
X

(
TP
(
i

N

))
e−rT

P ( i
N )− 1

N
X (t) e−rt

(4)

which is maximized by setting T̂ ξ1 = TP (ξ/N). Hence in any subgame with

ξ ≤ Nκ̂ investing at the times T̂ ξ1 and T̂
ξ
2 specified above is an equilibrium.

To verify that there are no equilibrium outcomes than that described in

the proposition, observe that firm 1 can assure itself of leading arbitrarily near

T̂N by accumulating capital along the path kδ1(t) = kN1 (t + δ) for small δ, as

kδ1(t) > kP (t) for t < T̂N and investment at any given time t is not individually

rational for firm 2 if lims→t− k1(s) > kP (t). By setting investment times ac-

cording to the policy kδ1(t) firm 1 obtains a payoff arbitrarily close to L0
1 (t) (see

(4) above). Letting investment increments become arbitrarily small and pick-

ing δ(N) accordingly, lim infN→∞ V̂ 0
1 = L0

1 (0) = V P
(
T̂
)
(see (1) above), as

limN→∞ T̂N = T̂ and limN→∞ kN1 (t) = k∗1(t). Firm 1 cannot obtain more than

V P
(
T̂
)
either, since that would imply violating the no-preemption constraint.

�

To relate Proposition 3 to the analysis in the rest of the article, suppose that

the divisibility N of firm 1’s capital is arbitrarily large. For larger N the size

of firm 1’s investment steps becomes arbitrarily small and its entry time T̂N

approaches T̂ . Therefore limN→∞ kN1 (t) = k∗1(t) pointwise, and the equilibrium

outcome of the N -stage preemption game converges to the optimal policy in a

Stackelberg choice of capital accumulation policies discussed in Section 3.
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5 Leadership dynamics under input price uncer-

tainty

The dynamics of industry investments are generally governed by market uncer-

tainty, giving rise to a value of waiting for a more opportune moment to invest.

Firms then have to trade two motives off against one another, as on the one

hand the threat of competition creates a strategic incentive to act quickly and

commit, but on the other hand option value due to uncertainty calls for flexi-

bility and delay (Chevalier-Roignant and Trigeorgis [3]). A natural extension of

the analysis of the above sections is to inquire into the effect of uncertainty on

the capital accumulation policy of the firm whose capital is relatively divisible.

Suppose that the capital price process includes a noise term, so as to follow

a geometric Brownian motion dX(t) = µX(t)dt + σX(t)dW (t) where W (t) is

a standard Wiener process, and with X(0) = x > ΠM .13 Firm 1 is assumed

to have the capability of implementing threshold policies that allow it to invest

incrementally. Suppose that its capital is perfectly divisible, so firm 1’s feasible

accumulation policies are represented by nondecreasing and right-continuous

functions k1 (x) : R+ → [0, 1] that define its capital stock process absent rival

investment as a function of the input price path, K1(t) = sups∈[0,t] {k1(X(s))}.

Assume that firm 2 stands ready to enter whenever profitable so that as in Sec-

tion 3 firm 1’s problem consists in regulating its rival’s entry threat up until

its own desired entry threshold is reached. It accordingly determines an opti-

mal investment threshold under the constraint that firm 2’s entry incentive is

maintained at zero. Despite the more complex structure underlying the payoff

functions, the main difference that the stochastic term in the input price adds to

the model if the firms follow threshold policies is that choices and hence payoffs

13The model in Section 2 corresponds to µ = −λ and σ = 0 whereas if σ > 0 firms have a
motive to wait even if µ > 0.
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are defined over price levels which determine stochastic investment times, but

the broad economic intuitions are otherwise similar.

Let XP , XL and XF denote the respective input price thresholds in symmet-

ric preemption equilibrium, for monopoly and for duopoly. These thresholds are

analogs to TP , TL and TF in the deterministic case where firms set investment

times directly. Like TP , the preemption time XP does not have a closed form.

On the other hand XL = (γ/ (γ + 1)) ΠM and XF = (γ/ (γ + 1)) ΠD, where γ is

a parameter function that reflects expected discounting in the stochastic case.14

The preemptive capital accumulation policy is defined in the same manner as

in Section 2.3 over (XF , x] and has the specific form

kP (x) =


κX , XF < x ≤ XL

1−
(

ΠM

ΠD
−1(

ΠM

XF
− x

XF

)
( x

XF
)
γ− 1

γ+1

) 1
γ

, XL < x ≤ XP

0, x > XP

where κX is a constant (See Appendix A.3).

A similar argument to Section 3 establishes that firm 1’s optimal capital

accumulation policy is k∗1(x) = kP (x)1x>X̂ + 1x≤X̂ . This policy is preemptive

up until a critical threshold is reached and the firm’s capital stock jumps to the

level required for market entry. This critical threshold X̂ is implicitly defined

by firm 1’s first-order condition

X̂ =
γ

γ + 1

ΠM

1− kP
(
X̂
) .

Figure 2 illustrates the optimal policy in (x,K1)-space. X̂ is determined by

14Specifically

γ (µ, r, σ) = −
(

1

2
− µ

σ2

)
+

√(
1

2
− µ

σ2

)2

+
2r

σ2

satisfies γ > 0 and ∂γ/∂σ < 0. Letting τ (X) = inf { t ∈ R+|X(t) ≤ X} denote the first
hitting time for threshold X ≤ x, Exe−rτ(X) = (X/x)γ .
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Figure 2: In the stochastic case greater volatility shifts XL (κ) and kP (x) left-
ward, lowering the threshold X̂ and delaying the jump to completion.

the intersection of kP (x) and the locus of monopoly investment thresholds

XL
1

(
K1

)
= (γ/ (γ + 1))

(
ΠM/

(
1−K1

))
. Because the input price has posi-

tive volatility, the time at which the threshold X̂ is first hit and firm 1 enters is

stochastic. Up until then, were it to have the follower role, firm 1’s probability

of completing its investment in a given future time interval is an increasing func-

tion of its capital stock. Its optimal capital accumulation policy thus involves

a form of brinkmanship insofar as along the path of its capital accumulation,

its follower threat presents firm 2 with a gradually increasing risk of losing any

monopoly position it might seek to secure.

Incorporating a stochastic input price allows the effect of uncertainty on

investment decisions to be studied by varying the value of the volatility para-

meter. An increase in σ, which reduces γ, has several effects. First it raises
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option value, which leads firms to delay product market entry. For a given cap-

ital stock level firm 1 thus lowers its monopoly threshold XL
1 (κ). The effect

of greater volatility on preemption is complex, but with geometric Brownian

motion greater volatility raises the value of the follower’s duopoly option more

than it decreases the rents of moving early, attenuating preemption and thus

shifting the preemptive capital accumulation policy kP (x) down and to the left.

Therefore ∂X̂/∂σ < 0, as can be checked by direct calculation (see Appendix

A.3.2). Because the limited and asymmetric form of competition in the present

model allows the leader to invest at a (myopically) optimal threshold despite

the presence of a rival, the effect of greater volatility thus turns out to mirror

the role this parameter plays in investment decisions in the absence of a com-

petitive threat. Finally, the effect of greater volatility on the size of firm 1’s last

investment step depends generally on the relative magnitude of the effects on

monopoly investment and preemption.

6 Conclusion

This article has studied dynamic competition in an industry in which one firm

subdivides its investment in a capital input to make a gradual strategic commit-

ment. Provided that the price of this input is initially high enough for firms to

prefer delaying, such a firm follows a policy that involves accumulating capital

preemptively and leading product market entry at a threshold that is both an

instantaneous monopoly optimum and a preemptive equilibrium. Moreover if

the input price follows a stochastic process, the timing of this firm’s entry is

positively related to a measure of market uncertainty.

The emblematic example of strategic commitment, with capital having been

literally sunk in order to gain a military rather than a business advantage, is

the scuttling of the conquistador Hernando Cortés’ ships before marching on
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the city of Mexico. Dixit and Nalebuff [5] explain that this move both signalled

the Spaniards’determination to their adversaries and compelled Cortés’men to

fight by physically barring them from retreat. The perspective sketched in the

present article suggests that a full economic account of this historical episode

should also emphasize the more incremental moves made during the first months

of the conquistador’s expedition.

According to Prescott [13] the destruction of the fleet occurred nearly six

months after Cortés and his men first reached Mexican shores. The Spaniards

had already had several exchanges with local populations and with the Aztec

emperor Montezuma’s emissaries over the course of the spring and early summer.

They had begun to build a colony near the present day city of Veracruz, and

several key new figures such as Cortés’charismatic mistress, La Malinche, now

numbered among their party. Finally, a few of the men had just conspired to

escape back to Cuba. Reinstated into its context, the sinking of their ships

is better understood therefore as the culmination of a lengthier process during

which the conquistadors learned about their surroundings and made various

forms of commitments before the subsequent leap in their military engagement.

The piece of evidence that best supports viewing the destruction of the fleet

as a part of a broader plan is that the Spaniards did not actually sink every

single one of their ships strategically (but one to be exact), or at least not

literally so. In fact, the first ship to be sunk in a game-theoretic sense was sent

not to lie on the Caribbean seabed but rather across the Atlantic, for a motive

complementary to the one that governed the subsequent destruction of the fleet.

Upon setting off from Cuba, Cortés had defied the orders of the island’s governor

Velasquez, and he needed to make a provision for the continuation game that

would arise in the event that the conquest of Mexico succeeded. Cortés therefore

cemented his pronunciamento by sending several men away on his best vessel as
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emissaries bearing the expedition’s accumulated treasure, to pledge allegiance

directly to Spain’s monarch.15 It is after this, when a few of his men had nearly

commandeered one of the remaining ships in order to return to Cuba, that

Cortés forged and carried out the more fabled scheme to wreck the remainder

of his fleet.

Interpreting this last step as a link in a chain rather than an isolated move

is consistent with a view that strategic investment involves exercising a com-

pound option (or “moving in small steps”) to which this article has sought to

contribute. The formal analysis then predicts that whereas higher monopoly

rents accelerate capital accumulation, greater uncertainty delays the jump to

completion all else equal. When interpreting Cortés’conquest through an eco-

nomic lens therefore, one should understand the aforementioned incremental

steps over the first months of the expedition as together playing as considerable

a role, even if less striking, as the nine ships the conquistadors eventually scut-

tled in the optimal conduct of their highly lucrative but also most improbable

undertaking.
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A Appendix

A.1 Preemption time T P (κ) and upper bound κ

The time TP (κ) = tκ and the bound κ are both obtained from the condition

L2 (t, κ)− F (t) = 0 which has the specific form

(
ΠM −X(0)e−λt

)
e−rt−

(
ΠM −ΠD

)( r

λ+ r

ΠD

(1− κ)X(0)

) r
λ

− λr
r
λ

(λ+ r)
λ+r
λ

[
ΠD
]λ+r

λ

[X(0)]
r
λ

= 0

(5)

for t < TF . L2 (t;κ) − F (t) is a strictly quasiconcave function of t with a

maximum at TL, which shifts downward as κ increases. From the analysis of

the symmetric case we know L2 (t; 0) − F (t) has two roots, TP < TF . Up to

κ, an increase in κ shifts L2 (t;κ) − F (t) downward, increasing the lower root

tκ and decreasing the upper root tκ, so that dtκ/dκ > 0 whereas dtκ/dκ < 0.

For κ ∈ (0, κ) therefore tκ is well-defined and lies in
(
TP , TL

)
. As κ is the
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capital stock for which firm 2’s investment incentive vanishes at the maximizer

TL, it satisfies L2

(
TL;κ

)
= F

(
TL
)
. Substituting for t = TL in (5) (note

that e−λT
L

= rΠM/ (λ+ r)X(0) and e−rT
L

=
(
rΠM/ (λ+ r)X(0)

)r/λ
) and

dividing by (r/ ((λ+ r)X(0)))
r/λ gives

λ

λ+ r

[
ΠM

]λ+r
λ −

(
ΠM −ΠD

)( ΠD

1− κ

) r
λ

− λ

λ+ r

[
ΠD
]λ+r

λ = 0

which after rearrangement yields the expression in footnote 5.

A.2 Asymmetric preemption equilibrium

In the text, the investment game is discussed in terms of static choices of in-

vestment plans whose outcomes unfold over time and Proposition 1 gives the

equilibrium outcome assuming the initial input price satisfies X(0) ≥ ΠM . In

order to develop a comprehensive view of the investment game, Proposition

A1 below allows for an arbitrary initial input price. Let t0 ≥ 0 therefore

denote the initial time at which both firms choose when to invest absent in-

terim rival entry by selecting planned investment times Ti ≥ t0, i ∈ {1, 2},

which they revise if they observe their rival has entered. If the firms set

T1 = T2 = T effi cient tie-breaking is assumed and they obtain continuation

payoffs S1 (T ;κ) = L1 (T ;κ)−max {L2 (T ;κ)− F (T ) , 0} and S2 (T ;κ) = F (T )

respectively.16 The payoff functions in this game are therefore

V1 (T1, T2) =


L1 (T1;κ) , T1 < T2

S1 (T ;κ) , T1 = T2 = T

F1 (T2;κ) , T1 > T2

16An economic motivation for this simultaneous investment profile is if there is an instanta-
neous capacity constraint so that firm 1, which has a higher valuation as L1 (T ;κ)−F1 (T ;κ) >
L2 (T ;κ)− F (T ), would bid more for the input (see Section 4.1). Alternative approaches to
simultaneous investments are discussed at the end of this section.
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and

V2 (T1, T2) =


L2 (T2;κ) , T2 < T1

S2 (T ;κ) , T2 = T1 = T

F (T1) , T2 > T1.

An equilibrium consists of a pair of planned investment times
(
T̂1, T̂2

)
such

that T̂1 ∈ arg maxT1≥t0 V1

(
T1, T̂2

)
and T̂2 ∈ arg maxT2≥t0 V1

(
T̂1, T2

)
.

Proposition A1 In an equilibrium of the investment game starting at t0, T̂1 =

max{t0,min
{
TL (κ) , TP (κ)

}
} and T̂2 ∈

{
max

{
t0, T

P (κ)
}}
if max

{
t0, T

P (κ)
}
<

TL (κ) or
[
max{t0,min

{
TL (κ) , TP (κ)

}
},∞

]
otherwise.

Proof If t0 ≥ TF immediate investment is weakly dominant for both firms as

Li (t;κ) = Fi (t;κ) with Fi (t;κ) decreasing over
(
TF ,∞

)
for i ∈ {1, 2}. Any(

T̂1, T̂2

)
∈ [t0,∞)

2 satisfying min
{
T̂1, T̂2

}
= t0 is an equilibrium in this case.

The remainder of the argument therefore focuses on starting times t0 < TF .

Moreover as Li (t;κ) is decreasing over
(
TF ,∞

)
, leading after TF is dominated

and both firms can be constrained to choosing times Ti ∈
[
t0, T

F
]
.

The equilibrium characterization involves three cases that depend on the

level of κ, which determines whether the high cost firm’s preemption threshold

is defined and, when this threshold is defined, whether it is greater or smaller

than the low cost firm’s monopoly threshold.

If κ > κ, then Θ2 (κ) =
{
TF
}
. As L2 (t;κ) − F (t) < 0 for all t < TF ,

leading before TF is not individually rational for firm 2. The game therefore

reduces to an individual decision problem for firm 1. Its optimum is T̂1 =

max
{
t0, T

L (κ)
}
and firm 2 indifferently chooses any T̂2 in

[
T̂1, T

F
]
, which

leaves firm 1’s equilibrium profit unaffected given the tie-breaking assumption.

If κ ∈ [κ̂, κ], then TL (κ) ≤ TP (κ) ≤ tκ < TF (see Figure 1) so Θ2 (κ) =[
TP (κ) , tκ

]
∪
{
TF
}
. If κ < κ then the preemption range is non-empty whereas

κ = κ is the limiting case Θ2 (κ) =
{
TL, TF

}
. Consider first starting times
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t0 < TP (κ). Firm 1’s myopic optimum is max
{
t0, T

L (κ)
}
, and as TP (κ) ≥

TL (κ) so that L2 (t;κ) − F (t) < 0 for all t < TL (κ) no individually ratio-

nal choice of firm 2 can constrain firm 1. Firm 1 therefore sets its optimal time

T̂1 = max
{
t0, T

L (κ)
}
whereas firm 2 indifferently chooses any in T̂2 ∈

[
T̂1, T

F
]
,

which leaves firm 1’s equilibrium profit unaffected given the tie-breaking assump-

tion. Consider next starting times t0 with TP (κ) ≤ t0 ≤ tκ. As t0 ≥ TL (κ),

L1 (t;κ) is decreasing over
(
t0, T

F
)
and moreover L1 (t;κ) ≥ S1 (t;κ) > F1 (t;κ).

Immediate investment is therefore strictly dominant for firm 1 so that T̂1 = t0.

Because S2 (t0;κ) = F (t0), firm 2 is indifferent between simultaneous invest-

ment and following and hence between all T̂2 ∈
[
t0, T

F
]
. Note that if t0 ∈(

TP (κ) , tκ
)
(with κ < κ) firm 1’s payoff is a correspondence whose value is

either L1 (t0;κ) − (L2 (t0;κ)− F (t0)) (if T̂2 = T̂1) or L1 (t0;κ) (if T̂2 > T̂1).

Consider finally starting times t0 > tκ. As L1 (t;κ) = S1 (t;κ) is decreasing and

L1 (t;κ) > F1 (t;κ), immediate investment is dominant for firm 1 which sets

T̂1 = t0 whereas firm 2 indifferently chooses any in T̂2 ∈
[
T̂1, T

F
]
, which leaves

firm 1’s equilibrium profit unaffected given the tie-breaking rule. To summarize

therefore, in this case T̂1 = max
{
t0, T

L (κ)
}
and T̂2 ∈

[
max

{
t0, T

L (κ)
}
, TF

]
.

If κ ∈ (0, κ̂) then TP (κ) < TL (κ) < tκ (see Figure 1) soΘ2 (κ) =
[
TP (κ) , tκ

]
∪{

TF
}
and the preemption range is non-empty. Consider first starting times

t0 < TL (κ). If moreover t0 < TP (κ), individual rationality rules out any

choice T2 ∈
[
t0, T

P (κ)
)
by firm 2. This implies that T1 ≥ TP (κ), as L1 (t;κ) is

increasing over
[
t0, T

L (κ)
)
and S1 (T2;κ) = L1 (T2;κ) if T2 = TP (κ). For given

t0 < TL (κ) therefore, an equilibrium must satisfy T̂1, T̂2 ≥ max
{
t0, T

P (κ)
}
.

Moreover Tj > Ti ≥ max
{
t0, T

P (κ)
}
, i, j ∈ {1, 2}, i 6= j cannot consti-

tute an equilibrium. If Ti = max
{
t0, T

P (κ)
}
then firm i finds if profitable

to delay by choosing some T ′i with max
{
t0, T

P (κ)
}
< T ′i < Tj , whereas if

Ti > max
{
t0, T

P (κ)
}
then as leader payoffs are continuous with L1 (t;κ) −

44



F1 (t;κ) , L2 (t;κ) − F (t) > 0, all t ∈
{

max
{
t0, T

P (κ)
}
, Ti
}
, preemption by

firm j is profitable and it chooses some T
′

j with max
{
t0, T

P (κ)
}
< T ′j <

Ti. T1 = T2 > max
{
t0, T

P (κ)
}
cannot constitute an equilibrium, as firms

similarly have an incentive to set any Ti with max
{
t0, T

P (κ)
}
< Ti < Tj .

Only T̂1 = T̂2 = max
{
t0, T

P (κ)
}
remains as a candidate equilibrium. T̂i is

a (possibly weak) best response to T̂j = max
{
t0, T

P (κ)
}
as Li (t;κ) is in-

creasing over
(
t0, T̂j

)
(if t0 < TP (κ)) and either S1

(
T̂2;κ

)
> F1 (t;κ), all

t > T̂2 (firm 1), or S2

(
T̂1;κ

)
= F (t), all t > T̂1 (firm 2). Note that by

the tie-breaking rule the equilibrium payoffs are L1

(
max

{
t0, T

P (κ)
}

;κ
)
−[

L2

(
max

{
t0, T

P (κ)
}

;κ
)
− F

(
max

{
t0, T

P (κ)
})]

for firm 1 and F (t0) for firm

2. Consider next t0 ≥ TL (κ). A similar argument to the previous case es-

tablishes that firm 1 invests immediately whereas firm 2 is indifferent between

simultaneous investment and following. To summarize therefore, in this case

T̂1 = max
{
t0, T

P (κ)
}
and T̂2 ∈

{
max

{
t0, T

P (κ)
}}

if t0 < TL (κ) or
[
t0, T

F
]

otherwise. �

For any κ and any t0, firm 1 leads in equilibrium either directly because

it chooses T̂1 < T̂2 or due to effi cient rationing. Firm 2 invariably obtains a

follower payoff V̂2 (t0) = F (t0), but when the game starts in the interior of the

preemption range firm 1’s payoff is a correspondence whose value is the sum

of its follower payoff and either a differential rent or the full positional rent

depending upon whether firm 2 invests simultaneously or as a follower:

V̂1 (t0) =
L1

(
max

{
t0, T

P (κ)
}

;κ
)
−
[
L2

(
max

{
t0, T

P (κ)
}

;κ
)
− F (t0)

]
, t0 < TL (κ)

L1 (t0;κ)− 1T̂1=T̂2
[L2 (t0;κ)− F (t0)] , TL (κ) ≤ t0 ≤ tκ

L1 (t0;κ) , t0 > tκ

(if κ < κ̂),
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or
L1

(
max

{
t0, T

L (κ)
}

;κ
)
, t0 < TP (κ)

L1 (t0;κ)− 1T̂1=T̂2
[L2 (t0;κ)− F (t0)] , TP (κ) ≤ t0 ≤ tκ

L1 (t0;κ) , t0 > tκ

(if κ̂ ≤ κ ≤ κ),

or

L1

(
max

{
t0, T

L (κ)
}

;κ
)
(if κ > κ).

In order to have a full dynamic view of the game, consider what would

happen if firms decided at any point in time to either wait or invest. In this

perspective any t′0 > t0 defines a subgame starting at t′0 of the investment game

which is reached if no firm invests in the interval [t0, t
′
0). The equilibrium timing

choices in Proposition 1A can thus be associated with closed-loop strategies

which prescribe the actions {wait} if t′0 < T̂i and {invest} otherwise, i ∈ {1, 2}.

Almost all of the firm 2 timing choices given in Proposition 1A are suboptimal

if some t′0 ∈
(
TP (κ) , tκ

)
is reached and firm 1 does not invest, whereas only

T̂2 =
{

max
{
t0, T

P (κ)
}}

(if κ ≤ κ and t0 ≤ tκ) or
{

max t0, T
F
}
(otherwise)

remains, and can accordingly be viewed as a perfect equilibrium.

The main novelty is the simultaneous move profile (S1 (T ;κ) , S2 (T ;κ)),

which is discussed in more detail in Section 4.1. Simultaneous moves raise

well-known and somewhat technical issues in preemption games. A common

alternative tie-breaking assumption in the literature is to posit that roles are

determined by a coin toss so that Si = 0.5Li + 0.5Fi, i ∈ {1, 2}. If the con-

tinuous time game is understood to be the limit of a series of discrete time

games over a grid that becomes arbitrarily fine and provided that t0 < TP (κ),

the same equilibrium outcome as described above results as firm 1 prefers to

lead just before TP (κ) rather than to invest simultaneously right after TP (κ)

is reached. Fudenberg and Tirole [8] have a different approach which does not
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impose an instantaneous capacity constraint but instead augments the strategy

space to allow the continuous time approximation to represent mixed strategy

discrete time equilibria. Multiple equilibria arise if t0 ∈
[
TP (κ) , tκ

]
including

a mixed strategy equilibrium involving rent dissipation. Fudenberg and Tirole

also identify a simultaneous investment equilibrium in their model, but as here

M2(t) = F (t) over (TF ,∞) is decreasing, M2(t) is maximized at TF in the

present model so the equilibrium that they identify cannot arise.

A.3 Stochastic case

Fudenberg and Tirole [8]’s analysis extends to the investment under uncertainty

framework described by Dixit and Pindyck [6]. This supplemental section gives

the main steps involved in defining continuation payoffs, the loci XL
1 (κ) and

kP (x), and obtaining the comparative static ∂kP
(
X̂
)
/∂σ discussed in the

text.

A.3.1 Continuation payoffs

For a given level of the current price X(t) = x of the capital good, let V F (x)

denote the value of an option on the stationary duopoly profit stream with

capitalized value ΠD. In the continuation region, this option value satisfies

rV F (x) dt = EdV F (x) .

Developing the right hand side using Itô’s lemma and taking the expectation

yields
σ2

2
x2
[
V F (x)

]′′
+ µx

[
V F (x)

]′ − rV F (x) = 0

after rearranging. The boundary conditions are limx→∞ V F (x) = 0 and V F
(
XF
)

=

ΠD−XF , and the smooth pasting condition is
[
V F
]′ (

XF
)

= −1. For σ > 0 the
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fundamental quadratic (σ2/2)b (b− 1)+bµ−r = 0 has two distinct roots of which

only the negative root b′ = −
((
µ/σ2

)
− (1/2)

)
−
√

((1/2)− (µ/σ2))
2

+ (2r/σ2)

is consistent with the first boundary condition. The option value is therefore

of the form V F (x) = Axb
′
. Setting γ = −b′, the option’s exercise threshold is

XF = (γ/ (γ + 1)) ΠD, the multiplicative constant is A =
[
XF
]γ+1

/γ and

V F (x) =

 ΠD − x, x ≤ XF

Axγ , x > XF .

The value in initial currency units of obtaining the follower option at the sto-

chastic time τ (X) = inf { t ≥ 0|X(t) ≤ X} at which the input price first hits a

threshold X ≤ x is therefore

F (X) = Ex

[
V F (X) e−rτ(X)

]
= V F (X)

(
X

x

)γ
.

The leader payoffs are

L1

(
X;K1

)
= Ex

[∫ τ(min{X,XF})

τ(X)

πMe−rsds+

∫ ∞
τ(min{X,XF })

πDe−rsds−
(
1−K1

)
X(τ (X))e−rτ(X)

]

=
(
ΠM −

(
1−K1

)
X
)(X

x

)γ
−
(
ΠM −ΠD

)(min
{
X,XF

}
x

)γ

for firm 1 and

L2

(
X;K1

)
= Ex

[∫ τ(min{X,XF1 (K1)})

τ(X)

πMe−rsds+

∫ ∞
τ(min{X,XF1 (K1)})

πDe−rsds−X(τ (X))e−rτ(X)

]

=
(
ΠM −X

)(X
x

)β
−
(
ΠM −ΠD

)(min
{
X,XF

1

(
K1

)}
x

)β

for firm 2, where XF
1

(
K1

)
= (γ/ (γ + 1))

(
ΠD/

(
1−K1

))
denotes firm 1’s

duopoly investment threshold. Maximization of the strictly quasiconcave func-
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tion L1

(
X;K1

)
with respect to X results in the monopoly threshold XL

1

(
K1

)
given in the text.

A.3.2 Preemptive capital accumulation policy

Firm 2’s preemption thresholdXP (κ) is the upper root of the condition L2 (X;κ) =

F
(
XF
)
, X ∈

(
XF , x

)
, which is well-defined provided that κ does not exceed

the upper bound κX derived below. After normalization by x−γ this condition

is

(
ΠM −X

)
Xγ −

(
ΠM −ΠD

)( γ

γ + 1

ΠD

1− κ

)γ
−
γγ
[
ΠD
]γ+1

(γ + 1)
γ+1 = 0.

Similarly to Appendix A.1, setting X = XL = (γ/ (γ + 1)) ΠM yields the upper

bound beyond firm 2’s preemption range vanishes,

κX = 1−

 ΠM

ΠD
− 1(

ΠM

ΠD

)γ+1

− 1
γ+1


1
γ

.

For κ ∈ (0, κX), the upper root XP (κ) ∈
(
XL, XP

)
is well-defined and rear-

ranging yields the expression of kP (x) given in the text.

A.3.3 Equilibrium and sensitivity analysis

In (X,K1)-space, the locus XL
1

(
K1

)
= (γ/ (γ + 1))

(
ΠM/

(
1−K1

))
is an in-

creasing and convex function ofK1 ∈ [0, 1), withXL
1 (0) = XL and limK1→1X

L
1

(
K1

)
=

∞. The locus kP (X) is decreasing for X ∈
(
XL, XP

)
with kP (XL) = κX and

kP (XP ) = 0. There is therefore a unique intersection of the two loci, which is(
X̂, kP (X̂)

)
.

As ∂XL
1 /∂γ = XL

1 / (γ (γ + 1)) > 0 and ∂γ/∂σ < 0, greater volatility shifts
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XL
1

(
K1

)
leftward. The effect of greater volatility on kP (x) is more complex,

but for geometric Brownian motion a standard result is that ∂XP (κ) /∂γ > 0

(Huisman [9]) so an increase in volatility shifts kP (x) down and to the left.

To study the sensitivity of X̂, substitute for 1 − kP (X̂) in the equilibrium

condition and raise to the power γ to get

X̂γ =

(
ΠM

ΠD
− X̂

ΠD

)(
X̂

ΠD

)γ
− γγ

(γ+1)γ+1

ΠM

ΠD
− 1

[
ΠM

]γ
.

Define x̂ = X̂/ΠD and m = ΠM/ΠD to express this condition more compactly.

Rearranging yields an implicit definition of x̂,

mβ x̂β+1 −
(
mβ+1 −m+ 1

)
x̂β +

mβββ

(β + 1)
β+1

= 0.

Letting Γ (x̂, γ) denote the left-hand side, dx̂/dγ = − (∂Γ/∂γ) / (∂Γ/∂x̂). First,

∂Γ

∂x̂
=
(
(γ + 1)mγ x̂− γ

(
mγ+1 −m+ 1

))
x̂γ−1.

As X̂ ≥ XL, x̂ ≥ (γ/ (γ + 1))m and hence (γ + 1)mγ x̂ ≥ γmγ+1 so ∂Γ/∂x̂ ≥

γ(m− 1)x̂γ−1 > 0. Next,

∂Γ

∂γ
= mγ x̂γ+1 ln (mx̂)−mγ+1x̂γ lnm−

(
mγ+1 −m+ 1

)
x̂γ ln x̂+

mγγγ

(γ + 1)
γ+1 ln

(
mγ

γ + 1

)
.

As mγγγ/ (γ + 1)
γ+1

=
(
mγ+1 −m+ 1

)
x̂γ −mγ x̂γ+1 by definition,

∂Γ

∂γ
= mγ x̂γ+1 ln

(
(γ + 1) x̂

γ

)
−mγ+1x̂γ lnm+

(
mγ+1 −m+ 1

)
x̂γ ln

(
γm

(γ + 1) x̂

)
.

Because x̂ > γ/ (γ + 1) the first summand is positive whereas the other terms
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are negative. Moreover mγ x̂γ+1 <
(
mγ+1 −m+ 1

)
x̂γ , so

∂Γ

∂γ
<

(
mγ+1 −m+ 1

)
x̂γ ln

(
(γ + 1) x̂

γ

)
−mγ+1x̂γ lnm+

(
mγ+1 −m+ 1

)
x̂γ ln

(
γm

(γ + 1) x̂

)
= − (m− 1) x̂γ lnm < 0.

Therefore ∂x̂/∂γ > 0 and hence ∂X̂/∂σ < 0.
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