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Abstract

We provide general results regarding the impact of volatility on option prices (i.e., Vega). Con-
trary to what is widely believed and taught, we show that the price of a large class of options is
non-monotonic with respect to volatility: the value first increases but eventually decreases with
the volatility. This seemingly counter-intuitive proposition is driven by a particular feature of
Martingale processes bounded from below (including the Geometric Brownian Motion (GBM) and
the CIR processes). We show that in such processes a higher variance parameter may reduce the
probably mass of realizations above the expected value. When the volatility approaches infinity,
the probability of hitting a barrier above the mean goes to zero. As a real-world case, we apply the
results to managerial compensation in the presence of risk shifting. We show that risk-shifting can
be mitigated by concavifying option-like components of managers’ compensation scheme.
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1. Introduction

Let us start the paper by a simple thought experiment: consider a fixed barrier point K > 0 and

a bounded-from-below Markovian stochastic process (e.g., a Geometric Brownian Motion) starting

at an initial point S0, S0 < K at time t = 0. The setup, depicted in Figure 1, resembles the pay-off

structure a digital (or binary) option, which can be observed in many financial and real options

problems.4

Now, consider the following comparative statics question: how does the probability of hitting

the upper barrier,B, at a given time T > t – in other words, the probability of triggering the option

1Some parts of the current draft have been previously published in Ghoddusi and Fahim (2016). The draft is
extending Ghoddusi and Fahim (2016) to a general setup.

2Columbia Business School, sdashmiz19@gsb.columbia.edu
3Stevens Institute of Technology. Address: School of Business, Stevens Institute of Technology, 1 Castle Point on

Hudson, Hoboken, NJ 07030, USA. Email: hghoddus@stevens.edu, web:www.ghoddusi.com, Corresponding Author
4The digital option pay-off structure is relevant whenever a fixed amount of positive/negative payment will be

triggered once the underlying process passes a threshold. Examples of such pay-offs can be observed in problems such
as penalty payment for exceeding a legal pollution level, debt restructuring cost, tax deductibility, and fixed prize
winning. Conditional on passing the threshold, the size of the payment is independent of the level of the underlying
process.
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Figure 1: Hitting the Barrier K at time T

payment – change as we keep the mean of the GBM process constant and increase its volatility?

We have run this thought experiments in many occasions with rooms full of skilled financial

economists, applied mathematicians, and statisticians. The almost-unanimous answer has always

been: ”of course, it goes up!”. When we ask ”why?”, The intuitive answer is obvious: ”because

the process becomes somehow “wilder” and more likely to hit a barrier.” Some financial economists

also refer to the well-known result that the Vegaof an option is a positive number.5 We show that

this universal intuition is wrong!Indeed, under a reasonably general setup, the probability of hitting

an upper barrier decreases as the volatility of underlying process increases. In the limit, when the

volatility is sufficiently large, the probability converges to zero!

One can see that this non-intuitive result has immediate implications in many domains of

finance, including contingent claim pricing and dynamic investment decisions. For example, it is

generally believed that an increase in the volatility of the underlying process will have a positive

impact on option prices. The positive Vega is one of key summaries students remember from their

mathematical finance courses. The Internet is also full of articles explaining ”why option prices

increase with volatility.” Surprisingly, to the best of our knowledge, very little has been written on

5Vega is the derivative of the option price with respect to the underlying volatility.
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the non-monotone relationship between volatility and option prices. The only paper that we are

aware of is Ghoddusi and Fahim (2016) that suggest such a result for a simple binary option. We

generalize their results to a much larger class of options by defining a metrics for the convexity of

the pay-off. We demonstrate that for a large class of options – that are not sufficiently convex –

the option price can be decreasing with volatility.

Another key contribution of our paper is to provide an algorithm to analyze complex option

structure – which are neither a simple put or a simple call. In practice, many option-like payments

can be approximated by a pay-off structure resembling a binary option. For example, as the

pay-off of the mortgage interest deduction (MID), compensation packages of managers, mezzanine

securities, venture capital, etc.

Real-World Application. To better demonstrate the practical relevance of our results, we apply the

insights of the model to the optimal design of managerial compensation contracts. In the context of

linear contracts with risk-neutral agents, volatility plays no role in shaping the manager’s incentives.

However, once one leaves the space of linear contracts, volatility will have an effect on the expected

pay-off even if the manager is risk-neutral. For example, with a convex pay structure (e.g., a baseline

payment plus options and bonuses), the manager will have incentives to increase the volatility of

the cash-flow to maximize her expected payment.6

In summary, we offer the following contribution to the finance literature. First, we show that

options Vega can be non-monotonic for a large class of options. We then provide asymptotic results

for complex option structures. Finally, we apply the insights to the case of managerial compensation

and show implications for the optimal contract design.

2. Basic Model

To provide the intuition behind the result, we first start discussing the result for a European

digital option. A more general form of the results will be presented in the next section.

6Increasing cash-flow volatility can be achieved by reducing hedging activities, choosing riskier projects, increasing
the leverage, and entering markets with higher volatility. It is typically assumed that volatility cannot be contracted
upon.
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Figure 2: A schematic justification of non-monoticity on volatility for mean preserving variance enhancing shock
applied to a binomial process.

2.1. Intuitive Description of the Problem

Consider a binomial random variable, which takes values and probabilities (X,P ) and (X, 1−P ).

The process is bounded from the below; i.e. X > b. We fix the mean of the process and increase

the variance. For small values of σ, increased variance widens the process symmetrically. However,

once the lower branch hits the lower bound, the probability of the lower branch needs to increase.

Figure 2 shows the behavior of the binomial process.

To provide additional insights for continuous processes, Figure 3 shows samples of simulated

GBM processes for four different levels of volatility. We note that when the volatility increases,

more path are realized in the lower side.

2.2. Formal Proofs

We present the following result for the general distributions.

Theorem 2.1. Assume Xµ is a stochastic process indexed with parameter µ ∈ [0,∞) and bounded

from below (i.e. mapping to a range (b,∞)), with a expected value bounded by X which does not

depend on µ. Assume that

1. for any barrier b(µ) with limµ→∞ b(µ) = ∞, we have limµ→∞E[X2
µ;Xµ < b(µ)] = ∞

(E[X2
µ;Xµ < b(µ)] is the second momentum of Xµ of the range Xµ < b(µ)),

2. X0 = X.
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Figure 3: Realizations of GBM Process for Different Values of Volatility. When the volatility increases, more path
are realized in the lower side.

Then, the probability of hitting a barrier b > X, (i.e. P (Xt > b)) first increases and then decreases

on µ.

Heuristic proof. Without loss of generality we set b = 0. We only present a proof in the case

where Xµ is a non-negative discrete random variable which takes values 0 ≤ yµM < ... < yµ2 < yµ1 <

X < xµ1 < xµ2 < ... < xµN with probabilities qµM , ..., q
µ
2 , q

µ
1 , p

µ
1 , p

µ
2 , ..., p

µ
N , respectively for µ > 0. In

addition, condition (ii) implies that when µ = 0, we have y0M = ... = y02 = y01 = x01 = x02 = ... =

x0N ≤ X, therefore the probability of Xµ ≥ b is zero.

Notice that since E[X2
µ] =

∑
i(x

µ
i )2pµi diverges to infinity with µ but

E[Xµ] = X =
∑
i

xµi p
µ
i =: X <∞,

we must have limµ→∞ x
µ
N =∞. Similarly, condition (ii) with b(µ) = xµN implies that limµ→∞ x

µ
N−1 =

∞. Recursively, we conclude that limµ→∞ x
µ
i =∞ for i = 1, ..., N .

On the other hand, since the mean of Xµ is X :=
∑

i x
µ
i p

µ
i remains bounded, we have αN :=

limµ→1 x
µ
Np

µ
N <∞ and therefore pµN ≤

αN
xµN

. Therefore, the probability of Xµ ≥ b becomes positive

as soon an xµN > b and as µ→∞, it converges to 0. End of proof

Proposition 2.1. Assume Xt is a Martingale process bounded from below (i.e. mapping to a range
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(b,∞)), with a expected value X, and

(i) for any barrier b(t) with limt→∞ b(t) =∞, we have limt→∞E[X2
t ;Xt < b(t)] =∞,

(ii) X0 = X.

Then, for b > X, the P (Xt > b) first increases and then decreases over time. In particular, when

t→∞ then P (Xt > b)→ 0.

2.3. Distribution of GBM Process Paths

A GBM process is the limit of a binomial process. Consider a binomial random variable,

whose lower branch is bounded by zero. The underlying process is assumed to follow a Geometric

Brownian Motion (GBM) process.

dX

X
= µdt+ σdW, X(0) = X, (2.1)

where µ is the drift and σ is the volatility parameters and dW is the standard Brownian shock.

Working under the risk-neutral framework, µ is equal to risk-free interest rate r if the underlying

asset does not pay a dividend. If the underlying asset pays dividends at rate q, then µ = r − q. In

all these cases, the GBM satisfies the properties listed in Proposition 2.1. One can also calculate

the probability of hitting a barrier in closed form and study the monotonicity directly; which is

done in the next Section.

2.4. European Digital Option

Given the fact the the future values of a GBM processes are distributed following a log-normal

distribution we can derive a closed-form solution for the European option. The probability of

hitting a barrier at the value of K, at time T by a GBM process starting at the initial value X(0),

drift µ, and volatility σ is given by N (D+), where N the standard normal CDF and

D+ =
log(X(0)

K ) + µT

v
+

1

2
v. (2.2)
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Figure 4: The probability of being above a barrier for a GBM Process for X(0) = 100 at a fixed time

The new variable v := σ
√
T is the main variable in our study and represents the time-scaled

volatility.

To analyze the effect of higher volatility and exercise time on the option value we take the first

derivates of D with respect to σ. After a few algebraic steps:

∂D+

∂σ
= −

log(X(0)
K ) + µT

v2
+

1

2
. (2.3)

For X(0) ≤ Ke−µT , the sign of above derivative is always non-negative, and therefore the

probability of hit is always increasing in v. Otherwise, for X(0) > Ke−µT , the probability of hit is

increasing on v in [0, v∗] and decreasing in [v∗,∞) with v∗ :=

√
2(log(X(0)

K ) + µT ).

Figure 4 shows the sensitivity of probability of hitting four barriers at different values of σ. As

we notice, if the barrier is below the starting value of the GBM process, the probability of hitting

is monotonically increasing with σ. However, for all barrier above the starting value of the GBM,

the hitting probability first increases and then decreases.
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3. Extended Model

Let S be the underlying price following a Geometric Brownian Motion with drift µ, volatility

σ and current value of S0. Consider an European call option with maturity T and the final pay-off

as f(ST ), where we assume f(.) ≥ 0, f(x) = 0 for x ≤ 0 for simplicity. As in the Black-Scholes

model, assume a constant interest rate r. Denote the price of this general call by Cf (σ) which is a

function of σ.

It is well known that the conventional European call with pay-off f(ST ) = max{ST −K, 0} has

a positive Vega which means the price is increasing with σ. The same is true for a put option.

The price of a call starts from either 0 or S − Ke−rT (if S − Ke−rT > 0) and increases to S

when one changes σ from 0 to ∞. For a put option, price starts from either 0 or Ke−rT − S (if

Ke−rT − S > 0) and increases to Ke−rT . Denote the price of such a European option by C(σ,K)

where we assumed r, T, µ, S0 are constant. Note that the stock itself is a call option with strike 0

which means C(σ, 0) = S0 is independent of σ. Another option structure that we need is a binary

option which is given by pay-off function f(x) = 1ST>K . Let’s denote the price of this option by

B(σ,K). Again, for K = 0 we have a fixed pay-off which resembles a bond and so B(σ, 0) = e−rT

is independent of σ.

We first state a general result that for convex pay-off structures the positive Vega result holds.

Theorem 3.1. If f is convex, then the price is always increasing with volatility.

Proof. The price of any European claim can be written as
∫
f(x)p(x)dx =

∫
f ′′(x)call(x)dx where

p(x) is the price of the Arrow security corresponding to event of ST = x. Since call prices are

increasing with volatility and f ′′ is positive when f is convex, the result follows.

Another proof is based on piece-wise approximation:

Proof. A continuous payoff function is a limit of a piecewise linear continuous payoff which can be

written as a summation of call and put options with the same maturity and different strikes. If the

payoff is convex, this linear combination can be made with positive coefficients. Since the price of

the call and put is increasing with volatility, the price of any linear combination of calls and puts

with positive coefficients is so. In the limit, we obtain the result.
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Now, we state a result regarding a general pay-off form. First, note that any general pay-off

function (we assume usual regularity assumptions) can be approximated by sum of calls. We can

write f(x) =
∑
αi max{x − Ki, 0} where we only focus on finite sums for simplicity and as a

result the price for pay-off f is Cf (σ) =
∑
αiC(σ,Ki). Since we assumed f(.) ≥ 0 we should have∑

i αi ≥ 0. When we change σ from 0 to ∞, Cf (σ) starts from
∑
αiC(0,Ki) ≥ 0 and will tend to

limCf =
∑
αiS0. We are interested to investigate whether the maximum price by changing σ is

attained for σ <∞.

Note that

∂Cf (σ)

∂σ
= S0

√
T
∑
i

αiN
′(d1(σ,Ki)),

and for large values of σ the terms N ′s become close to zero while their proportion become close to

proportion of
√
Ki. Therefore, always Vega goes to 0 for large values of σ and the price converges

to limCf =
∑
αiS0. Thus, we have the following theorem:

Theorem 3.2. Suppose f is a finite combination of calls with coefficients αi, strike prices Ki as

explained above. Then, the price is eventually increasing with σ if M =
∑
αi
√
Ki > 0 and the

price is eventually decreasing with σ if M =
∑
αi
√
Ki < 0 for which the price goes to 0.

Now we investigate simple yet important special cases to understand the optimum amount of

volatility for the price.

Special Case 1:. Assume a concavified call option where α1 = K1 = 1, 0 < α2 < 1 (here we flip the

sign of α2) and S0 < e−rT . The price starts from 0 and is increasing with σ for α∗ = 1/
√
K2 < α2.

For higher values of α2 the price has a peak at σ∗(α2,K2) and tends to (1− α2)S0.

This result means that by concavifying the option, the problem of risk shifting can be mitigated.

Now, can one force the optimal σ be any value by changing α2 and K2? Another relevant question

is when one can be assured that the maximum price is achieved for a finite value of σ?

Theorem: If the price at infinity is bigger than the price at 0 and if the price is eventually

decreasing the maximum should have happened for a finite value of σ.

Theorem 3.3. For a binary option σ∗(1,K) =
√

2 ln (Ke−rT /S0) and by changing K one can
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change σ∗ form 0 to ∞ and since binary option is a special case of the concavified call, the same is

true for the latter.

So there are many solutions to the equation σ∗(α2,K2) = σ̄, where σ̄ is a given desired volatility

level for the firm. By choosing a proper concavified call and issuing a proper number of options for

the manager, the firms can achieve a compensation value that will lead to the choice of the desired

volatility by the manager.

4. Implications for Managerial Compensation [To Be Completed]

The mainstream literature on managerial compensation has mainly focused on the incentive for

effort. However, managers can also shift higher moments of the firm’s cash-flow through hedging,

investment strategies, and operational decision. Manager’s incentive to hedge their exposure to

corporate cash-flow risk is known and has been studied by the previous literature (Acharya and

Bisin (2009), Armstrong and Vashishtha (2012), Gao (2010), Cvitanić et al. (2014)) . However, the

focus has mainly been on managers’ risk-aversion and their tendency to reduce risk (e.g., Akron

and Benninga (2013)). Much less has been written on the incentive for shifting risk to alter the

option-like component of a manager’s compensation package.

Smith and Stulz (1985) argue that by providing risk-taking incentives, options-based contracts

counterbalance the incentives of risk-averse managers to excessively reduce the volatility. It is

widely believed that when managers’ wealth is more sensitive to stock volatility, they choose riskier

actions. (Coles et al. (2006)). Laux (2014) shows that convex executive pay plans (e.g. option-based

contracts) increases managers’ incentive for information manipulation.

Using a risk-aversion based mechanism, Ross (2004) provides insights on why offering stocks

to managers may not necessarily induce them to take more risk. The mechanism we propose is

different because our focus is on the value of the option rather than the risk-aversion of the agent.

Dittmann et al. (2017) provide empirical evidence for the assumption that ”shareholders take

into account both effort and risk-taking incentives when designing the compensation contract”

Now consider a basic managerial compensation framework: the manager should exert effort so

he should be given an option. Also, there is the cost of volatility for the firm so the volatility should
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Figure 5: Three-Part Payment

not be blown up. These two imply that the optimum compensation is a concavified call.

4.1. A Three-Part Contract

As argued by Dittmann et al. (2017), the optimal managerial contract may consist of a flat

payment for low performance, a convex part for medium performance, and a concave part for very

high performance (see Figure 5).

Our results imply that that for such complex structure, higher volatility eventually reduces the

expected pay-off of the manager, resulting in a risk-averse behavior.

4.2. Value-Maximizing Volatility

Will the manager increase the volatility in an unbounded fashion to maximize her compensation

value? The answer to this question depends on the monotonicity of option value with respect to

volatility.

To provide conjecture on this matter, Figure 6 shows plots of option values (with different strike

levels) versus volatility. We observe that the value of sigma that maximizes the expected pay-off

have a finite value.

Theorem 4.1. The value of sigma that maximizes the expected pay-off of the manager is always a

finite number.

Proof. TBD
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Figure 6: Value Maximizing Sigma

5. Conclusions

We show that the value of a large class of financial and real options has a non-monotonic

relationship with the underlying volatility, and can eventually decrease with volatility.

There are numerous examples, in which the intuitions of our result apply. For example, Ghod-

dusi and Afkhami (2018) identifies option-like structures in the mortgage interest tax deductibility

(MID) offered to households. When standard deductions are present, households will file for MID

only if the sum of itemized expenses is larger than the standard deduction option. Ghoddusi and

Afkhami (2018) show that higher volatility can reduce the value of MID for high-income households.

As a new application, we show how the results can be applied to the optimal design of managerial

compensation schemes.
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