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Production cap and the lumpy-flexible investment choice  
Abstract 
An upper production limit is incorporated as a cap in a real-option formulation for investigating 

the conditions discriminating between a lumpy single-stage investment and a flexible 

consecutive two-stage variant. Although having no effect on the investment threshold and timing 

decision unless the cap is breached, the production cap deflates the investment option value 

evaluated in the absence of any cap and consequently influences the lumpy-flexible choice. Also, 

the cap disengages the accepted positive link between volatility and option value, since for 

volatilities above a certain level, the option value declines with increasing volatility in the 

presence of a cap. We demonstrate that a flexible as opposed to a lumpy investment policy can 

be more attractive and sometimes significantly so.  
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1  Introduction 
In formulating analytical real-option models, it is customary to select geometric Brownian 

motion to represent the dynamics of the stochastic factor. This assumes the factor can adopt any 

value along +
 . In practice, the factor may be naturally bounded as illustrated by the physical 

output produced by most plant and equipment that is limited by a capacity constraint even when 

supplemented with overtime. However, this capacity constraint is like a cap that by having 

option-like payoff features can be formulated within a real-option model. This representation, 

while having no effect on the investment threshold and timing decision provided the cap remains 

unbreached at implementation, does deflate the option value of the opportunity because of the 

consequential loss of attractiveness. An effective comparison of alternative policy opportunities 

often relies on evaluating their investment option values so any possible distortion caused by 

ignoring the capacity limit may lead to erroneous decisions. We investigate the impact of a cap 

on the investment option value and the resulting policy choice between a lumpy strategy that is 

implemented in a single stage and a flexible strategy that is implemented in two consecutive 

stages, where the flexible strategy is disadvantaged by a greater overall capital cost.. 

 

Uncertainty in real-option models plays a crucial role in understanding the scope for managerial 

discretion in making decisions on investment timing and capacity choice. Originally, demand 

volatility was considered to favour more frequent investments in small capacity increments when 

as needed, Dixit and Pindyck (1994). Since then, this view has been re-assessed by several 

authors. Dangl (1999) examines the claim by expressing the project value in terms of the 

maximum profit level when idle, active and active but exceeding the capacity constraint to show 

that a firm invests later in a larger capacity as market volume volatility increases. Similarly,  

Hagspiel et al. (2016) consider firms with and without the flexibility to adjust production 

capacity in line with output volume changes to examine their consequences on timing and size. 

De Giovanni and Massabò (2018) extend their analysis by including the costs associated with 

volume flexibility. Chronopoulos et al. (2017) show also that the lumpy strategy is preferred 

under high price uncertainty for fixed capacity projects but not when the firm has freedom over 

the capacity choice. Huberts et al. (2015) provides a survey on capacity choice. In work closest 

to our own, Kort et al. (2010) evaluates the relative merits of a lumpy and flexible strategy to 

show that greater uncertainty favours the former despite the latter’s intrinsic flexibility. The 
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authors make two telling points that flexibility has several connotations and that increased 

volatility engenders further inertia that defers the second stage investment. 

 

In our formulation, we impose a production cap, modelled as a pair of call and put options, to 

represent the limit on output volume for both the lumpy and flexible investments. Call and put 

option features have been adopted elsewhere to represent a factor limit due to a government 

subsidy policy. Takashima et al. (2010) and Armada et al. (2012) evaluate a project with a floor 

representing a government support mechanism, while Adkins and Paxson (2019) and Adkins et 

al. (2019) assess the effect of a collar involving both a floor and cap on the project value. Here, 

the capacity limit is formulated as a cap. This means that when we are considering an additional 

investment for the flexible strategy, the increment can only be installed once the capacity limit 

has been attained, since it is uneconomic to expand capacity when under-utilized capacity exists. 

Representing  capacity as a cap has three advantages: (1) intrinsically, a production cap reflects 

reality, as observed by Dangl (1999) and Hagspiel et al. (2016); (2)  it enables the upside 

investment potential to be modelled, and (3) it is unnecessary to impose conditions on cost and 

revenue structure to guarantee the timing of the consecutive stages of the flexible strategy to be 

appropriately ordered.  

 

Revisiting the lumpy-flexible debate with a cap yields some interesting results because in certain 

instances, the cap significantly modifies the solution. If the cap for the lumpy investment is not 

breached, then the with-cap and without-cap investment thresholds are identical but the with-cap 

investment option value is lower, since the threshold decides project viability while the lost 

upside potential reduces the option value. On the other hand, if the without-cap threshold 

breaches the cap, then the with-cap threshold increases and the option value decreases because of 

the lost latent value when market demand exceeds the cap. The volatility option value 

relationship is not monotonic increasing as expected, but concave with a maximum, since 

volatility increases lead eventually to the cap being breached and the consequential deterioration 

in value. The findings concerning the thresholds and option values for the flexible strategy are 

very similar to those for the lumpy strategy. Further, we find that flexible strategy is preferred to 

the lumpy strategy for a low capital cost disadvantage, but as this increases, the superiority of the 

flexible strategy wanes until a point of indifference is attained. While the flexible strategy is 
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superior, the firm has the flexibility to select from a range of first stage investment levels, but 

this range narrows as the capital cost disadvantage worsens. Volatility also affects the relative 

merits of the two strategies. As expected, a flexible strategy is strongly favoured for low 

volatility projects while a lumpy strategy is favoured for very high volatility projects. The 

superiority of the flexible strategy is negatively affected by increases in both volatility and the 

capital cost disadvantage.     

   

2 Analysis 

2.1 Fundamental Model 

A firm set in a monopolistic situation is considering a project opportunity that is subject to a 

single source of uncertainty due to demand volume variability, which is described by the 

geometric Brownian motion process: 

 dq d dq t q Wα σ= + , (1) 

where q  denotes the periodic demand volume, α  the expected drift, σ  the volatility, and dW  

an increment of the standard Wiener process. Project output is constrained at the upper end by a 

capacity cap, ,Uq  so demand is only fully met provided Uq q≤ . For a known unit price p  and 

periodic operating cost f , the idle project value V  dependent on demand volume q  is described 

by: 

 ( )
2

2 21
2 2 0V Vq r q rV

q q
σ δ∂ ∂

+ − − =
∂ ∂

  (2) 

where r α>  denotes the risk-free rate and rδ α= −  the rate of return shortfall. Since ( )0 0,V =  

the solution to (2) is ( ) 1V q A qβ= , where 0A ≥  is a to-be-determined coefficient and 1 2,β β  are 

the respective positive and negative roots of the characteristic equation: 

 ( ) ( )21
2 1 0r rσ β β δ β− + − − = , (3) 

with solution values: 

 
2

1 1
1 2 2 22 2 2

2, r r rδ δβ β
σ σ σ
− −   = − ± − +   

   
, (4) 
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where 1 2 1 21, 0, 0.β β β β> < − >  For an idle project, the firm holds a positive call option to 

invest in the project while the market demand is no more than the exercise threshold.  

 

The value for an active project is given by: 

 ( )
2

2 21
2 2 0V Vq r q pq f rV

q q
σ δ∂ ∂

+ − + − − =
∂ ∂

. (5) 

with generic solution: 

 ( ) 1 2
1 2

pq fV q A q A q
r

β β

δ
= − + + , (6) 

where 1 2,A A  are to-be-determined generic coefficients. In (6), 1 2
1 2,A q A qβ β  respectively represent 

the American perpetuity call, Samuelson (1965), and put options, Merton (1973), Merton (1990). 

The call and put options may be held or written. The coefficient for a held option is positive and 

that for a written option negative. For an active project, these options represent the opportunity 

value of switching to an alternative state. If the switch is value-creating, held by the firm and 

economically advantageous, then the option coefficient is positive. In the present context, this 

arises when the firm owns an investment opportunity to install or expand a productive asset. But, 

if the switch is value-destroying, written by the firm and economically disadvantageous, then the 

option coefficient is negative. Again, this arises when the firm’s output volume attains the 

productive capacity limit, either from below or from above. If the volume attains the cap from 

below, then the loss in value is due to the cap forcing the firm to fail in meeting market demand. 

If the volume attains the cap from above, then the loss in value is due to market demand falling 

short of the cap. 

 

If demand is not satisfied and exceeds the productive cap, Uq q> , then the maximum attainable 

project volume is { }min , Uq q , and (6) is amended to: 

 ( ) 1 2
1 2

Upq fV q A q A q
r r

β β= − + + .  (7) 

 

2.2 Model I: Lumpy Investment with a Cap 
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A firm has an opportunity to invest in a project in its entirety, whose output is constrained by an 

upper capacity limit. Installing this lumpy project requires a one-time capital investment cost K , 

and once installed incurs a known periodic operating cost f . In the presumed absence of any 

abandonment optionality, the active project may operate at a loss. The capacity of the installed 

project is capped by the upper limit Uq . The optimal demand threshold for an investing in the 

project is denoted by ( )01ˆ Iq , given that the threshold does not exceed the cap, ( )01ˆ UIq q≤ , although 

this condition is subsequently relaxed. The firm managing the project can be said to exist in one 

of three possible distinct states, see Figure 1a. In the idle pre-investment state-0, the firm is 

waiting for more favourable information to emerge before making the investment, so 

( )01ˆ0 Iq q< < . In the active post-investment state-1, the project is already installed and actively 

producing output q  but the production cap is not breached, so Uq q≤ . When the cap is breached, 

the firm is the active state-11, Uq q> , so demand is unmet and production output is restricted to 

Uq . The values for the three distinct states, denoted by ( ) ( ) ( ) ( ) ( ) ( )0 1 11, ,I I IV q V q V q , respectively,  

are: 

 ( ) ( ) ( ) ( )
1

0 01 01ˆfor ,I I IV q A q q qβ= <   (8) 

 ( ) ( ) ( )
1

1 11 for ,UI I
pq fV q A q q q

r
β

δ
= − + ≤   (9) 

 ( ) ( ) ( )
2

11 112 for .U
UI I

pq fV q A q q q
r r

β= − + >   (10) 

In (8)-(10), ( )01 0IA ≥  denotes the investment option coefficient, while ( )11,IA ( )112IA  denote the 

switch option coefficients when migrating between state-1 and -11. Subsequently, we show both 

these coefficients to be negative because of the value sacrificed when switching. When in state-1, 

the firm is confronted with the possibility of being switched to state-11 and obliged to accept a 

less attractive output volume imposed by the cap Uq  instead of meeting the market demand level 

q . The accompanying loss in value is represented by selling the written call option ( )
1

11IA qβ . 

Similarly, when in state-11, the firm is has to face the possibility of being switched from state-1 

and obliged to accept a less attractive market demand level q  instead of operating at full 
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capacity Uq . The accompanying loss in value is represented by selling the written put option 

( )
2

112 .IA qβ  

 

The values ( ) ( )11 112,I IA A  are obtained from the value-matching relationship and smooth-pasting 

condition ruling at the boundary between state-1 and -11, and given by1: 

 ( )
( )
( ) ( )

( )
( )

1 21 1
2 2 1 1

11 112
1 2 1 2

,U U
I I

pq r r pq r r
A A

r r

β ββ δβ β δβ
β β δ β β δ

− −− + − − + −
= =

− −
. (11) 

In (11), ( ) ( )11 1120, 0I IA A≤ ≤ . ( )11 0IA <  because 0r δ− >  so ( )2 0r rβ δ− − < , and ( )112 0IA <  

because ( )21
1 12 1 0σ β β − >  so ( ) 1 0r rδ β− − <  due to (3). Any relaxation in the capacity limit, 

as reflected by an increasing cap level Uq , causes ( )11IA to increase towards zero to make the 

switch from state-1 to -11 less unlikely, but also causes ( )112IA  to decrease towards minus infinity 

to make a switch from state-11 to -1 more likely. 

 

Provided the productive cap is not breached, the threshold ( )1ˆ Iq  and coefficient ( )01IA  are 

obtained from the value-matching relationship and associated smooth-pasting condition ruling at 

the boundary of state-0 and -1, and are given by: 

 ( ) ( )1
01

1

ˆ
1Iq f rK

rp
β δ

β
= +

−
, (12) 

 ( )
( )

( )

11
01

01 11
1

ˆ I
I I

pq
A A

β

β δ

−

= + . (13) 

From (12), the cap has no effect on the threshold and the investment timing, which contrasts 

directly with the effect of a floor acting as a subsidy policy instrument, Takashima et al. (2010), 

Armada et al. (2012), and Adkins and Paxson (2019), Adkins et al. (2019). Under certain 

circumstances, a floor guarantee positively influences both the threshold and investment option 

value, since the former decreases and the latter increases for increasing floor levels. In the 

absence of a cap or floor, the investment threshold level reflects the underlying uncertainty and 

represents the minimum exercise price ensuring project viability against the downside risk. But, 
                                                 
1 The derivation for Model I is relegated to Appendix A. 
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the floor mitigates the downside risk and accordingly the threshold is reduced relative to that 

without a floor. In contrast, the cap provides no protection against the downside risk and 

consequently the threshold is unaffected. 

 

From (13), the cap makes the investment option less attractive, since the coefficient ( )01IA  is the 

sum of that without a cap ( ) ( )11
11ˆ Ipq β β δ−  and ( )11 0IA < , the sacrifice levied by switching from 

state-1 to -11. The cap offers no downside protection, and because it limits upside potential, the 

opportunity is less attractive, a floor, on the other hand, enhances the option value by limiting 

adverse outcomes. 

 

2.2.1 Breached Capacity 

When the opportunity threshold ( )01ˆ Iq  exceeds the cap, exercising the investment option entails 

switching from state-0 to -11, see Figure 1b. This necessitates amending the value-matching and 

smooth pasting expressions accordingly, from which the amended threshold ( )011ˆ Iq  and 

coefficient ( )011IA  are given by: 

 ( )
( )

( )
2

1

1
011

1 1

ˆ U
UI

U

pq f rK
q q

pq r r

ββ δ
β δβ

 − −
=   − + 

, (14) 

 ( )
( )

( ) ( )
12

011 01
1 2

ˆU
I I

pq f rK
A q

r
ββ

β β
−− − −

=
−

. (15) 

When ( )01ˆ UIq q> , the amended threshold  ( )011ˆ Iq  is always at least equal to the cap. If we set 

( )01ˆU Iq q= ,  then (14) simplifies to (12) and (15) to (13). Further, if viability is assured because 

Upq f rK> + , then ( )011ˆ 0UIq q∂ ∂ <  and ( )011 0UIA q∂ ∂ > .  As Uq  falls in value and the bite of 

the cap intensifies, the resulting increase in the threshold is due to the need to compensate the 

downside risk and mitigate the possibility of the project making a loss, while the decline in the 

investment option value reflects the project’s decreasing attractiveness. 
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2.3 Model II: Flexible Investment with a Cap 

Model I represents a lumpy opportunity exercisable as a single project. An alternative strategy is 

Model II, which splits the project into two constituent elements, stage-1 and -2, both of which 

require completion for the project to be complete. The two stages are managed consecutively, 

such that the second can only be activated provided the first is operational and operating at full 

capacity. This inherent flexibility has the merit of initially exposing less capital to the 

misfortunes of downside risk while offering the opportunity to gain from upside potential by 

upscaling. But this flexibility is attended with additional capital costs, otherwise all divisible 

capital projects would always be established in a piecewise fashion. We impose the condition 

1 2K K K+ >  to ensure completing the project in a single stage is less expensive than completing 

it in two consecutive stages, where 1K  and 2K  denote the capital costs for the two stages, 

respectively. Despite this, the two stage framework is not further disadvantaged. When stage-2 is 

attained, both Model I and II share identical caps and periodic operating costs. Model II stage-1 

cap is denoted by u Uq q<  and stage-2 by Uq . The known additional periodic operating costs for 

stage-1 and -2 are denoted by 1f  and 2f , respectively, where 1 2f f f+ = . Consequently, Model I 

and II are directly comparable. The distinction between two models is attributable to only capital 

costs and not to any operating cost differences, although this constraint can be subsequently 

relaxed. Again, we exclude the possibility of abandonment optionality. 

 

The capacity expansion option is presumed to become available only if the installed capacity is 

fully utilized. Expanding an under-utilized installed capacity is seen as uneconomic because of 

the accompanying additional capital and operating costs rendered by the expansion. When the 

prevailing output volume is below the stage-1 capacity, uq q< , a small output increase 

accompanied with no capacity change incurs no additional costs, but a similar increase with a 

capacity change entails both a capital expense and an increase in operating costs. We 

conceptualize the expansion option to be triggered only if full capacity at stage-1 is attained. This 

does not necessarily entail that the stage-2 investment threshold occurs at the stage-1 cap uq , but 

rather that the market volume trigger is at least equal to uq .  
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The firm managing the project exists in one of five possible distinct states, see Figure 2a. In the 

idle state-0, the firm is waiting for more propitious conditions to emerge before making the 

investment, so ( )01ˆ0 IIq q< <  where ( )01ˆ IIq  denotes the optimal threshold for investing 1K  to 

establish stage-1. In the active state-1, the firm has already invested in the project and is actively 

producing output q  provided the cap is not breached, so uq q≤ . In active state-11, the market 

demand exceeds the stage-1 cap so output is constrained to uq , but the firm now owns the 

expansion option and is deliberating on raising the output cap to Uq , so ( )12ˆu IIq q q< <  where 

( )12ˆ IIq  denotes the optimal threshold for investing 2K  to establish stage-2. In the active state-2, 

the firm has already invested in additional capacity and is producing an output q  provided the 

stage-2 cap Uq  is not breached. Uq q≤ . In the active state-21, market demand exceeds the cap 

and the firm is producing at full capacity Uq . Again, we initially assume the two thresholds, 

investment and expansion, do not exceed the caps for the respective stage, ( )01ˆ uIIq q≤ , 

( )12ˆ ,UIIq q≤  although this condition is subsequently relaxed. 

 

The respective project values for the five distinct states, ( ) ( )0 ,IIV q ( ) ( )1 ,IIV q ( ) ( )11 ,IIV q ( ) ( )2 ,IIV q

( )21IIV  can now be specified: 

 ( ) ( ) ( ) ( )
1

0 01 01ˆfor ,II II IIV q A q q qβ= <   (16) 

 ( ) ( ) ( )
11

1 11 for ,uII II
pq fV q A q q q

r
β

δ
= − + ≤   (17) 

 ( ) ( ) ( ) ( )
1 21

11 111 112 for ,u
uII II II

pq fV q A q A q q q
r r

β β= − + + >   (18) 

 ( ) ( ) ( )
11 2

2 21 for ,UII II
pq f fV q A q q q

r r
β

δ
= − − + ≤   (19) 

 ( ) ( ) ( )
21 2

21 212 for .U
UII II

pq f fV q A q q q
r r r

β= − − + >   (20) 

In (16)-(20), the option coefficients, ( )01 0,IIA ≥  ( )111 0,IIA ≥  are associated with the stage-1 

investment opportunity at state-0, which incurs a cost 1K  to produce a volume subject to the cap 
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,uq  and the stage-2 expansion opportunity at state-11, which incurs a cost 2K  to produce a 

volume subject to the cap ,Uq  respectively. The option coefficients, ( )11 0,IIA ≤ ( )112 0,IIA ≤   and 

( )21 0IIA ≤ ( )212 0,IIA ≤  reflect the sacrificial value inflicted by the two caps, ,u Uq q , when 

switching between state-1 and -11, state-2 and -21, respectively. 

 

The coefficients, ( )21,IIA ( )212,IIA  are obtainable from the value matching relationship and smooth 

pasting condition ruling at the boundary between stage-2 and -21, and are given by:2  

 ( )
( )
( ) ( )

( )
( )

1 21 1
2 2 1 1

21 212
1 2 1 2

0, 0U U
II II

pq r r pq r r
A A

r r

β ββ δβ β δβ
β β δ β β δ

− −− + − − + −
= < = <

− −
  (21) 

By comparing (11) and (21), ( ) ( ) ( ) ( )21 11 212 112,II I II IA A A A= = . These are representative of the value 

sacrificed when switching between state-1 and -11 for Model I, and between state-2 and -21 for 

Model II. They are identical because their respective coefficients depend on only the cap level 

Uq , which is common to the two models.  

 

The coefficients ( ) ( )111 112,II IIA A  are obtainable from the value matching relationship and smooth 

pasting condition ruling at the boundary between stage-11 and -2, and given by: 

 ( ) ( )
( ) ( ) ( )

1
212 12 2

2 2111 21
1 2

ˆ ˆ1II II u
II II

q pq f pqA A K
r r

β β
β

β β δ

− −  = + + + +  −    
,  (22) 

 ( )
( ) ( ) ( )

2
112 12 2

1 2112
1 2

ˆ ˆ1II II u
II

q pq f pqA K
r r

β β
β

β β δ

− −  = − + +  −    
, (23) 

where ( )12ˆ IIq  denotes the to-be-determined stage-2 expansion threshold. This is obtained from the 

value matching relationship and smooth pasting condition ruling at the boundary between stage-1 

and -11, which yields the non-linear relationship: 

 ( ) ( ) ( ) ( ) ( )( )2 2
1 1 2 2 1 112 12ˆ ˆ1 1u u uII IIq r pq rK f pq q r pqβ ββ δβ β δβ− − − − + + = − −  .  (24) 

                                                 
2 The derivation for Model II is relegated to Appendix B. 
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No feasible closed-form solution exists unless 2 1β = − , so ( )12ˆ IIq  has to be solved numerically. 

The boundary conditions enacted between stage-1 and -11 also yields the coefficient ( )11IIA : 

 
( )

( )
( ) ( )

( )

( ) ( ) ( ) ( )

1 1

1

1 12
11

1 2

12
2 2 2 212

1 2

ˆ
ˆ 1 .

U uII

II
uII

r r
A pq pq

r

q
pq r pq f K

r

β β

β

β δ
β β δ

β δβ
β β δ

− −

−

− −
= +

−

 + − + + + −

  (25) 

 

Finally, ( )01ˆ IIq  and ( )01IIA  are obtainable from the value matching relationship and smooth pasting 

condition ruling at the boundary between stage-0 and -1. This yields: 

 ( )
( )
( )

1 1 1
01

1

ˆ
1II

f rK
q

p r
β δ

β
+

=
−

, (26) 

 ( )
( )

( )
( )1

01
01 111

1 01

ˆ
ˆ
II

II II
II

pq
A A

qββ δ −= + . (27) 

The investment threshold (26) and option coefficient are similar in form to those obtained for 

Model I, (12) and (13), respectively. Provided the stage-1 cap is not breached by the threshold, 

( )01ˆ uIIq q≤ , the cap does not affect the threshold or investment timing. Also, the cap makes the 

stage-1 investment option less attractive since ( )11 0IIA < . 

2.3.1 Stage-2 Breached Capacity 

If the threshold ( )12ˆ IIq  obtained from (24) exceeds the stage-2 cap Uq , then exercising the 

expansion option entails switching from state-11 to -21. This change necessitates amending the 

value-matching and smooth pasting expressions accordingly, from which we obtain the amended 

solutions for the threshold ( )121ˆ IIq  and coefficients ( ) ( ) ( )111 112 11, ,II II IIA A A : 

 ( )
( ) ( )( )

( )
2 2

2

1 1
1 1

121
2 2 1

1
ˆ U u

II
U u

pq pq r
q

pq pq f rK

β β
β

δβ β

β δ

− −
−

− − −
=

− − −
,  (28) 

 ( )
( )

( ) ( )
1
121

2 2 2111
1 2

ˆ II
U uII

q
A pq pq f rK

r

β

β
β β

−−
= − − −

−
  (29) 
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 ( )
( )

( )
( )

( ) ( )
22
1211 1

2 2 1112
1 2 1 2

ˆ IIU U
U uII

qq r r pq
A pq pq f rK

r r

ββ β δβ
β δ

β β δ β β δ

−− − + −
= + − − −

− −
  (30) 

 ( )
( ) ( )

( )
( )( )

( )

1 11
2 2 2121 2 2

11
1 2 1 2

ˆ 1U uII u
II

q pq pq f rK pq r
A

r r

β ββ δ β β δ
β β δ β β δ

− −− − − − − −
= +

− −
. (31) 

The amended solutions (28)-(31) affect ( )01IIA  through (27), but the solutions for ( ) ( )21 212,II IIA A  

and ( )01ˆ IIq  remain unaffected. Consequently, an expansion threshold exceeding the stage-2 cap 

has a bearing on the investment option, but unlike the breached capacity solution for Model I, 

§2.2.1, the investment threshold is unaffected. 

 

3 Numerical Illustrations 

Further insights on the behaviour of the models presented in the previous section are obtained 

through numerical illustrations. Unless otherwise specified in the subsequent text, the values 

used to investigate the comparative behaviours of the models are initially as follows. The 

parameter values for the stochastic process are  0.04r = , 0.04δ =  and 0.2σ = , which implies 

that 1 2β =  and 2 1β = − .  A constant product price at 1p =  is kept throughout analysis. The 

values used to initially illustrate Model I, the lumpy strategy, are a capital expenditure cost set at 

100K =  and a periodic operating cost at 1.6.f =  The capacity limit capping the productive 

output level is set at 15.Uq =  The flexible alternative, represented by Model II, echoes the lumpy 

investment but splits the entire project into two constituent, consecutive stages, stage-1 and -2. 

For convenience, we conceptualize the two distinct stages as behaving in accordance to the 

proportions, ( )0φ φ φ,1− < <1  of the entire project, This means that the stage-1 and -2 operating 

costs are 1f ff=  and ( )1 1f ff= − , respectively. Further, the productive capacity limits are 

obtained in a similar way, but since stage-2 is an addition to stage-1, the stage-2 cap is 15Uq = , 

the same as for the lumpy investment. The cap for stage-1 is given by u Uq qφ= . In contrast, 

because of a disproportionally greater capital cost, the flexible alternative is disadvantaged 

compared with the lumpy investment. If 1 2,K K  denote the respective capital costs for stage-1 

and -2, then 
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 ( )1 2 1 2, , 1 , 0.K K K K K K Kκ φ κ φ κ+ = + = + = − >   

The additional capital charge κ  is assigned to only stage-1 because of the extra cost of initially 

establishing a smaller scale production plant. Initially, we set 5κ = . 

  

Clearly, whenever 0φ =  or φ =1  the lumpy investment project is always more attractive than the 

flexible alternative, since the two project forms are identical by having an equal productive cap 

but the flexible alternative incurs a greater capital cost. Yet, the flexible alternative with its lower 

stage-1 capital investment cost and operating cost is more likely to be installed earlier than the 

lumpy investment because of having a lower investment threshold. The critical question is then 

for those values of φ  in between the extremes, which of the two alternatives is more attractive, 

and how is this finding influenced by parameter value changes. 

 

3.1 Model I 

In the absence of a productive cap, the investment threshold is obtained as ( )0ˆ 11.2Iq =  and the 

option coefficient as ( )0 1.1161IA = . The threshold and coefficient values are expected to change, 

sometimes significantly, when a cap is present. The effect of introducing a productive cap on the 

project solution depends on whether the upper limit is breached by market demand or not. This is 

illustrated in Figure 3a for varying cap levels Uq  where the threshold limit is defined by ( )1ˆ Iq . 

When the cap is not breached, the investment threshold adopts the identical level as if the cap is 

absent, but the option coefficient declines in value as the cap becomes increasingly more 

stringent. The decline in option value reflects the increasing loss of project value as the cap 

increasingly restricts the upper limit of the project’s realised cash-flow. Projects with a 

production cap are always less attractive. When the production cap is breached, there is a 

difference in outcome. As the cap Uq  falls below the investment threshold without a cap, the 

resulting investment threshold increases for two dependent reasons. First, there is a sacrifice of 

the potential project value generated whenever demand exceeds the production cap, and 

secondly, the investment threshold has to be sufficiently high to guarantee the project’s viability. 

These two factors not only raise the investment threshold but also render the project less 
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attractive, and as a consequence the option value as reflected by its coefficient declines. For a 

cap of twice the threshold level of 11.2 without a cap, the option coefficient value is one-third 

less than that without the cap. As the restrictedness of the production cap intensifies, the 

investment threshold tends to infinity while the option coefficient tends to zero. Also, while the 

coefficients ( ) ( )11 112,I IA A  are both negative, since value is lost in migrating in between state-1 and 

-11, a cap reduction produces, in absolute terms, an ( )11IA  increase and a ( )112IA  decrease, and 

consequently a fall in the investment option coefficient ( )01IA .  

 

Figure 3a 

Model I Investment Threshold and Option Coefficient for Cap Variations 

 
 

 

Figure 3b 

Model I Investment Option Value for Cap Variations 
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The impact of the cap on the project value is illustrated in Figure 3b for specified cap levels 

including “no-cap” versus market demand variations. None of the displayed cap levels is 

breached and the project value is defined as ( ) ( ) ( )0 1ˆfor ,I IV q q q<  ( ) ( ) ( )1 1ˆfor ,UI IV q K q q q− ≤ ≤

( ) ( )11 for .UIV q K q q− >  Figure 3b reveals that decreases in the cap escalate the gap between the 

without-cap and with-cap project values, and that both the relative and absolute differences 

increase with market demand. Since a cap in some form or other plausibly exists for most 

practical projects, analyses ignoring the cap can yield project values that are significantly inflated 

and overstate their attractiveness. Figure 3b also shows all the profiles to be monotonic 

increasing with curvatures depending on whether ( )1ˆ ,Iq q<  ( )1ˆ ,UIq q q≤ ≤ or .Uq q>  

 

Although volatility is generally recognised to exert a positive influence on the investment 

threshold and investment option value, this finding appears to hold only partially for the option 

value in the presence of a cap. In Figure 4, the threshold and option coefficient profiles are 

illustrated for volatility variations up to 40% with 15Uq = . While the threshold continuously 

increases with volatility over the illustrated range, the option value increases until the volatility 

attains a sufficiently high level for the threshold to equal the cap, which occurs for 0.3σ = . For 

greater volatility levels the cap is breached, and then the option value begins and continues to 

decline. Without a cap, the option value and the project attractiveness increase with volatility 
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owing to the expectation that a higher volatility entails a greater likelihood of higher values for 

the underlying. However, when the cap is present and the production level is constrained to an 

upper limit, the beneficial consequences of a high volatility fail to materialise owing to the cap, 

which results in a declining project value. Volatility has a positive impact on the option value 

unless the cap is breached, in which case the impact is negative.    

 

Figure 4a 

Lumpy Investment Threshold and Option Coefficient for Volatility Variations 

with 15Uq =   
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Figure 4b 

Lumpy Investment Option Coefficient for Volatility Variations and Cap Levels 

 

 
 

Figure 4b illustrates the joint effects of volatility and cap level on the investment option 

coefficient. This reveals the functional relationship between the option coefficient and volatility 

to be concave for finite cap levels, but the curvature at the maximum varies. The cap level 

positively influences the maximum option coefficient and its corresponding volatility value. For 

cap levels close to the investment threshold, the volatility maximising the option coefficient is 

relatively low, while for those tending to no-cap, the corresponding volatility is very high, in 

excess of levels commonly met in practice. Further, the curvature for these two extremes is 

relatively low. This suggests first, that volatility has an almost insignificant effect on the option 

coefficient for relatively low caps, and second, that the relationship can be treated as monotonic 

increasing for relatively high caps. When the cap level lies between the two extremes, the 

relationship is concave. Figure 4b demonstrates again the significance of the cap in modifying 

the option coefficient due to the presence and absence of the cap. Further, the difference between 

the option coefficients for the cap and no-cap cases intensifies as the volatility increases. 

 

 

3.2 Model II 
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While the lumpy investment is expected to be more attractive at extreme φ  values, the flexible 

alternative is often judged as being more valuable because of its earlier exercise and lower 

capital injection, but its value is expected to decline as φ  approaches 1.  We illustrate in Figure 

5a and b the stage-1 and -2 investment thresholds and investment option coefficients for Model 

II with 15,40Uq = , respectively, for variations in φ  values over the range [0.05, 0.95]. The 

respective stage-1 and -2 caps are breached for 0.10φ ≤  and 0.26φ ≥  when 15Uq = , and for 

0.72φ ≥  when 40Uq = . As the stage-1 fraction φ  increases, the stage-1 option coefficient 

initially increases, peaks and then declines, a feature which is primarily due to the additional 

capital charge 5.0κ =  added to the stage-1 investment cost. For stage-2, there is no additional 

capital charge and its option coefficient is monotonically decreasing since its investment cost 

declines as φ  increases. The effect of the additional capital charge is also reflected in the 

investment thresholds. As φ  increases, the stage-1 threshold initially dips and then increases3. 

Despite φ  increasing and the stage-2 capital investment cost declining, the stage-2 threshold is 

increasing continuously over its range because of the increasing stage-11 value foregone when 

exercising the investment option.    

 

 

 

  

                                                 
3 This feature occurs for a cap of 40 but is not visible due to the range displayed. 
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Figure 5a 

Flexible Investment Threshold and Investment Option Coefficient for Variations in φ   

with 15Uq =   

 

 
 

Figure 5b 

Flexible Investment Threshold and Investment Option Coefficient for Variations in φ   

with 40Uq =   
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The effects of variations in φ  and Uq  on the relative performance of the lumpy and flexible 

investment strategies are illustrated in Figure 6a, which shows the ratio of the investment option 

coefficients for variations in φ  values over the range [0.05, 0.95] with 5.0κ = and 15, 40Uq = . 

In Figure 6, a ratio in excess of 1.0 indicates the flexible strategy as having a greater stage-1 

investment option coefficient than the option coefficient for the lumpy strategy, both strategies 

having the identical cap level. For the reported range, a less than 1.0 ratio occurs only for the 

15Uq =  profile when 0.95φ ≥ . Further, since the stage-1 investment threshold for the flexible 

strategy is always less than the lumpy strategy threshold, this suggests that for many plausible φ  

values, the flexible strategy is the more attractive. The actual values of the investment option 

coefficients for the two flexible strategies are reported in Figure 6b. This reveals that relaxing the 

cap raises the option value for all φ  values over the range [0.05, 0.95]. On the basis of a greater 

option value and earlier exercise, a more relaxed flexible strategy is more valuable than a less 

relaxed one, and a flexible strategy is the more attractive than a lumpy strategy for many 

plausible φ  values given 5.0κ = . However, as the additional capital charge is allowed to 

increase and to additionally disadvantage the flexible strategy, this latter finding may become 

less secure. 

 

 

Figure 6a 

Ratio of the Flexible to Lumpy Investment Option Coefficients for Variations in φ  

with 15, 40Uq =  and 5.0κ =   
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Figure 6b 

Actual Flexible Stage-1 Investment Option Coefficients for Variations in φ  

with 15, 40Uq =  and 5.0κ =  

 

 
 

3.2.1 Volatility Changes 

The effects of volatility changes on the Model I and II results share a very similar pattern. We 

present in Figure 7a and 7b, the stage-1 and -2 investment thresholds and option coefficients 

profiles with 15Uq =  for the investment fractions 0.2, 0.4φ = , respectively. This reveals the 
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expected result of an increasing relationship between the threshold and volatility. However, the 

stage-1 and -2 option coefficients profiles for the flexible strategy have a similar shape as that for 

the lumpy strategy, are concave and exhibit a maximum. The explanation for this unexpected 

finding is probably due to the breach in the productive cap. When 0.2φ = , the stage-1 and -2 

breaches occur at 0.25, 0.22σ ≥ ≥ , respectively; when 0.4φ = , the stage-1 and -2 breaches occur 

at 0.27, 0.17σ ≥ ≥ , respectively. Whenever the investment threshold exceeds the cap, there is a 

commensurate decline in the option value reflecting the latent value lost due to the capacity 

failing to satisfy market demand. 

 

Figure 7a 

Flexible Investment Threshold and Option Coefficient for Volatility Variations 

with 0.2φ =  and 5.0κ = , 15.0Uq =   

 

 
 

Figure 7b 

Flexible Investment Threshold and Option Coefficient for Volatility Variations 

with 0.4φ =  and 5.0κ = , 15.0Uq =  
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A comparison of Figure 7a and b reveals that the case having a lower investment ratio 0.2φ =  is 

more attractive, since it possesses the greater investment option value and is exercised earlier for 

all represented volatility values. The comparative performance for the two flexible alternative 

cases relative to the lumpy investment is presented in Figure 8a and b, which shows respectively 

the ratio of the investment option coefficient and investment threshold with  0.2, 0.4φ =  relative 

to that for the lumpy investment for various volatility levels. In Figure 8a, a ratio exceeding 1.0 

implies the flexible strategy as having a greater investment option coefficient, while in Figure 8b, 

a ratio less than 1.0 implies the flexible strategy as having a lower investment threshold and 

consequently an earlier exercise. Justified by only having a greater investment option coefficient, 

the virtual superiority of the flexible strategy is apparent in Figure 8a. However, the ratios 

continuously decline with volatility, falling below 1.0 at 70%, 72%σ ≥ ≥  for 0.2, 0.4φ = , 

respectively. We can conclude, for our data set, that almost certain projects definitely warrant a 

flexible strategy for their execution, while extremely risky projects should be executed using a 

lumpy strategy, except that the lumpy strategy appears to engender only a modest additional 

value. In Figure 8b, the threshold ratios are clearly less than 1.0 for all reported volatilities, 

which suggest the flexible strategies with 0.2, 0.4φ =  having earlier exercise times than the 

lumpy strategy. Low volatility projects should be installed in two stages by adopting a flexible 
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strategy in preference to a lumpy strategy because of having a greater investment option value 

and earlier exercise time, but as the volatility increases, the flexible strategy loses its superiority. 

A sufficiently high volatility may justify adopting a lumpy strategy, but its comparative 

advantage is modest.     

 

Figure 8a 

Option Coefficient Ratio with 0.2, 0.4φ =  Relative to the Lumpy Investment 

for Volatility Variations with 15.0Uq =   

 

 
 

Figure 8b 

Threshold Ratio with 0.2, 0.4φ =  Relative to the Lumpy Investment 

for Volatility Variations with 15.0Uq =   
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3.2.2 Additional Capital Charge Changes 

Since it may be argued that the flexible strategy is favoured simply because of a relatively low 

additional capital charge, we reconsider our findings in light of a higher charge set at 20.0κ = . 

Figure 9a illustrates the stage-1 and -2 investment thresholds and the investment option 

coefficients for Model II with 15Uq =  20.0κ =  and for varying values of φ  between 10%-90%. 

This reveals that the stage-1 threshold both falls and rises as the stage-1 fraction φ  increases. For 

0.17φ ≤ , the threshold falls since the additional capital charge represents a significant 

proportion of the stage-1 investment cost, but as that proportion diminishes for 0.17φ >  the 

threshold rises in line with the stage-1 investment cost. Even so, it is not until 0.17φ ≥  that the 

cap is not breached by the investment threshold. Similar to Figure 5 where 5.0κ = , the stage-2 

investment threshold rises as φ  rises, but the stage-2 cap is breached for 0.26φ ≥ . The more 

interesting finding from Figure 9a derives from comparing the investment option coefficient 

profiles for the lumpy and flexible strategies with 15.0Uq = . With 20.0κ = , the flexible strategy 

is less valuable than the lumpy strategy provided 0.13φ ≤  or 0.73φ > . Over this range, the 
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flexible strategy will never be selected despite having a lower investment threshold. For 

0.13 0.73φ< ≤ , the flexible strategy has the greater investment option value and attains a 

maximum for 0.28φ = . The effect of raising the additional capital charge from 5.0κ =  to 

20.0κ =  is revealed by comparing Figure 5 with Figure 9a. Although the stage-2 investment 

threshold remains unchanged, assuming the cap is not breached, the result of increasing the 

additional capital charge is a rise in the stage-1 threshold and a fall in the stage-1 option 

coefficient. An increase in the additional capital charge κ  makes the flexible opportunity less 

attractive and to raise the φ  value maximising the option coefficient. This effect is illustrated in 

Figure 9b for 30κ = . The result of increasing κ  from 20 to 30 is to raise the φ  value 

maximising the option coefficient from 0.28 to 0.38 and to lower the maximum option 

coefficient from 0.8990 to 0.5995. For an additional κ  increase, 32κ =  as illustrated in Figure 

9c, the firm is indifferent between the lumpy and flexible strategy with 0.44φ = , but for 

0.44φ ≠ , the lumpy strategy with its higher investment option value is superior. Provided that 

the additional capital charge to the stage-1 investment cost is no more than 32% of the lumpy 

strategy’s investment cost, then for certain φ  values, the flexible strategy is the more attractive 

of the two. And, the more the flexible opportunity is disadvantaged by a greater additional 

capital charge, the less likely it is of being selected.    

 

 

Figure 9a 

Flexible Investment Threshold and Investment Option Coefficient for Variations in φ   

with 20.0κ =  
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Figure 9b 

Flexible Investment Threshold and Investment Option Coefficient for Variations in φ   

with 30.0κ =  

 
 

Figure 9c 

Flexible Investment Threshold and Investment Option Coefficient for Variations in φ   
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with 32.0κ =  

 

 
 

4 Conclusion 

A cap representing a capacity limit on the production output is formulated as a pair of written 

call and put options. Intrinsically, since any limit on an underlying factor has the attributes of an 

option payoff, this description of a productive cap is plausible with the merit of yielding some 

interesting tractable analytical results. The options are written because of the lost latent value as 

the market demand volume increases to exceed the cap and decreases to fall below the cap. We 

investigate the role of the cap in making the decision between a lumpy investment strategy, 

represented by Model I, and a flexible strategy, represent by Model II. 

 

The presence of a cap complicates the analysis because of its effect on the solution depending on 

whether the cap is breached or not. For Model I, if the cap is not breached by the investment 

threshold, then the resulting with-cap threshold is identical to the without-cap solution, since the 

threshold level is determined optimally to be sufficiently high to ensure project viability. 

However, the cap limits the upside potential and impacts negatively on the investment option 

value, thereby resulting in a with-cap option value less than that without a cap. A without-cap 
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investment threshold exceeding the cap produces a greater with-cap threshold to compensate the 

value lost due to limited output enforced by the cap while at the same time ensuring project 

viability. The investment option value is then further reduced by the resulting threshold increase 

owing to the lost latent value. The effect of relaxing the cap by increasing the limit is to raise the 

investment option value for all reported market demand volumes. As expected, volatility 

increases are reflected in a corresponding increase in the investment threshold. However, the 

relationship between volatility and the investment option value is not monotonic increasing as 

for many real-option formulations but concave with the option value experiencing a maximum 

for a plausible volatility. This feature is replicated for cap level increases, but the effect becomes 

increasingly less pronounced as the cap increases. 

 

The flexible strategy is composed of two consecutive stages such that only until the attainment of 

stage-1 can stage-2 be implemented. It is relatively disadvantaged compared with the lumpy 

strategy and is designed to have a greater overall capital cost with the additional loading at stage-

1. Our findings are similar in content to those for Model I. If the stage-1 cap is not breached, then 

the with- and without-cap investment thresholds are identical and the with-cap investment option 

value is less than the without-cap option value. Compared with Model I, Model II has a lower 

investment threshold and consequently, if exercised is exercised earlier. The numerical 

investigation demonstrates that for an additional capital charge equalling 5.0, the flexible 

strategy is more attractive than the lumpy strategy for most stage-1 and -2 capital distributions, 

both in terms of greater investment option value and lesser investment threshold. Volatility 

variations have a similar effect on the results for Model II as for Model I. An increase in 

volatility produces a corresponding increase in the stage-1 and -2 investment thresholds. Also, 

there is a similar effect on the stage-1 and -2 investment option values, which are both concave 

in shape with a maximum, with the former being the more pronounced. Volatility variations 

change the relative merits of the flexible versus the lumpy strategy. Low risk projects, having 

low volatilities, are best executed using a flexible strategy because of having a greater option 

value and lower threshold. However, the attractiveness of the flexible strategy diminishes as 

volatility increases, until the lumpy strategy becomes eventually superior, except that its relative 

advantage is modest. This endorses the conclusion of Kort et al. (2010) that increased uncertainty 

favours the lumpy to the flexible strategy. 
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Compared with the lumpy strategy, preference for the flexible alternative depends on the level of 

disadvantage imposed by the additional capital charge. The flexible strategy is preferred for low 

additional capital charges, which allows management to select from a relative wide range of 

stage-1 investment levels despite the existence of an optimal level. However, the choice range of 

investment levels narrows for increases in the additional capital charge until the point of 

indifference between the two strategies is reached. The flexibility in selecting the stage-1 

investment proportion is limited by the additional capital charge and the volatility. 

 

Our findings are subject to reservations. The only forms of optionality represented in the model 

are investment opportunities and the productive cap. This could be enhanced by including 

abandonment, but preliminary results suggest that its inclusion engenders only a slight change in 

solution values. More insightful results may be obtained by making the productive cap less 

severe by allowing overtime and introducing downside volume flexibility and suspension.   
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Appendix A: Derivations for Model I 

The coefficients ( ) ( )11 112,I IA A  are obtained from the value-matching relationship and associated 

smooth-pasting condition ruling at the boundary between state-1 and -11, namely: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 11
1 11 ,

U U

U U

I I
I Iq q q q

q q q q

V q V q
V q V q

q q= =
= =

∂ ∂
= =

∂ ∂
,  (A.1) 

or respectively as: 

 ( ) ( )
1 2

11 112U U U UI IA q pq f r A q pq f rβ βδ δ+ − = + − , (A.2) 

 ( ) ( )
1 21 1

1 211 112U UI IA q p A qβ ββ δ β− −+ = . (A.3) 

Substituting ( ) ( )( )2 1
1 2112 11U U UI IA q pq A qβ βδ β β−= +  from (A.3) into (A.2) and simplifying yields: 

 ( )
( )
( )

11
2 2
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I
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β β δβ
β β δ

− − +
=

−
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The investment threshold ( )ˆ Iq  and option coefficient ( )01IA  are obtained from the value-matching 

relationship and associated smooth-pasting condition ruling at the boundary between state-0 and 

-1: 

 ( ) ( )
( )

( ) ( )
( )

( ) ( )

( )

( ) ( )

( )
1 1

1 1
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0 1ˆ ˆ
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or respectively as: 

 ( ) ( ) ( ) ( ) ( )
1 1

01 1 11 1 1ˆ ˆ ˆI I I I IA q A q pq f r Kβ β δ= + − − , (A.7) 

 ( ) ( ) ( ) ( )
1 11 1

1 101 1 11 1ˆ ˆI I I IA q A q pβ ββ β δ− −= + . (A.8) 

From (A.8): 
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1
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1
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−
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which when substituted in (A.7) yields: 



34 
 

 ( ) ( )1
1

1

ˆ
1Iq f rK

rp
β δ

β
= +

−
.  (A.10) 

 

If ( )( )1 11Uf r K p q δ β β+ > − , then ( )01ˆ UIq q>  and the value-matching relationship and 

smooth-pasting conditions require amending accordingly. From (A.6), those ruling at the 

boundary between state-0 and -11 are:  
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The respective value-matching relationship and smooth-pasting condition are: 
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From (A.13): 
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which when substituted in (A.13) yields: 
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From (A.15): 
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provided 2 0p f rKβ + + > . From (A.14): 
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Appendix B: Derivations for Model II 
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The coefficients ( ) ( )21 212,II IIA A  are obtained from the value-matching relationship and associated 

smooth-pasting condition ruling at the boundary between state-2 and -21, namely: 
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or, respectively, as: 
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so: 
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The coefficients ( ) ( )111 112,II IIA A  are obtained from the value matching relationship and smooth 

pasting condition ruling at the boundary between state-11 and -2: 
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where ( )12ˆ IIq  denotes the stage-2 investment opportunity threshold. The value matching 

relationship and smooth pasting condition are, respectively: 
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Substituting ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 1 1
1 1 2112 12 21 12 111 12 12ˆ ˆ ˆ ˆII II II II II II IIA q A q A q pqβ β ββ β δ β−= − +  from (B.9) into (B.8) 

yields: 
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 ( ) ( )
( ) ( ) ( )

1
212 12 2

2 2111 21
1 2

ˆ ˆ1II II u
II II

q pq f pqA A K
r r

β β
β

β β δ

− −  = + + + +  −    
, (B.10) 

so: 

 ( )
( ) ( ) ( )

2
112 12 2

1 2112
1 2

ˆ ˆ1II II u
II

q pq f pqA K
r r

β β
β

β β δ

− −  = − + +  −    
.  (B.11) 

 

The coefficient ( )11IIA  and threshold ( )12ˆ IIq  are obtained from the value matching relationship and 

smooth pasting condition ruling at the boundary between state-1 and -11: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 11
1 11 , .

u u

u u

II II
II IIq q q q

q q q q

V q V q
V q V q

q q= =
= =

∂ ∂
= =

∂ ∂
  (B.12) 

or, respectively, as: 

 ( ) ( ) ( )
1 1 21 1

11 111 112
u u

u u uII II II
pq f pq fA q A q A q

r r r
β β β

δ
+ − = + + − , (B.13) 

 ( ) ( ) ( )
1 1 21 1 1

1 1 211 111 112u u uII II II
pA q A q A qβ β ββ β β
δ

− − −+ = + . (B.14) 

Substituting ( ) ( ) ( )( )1 1 2
1 2 111 111 112u u u uII II IIA q A q A q pqβ β ββ β δ β−= + −  from (B.14) into (B.13), and 

simplifying yields: 

 ( )
( )( )
( )

2
1 1

112
1 2

ˆ 1u u
II

q r pq
A

r

β β δβ
β β δ

− − −
=

−
. (B.15) 

Eliminating ( )112IIA  from (B.11) and (B.15) yields: 

 ( ) ( ) ( ) ( ) ( )( )2 2
1 1 2 2 1 112 12ˆ ˆ1 1u u uII IIq r pq rK f pq q r pqβ ββ δβ β δβ− − − − + + = − −  . (B.16) 

The solution for ( )12ˆ IIq  is obtained from (B.16) by using numerical methods with 

 ( )
( )

1 2 2

1 1
urK f pq

r p
δβ

β
+ +
−

  

as a possible initial estimate. Also from (B.14), and substituting (B.5), (B.10) and (B.11) to yield 

after simplification: 
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( )

( )
( ) ( )

( )

( ) ( ) ( ) ( )

1 1

1

1 12
11

1 2

12
2 2 2 212

1 2

ˆ
ˆ 1

U uII

II
uII

r r
A pq pq

r

q
pq r pq f K

r

β β

β

β δ
β β δ

β δβ
β β δ

− −

−

− −
= +

−

 + − + + + −

  (B.17) 

  

The coefficient ( )01IIA  and the stage-1 investment threshold ( )01ˆ IIq  are obtained from the value 

matching relationship and smooth pasting condition ruling at the boundary between state-0 and -

1: 

 ( ) ( )
( )

( ) ( )
( )

( ) ( )

( )

( ) ( )

( )
01 01

01 01

0 1
10 1ˆ ˆ

ˆ ˆ

, ,
II II

II II

II II
II IIq q q q

q q q q

V q V q
V q V q K

q q= =
= =

∂ ∂
= − =

∂ ∂
  (B.18) 

The respective value matching relationship and smooth pasting condition are: 

 ( ) ( ) ( ) ( )
( )1 1 01 1

101 01 11 01

ˆ
ˆ ˆ II

II II II II

pq fA q A q K
r

β β

δ
= + − − , (B.19) 

 ( ) ( ) ( ) ( )
1 11 1

1 101 01 11 01ˆ ˆII II II II
pA q A qβ ββ β
δ

− −= +   (B.20) 

Substituting ( ) ( ) ( ) ( )
1

101 11 01 01ˆ ˆII II II IIA A q pqβ β δ−= +  from (B.20) into (B.19), and simplifying yields: 

 ( )
( )
( )

1 1 1
01

1

ˆ
1II

f rK
q

p r
β δ

β
+

=
−

.  (B.21) 

Also from (B.20) and substituting (B.21) yields: 

 ( )
( )

( )
( )1

01
01 111

1 01

ˆ
ˆ
II

II II
II

pq
A A

qββ δ −= + . (B.22) 

 

If  ( )12ˆ UIIq q> , then the value matching relationship and smooth pasting condition ruling at the 

boundary between state-11 and -2, (B.7), is replaced by those between state-11 and -21, while 

the others remain intact. The revised expressions are:  

 ( ) ( )
( )

( ) ( )
( )

( ) ( )

( )

( ) ( )

( )
121 121

121 121

11 21
211 21ˆ ˆ

ˆ ˆ

, ,
II II

II II

II II
II IIq q q q

q q q q

V q V q
V q V q K

q q= =
= =

∂ ∂
= − =

∂ ∂
  (B.23) 

or respectively as: 
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 ( ) ( ) ( ) ( ) ( ) ( )
1 2 21 1 2

2111 121 112 121 212 121

ˆˆ ˆ ˆu U
II II II II II II

pq f pq f fA q A q A q K
r r r r

β β β +
+ + − = + − − ,  (B.24) 

 ( ) ( ) ( ) ( ) ( ) ( )
1 2 21 1 1

1 2 2111 121 112 121 212 121ˆ ˆ ˆII II II II II IIA q A q A qβ β ββ β β− − −+ = .  (B.25) 

From (B.25), ( ) ( ) ( ) ( )
1 2

1 2112 212 111 121ˆII II II IIA A A qβ ββ β−= − , which when substituted in (B.24) yields: 

 ( )
( )

( ) ( )
1
121

2 2 2111
1 2

ˆ II
U uII

q
A pq pq f rK

r

β

β
β β

−−
= − − −

−
,  (B.26) 

so: 

 ( )
( )

( )
( )

( ) ( )
22
1211 1

2 2 1112
1 2 1 2

ˆ IIU U
U uII

qq r r pq
A pq pq f rK

r r

ββ β δβ
β δ

β β δ β β δ

−− − + −
= + − − −

− −
. (B.27) 

Since the expressions pertaining to stage-11 are unaffected, then by combining (B.27) with 

(B.15) yields: 

 ( ) ( )( ) ( ) ( )2 2 21 1
1 1 2 2 1121ˆ1 0U u U uIIpq pq r q pq pq f rKβ β ββ δβ β δ− − −− − − + − − − = , (B.28) 

so: 

 ( )
( ) ( )( )

( )
2 2

2

1 1
1 1

121
2 2 1

1
ˆ U u

II
U u

pq pq r
q

pq pq f rK

β β
β

δβ β

β δ

− −
−

− − −
=

− − −
. (B.29) 

Combining (B.27) and (B.28) with (B.14) and simplifying yields: 

 ( )
( ) ( )

( )
( )( )

( )

1 11
2 2 2121 2 2

11
1 2 1 2

ˆ 1U uII u
II

q pq pq f rK pq r
A

r r

β ββ δ β β δ
β β δ β β δ

− −− − − − − −
= +

− −
. (B.30) 

Since the expressions pertaining to stage-1 are unaffected, then the investment opportunity 

threshold ( )01ˆ IIq  is found from (B.21) and the option coefficient ( )01IIA  from: 

 ( ) ( ) ( ) ( )
1

101 11 01 01ˆ ˆII II II IIA A q pqβ β δ−= + , (B.31) 

where ( )11IIA  is given by (B.30).  

 

It is straightforward to demonstrate that ( ) ( )12 121ˆ ˆII IIq q=  when ( )12ˆ IIq  is determined from (B.16) 

given ( )12ˆ UIIq q=  and ( )121ˆ IIq  is determined from (B.29) given  ( )121ˆ UIIq q= . 
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If  ( )01ˆ uIIq q> , then the value matching relationship and smooth pasting condition ruling at the 

boundary between state-0 and -1, (B.18), are replaced by those between state-0 and -11. The 

revised expressions are: 

 ( ) ( )
( )

( ) ( )
( )

( ) ( )

( )

( ) ( )

( )
011 011

011 011

0 11
10 11ˆ ˆ

ˆ ˆ

,
II II

II II

II II
II IIq q q q

q q q q

V q V q
V q V q K

q q= =
= =

∂ ∂
= − =

∂ ∂
. (B.32) 

The respective value matching relationship and smooth pasting condition are: 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 1

1011 011 111 011 112 011ˆ ˆ ˆ u
II II II II II II

pq fA q A q A q K
r r

β β β= + + − − ,  (B.33) 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1 21 1 1

1 1 2011 011 111 011 112 011ˆ ˆ ˆII II II II II IIA q A q A qβ β ββ β β− − −= + .  (B.34) 

From (B.34), ( ) ( ) ( ) ( )
2 1

2 1011 111 112 011ˆII II II IIA A A qβ ββ β−= + , which when substituted in (B.33) yields: 

 ( )
( )

( ) ( )

2 1 1 1
011

1 2 112

ˆ u
II

II

pq f rK
q

rA
β β

β β
− − −

=
−

, (B.35) 

where ( )112IIA  is determined from (B.15) if the stage-2 cap is not breached, or from (B.27) if 

otherwise. Also, from (B.34): 

 ( ) ( )
( )
( ) ( )

12 1 1
011 111 011

1 2

ˆu
II II II

pq f rK
A A q

r
ββ

β β
−− − −

= +
−

  (B.36) 

where ( )111IIA  is determined from (B.10) if the stage-2 cap is not breached, or from (B.26) if 

otherwise. 
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Figure 1a 

Model I: Unbreached Cap 

 
 

Figure 1b 

Model I: Breached Cap 
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Figure 2 

Model II 
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