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1 Introduction

In this paper, we investigate a pollutant abatement investment strategy when the prediction of
the abatement technology is ambiguous. We consider a production economy, which consists of
a representative consumer and a firm. The representative consumer has constant relative risk-
averse preferences and tries to maximize her utility. The representative firm produces output
using production capital and maximizes its profit. The production process, however, generates
pollutant emissions proportional to the output, and these damage the consumer. Therefore, the
firm must invest in pollutant abatement activities to reduce pollutant emissions. We formulate
both agents’ problems as a central planner’s problem that maximizes social welfare.

We first examine the case in which the social planner has a confidence of predicting the
abatement technology as a base case model. This base case model is based on Tsujimura (2017).
The abatement technology is assumed to be governed by a geometric Brownian motion as in
Steger (2005) and Wälde (2011). That is, the central planner’s problem is a social welfare
maximization problem under risk in terms of Knight (1921). We solve the Hamilton-Jacobi-
Bellman (HJB) equation associated with the central planner’s problem and obtain a nonlinear
partial differential equation (PDE) that derives the optimal abatement investment strategy.

Next, we extend the base case model by incorporating abatement technology ambiguity. The
social planner does not have perfect confidence in the distribution of the abatement technology.
Then, the social planner’s problem goes to be under ambiguity/Knightian uncertainty in terms of
Knight (1921). To solve the central planner’s problem, we employ the Hansen-Sargent (HS) type
robust control approach (Hansen and Sargent, 2001; Hansen et al., 2002, 2006). We solve the
Hamilton-Jacobi-Bellman-Issac (HJBI) equation associated with the central planner’s problem
and obtained the nonlinear PDE, which derives the optimal abatement investment strategy.

∗This research was partially supported by a Grant-in-Aid for Scientific Research (No. 17K15345 and 18K01714)
from the Japan Society for the Promotion of Science.

†Corresponding author
Address: Karasuma-Higashi-iru, Imadegawa-dori, Kamigyo-ku, Kyoto, 602-8580 JAPAN
E-mail: mtsujimu@mail.doshisha.ac.jp

1



Because of the nonlinearity, the both PDEs have to be solved numerically. We leave the
numerical calculation for future work.

2 Base Case Model

In this section, we consider a social maximizing problem, excluding technology ambiguity, as a
base case model by following the line of Tsujimura (2017). The economy consists of a repre-
sentative consumer and a firm. The representative firm produces output Yt using production
capital Kt at time t. The firm’s production function F (Kt) is given by the following AK-form:

Yt = F (Kt) = AKt,

where A is the level of production technology. For analytical simplicity, A is assumed to be
constant. The dynamics of the capital stock are given by:

dKt = (It − δKt)dt, K0 = k, (2.1)

where It is the capital investment, δ ∈ (0, 1) is the depreciation rate.
The output production process generates pollutant emissions proportional to the output

level, ηF (Kt), where η > 0 is the emission conversion coefficient. As the pollutant damages the
consumer, the firm invests in pollutant abatement activity H(IAt ):

H(IAt ) = Xt(I
A
t )

2, (2.2)

where IAt is the abatement investment and Xt is the level of abatement technology. As in Steger
(2005) and Wälde (2011), we assume that the abatement technology is governed by the following
geometric Brownian motion:

dXt = µXtdt+ σXtdWt, X0 = x, (2.3)

where µ > 0 and σ > 0 are constants. Wt is a standard Brownian motion on a filtered probability
space (Ω,F ,P, {Ft}t≥0), where Ft is generated by Wt. The abatement activity reduces the
pollutant emissions, and the resulting net pollutant emissions Et are expressed as:

Et = ηF (Kt)−H(IAt ). (2.4)

The pollutant emissions accumulate as:

dPt = (Et − δPPt)dt, P0 = p, (2.5)

where δP ∈ (0, 1) is the depreciation rate of the pollutant stock Pt.
The representative consumer, who has constant relative risk-averse preferences, receives util-

ity from consumption Ct at time t. She suffers from the pollutant stock at the same time. As
in Smulders and Gradus (1996), incorporating disutility from the pollutant, her utility function
becomes:

U(Ct, Pt) =
1

1− γ

(
CtP

−ϕ
t

)1−γ
, (2.6)

2



where γ > 0 is the degree of relative risk aversion and ϕ > 0 is the disutility coefficient. The
consumer faces the budget constraint:

Yt = It + IAt + Ct

= It + θtYt + Ct,

where θt > 0 is the abatement investment share, which is given by:

θt =
IAt
Yt
.

The net pollutant emissions flow is calculated as:

Et = ηAKt −Xtθ
2
t (AKt)

2. (2.7)

Substituting (2.7) into (2.5), the dynamics of the pollutant stock can be rewritten as:

dPt = [ηAKt −Xtθ
2
t (AKt)

2 − δPPt]dt, P0 = p. (2.8)

Rewriting the budget constraint of the consumer, the capital investment is:

It = (1− θ)Yt − Ct. (2.9)

It follows from (2.1) and (2.9) that the dynamics of the capital stock are rewritten as:

dKt = ((1− θ)Yt − δKt − Ct)dt, K0 = k. (2.10)

The representative firm maximizes its profits, while the representative consumer maximizes
her utility, subject to the budget constraint. However, the firm’s production activity generates a
pollutant as a by-product, and the consumer suffers from the pollutant, which reduces her utility.
Therefore, the central planner’s problem is to choose a consumption level and an investment
share for the abatement activity in order to maximize social welfare:

V̂ (k, p, x) = max
{Ct,θt}

E
[∫ ∞

0
e−rtU(Ct, Pt)dt

]
, (2.11)

where V̂ is the value function the central planner’s problem.
The HJB equation of the central planner’s problem (2.11) is:

rV̂ = max
c,θ

{
1

1− γ
(cp−ϕ)1−γ + [(1− θ)Ak − δk − c]V̂K+

[(ηAk − xθ2(Ak)2 − δP p]V̂P + µxV̂X +
1

2
σ2x2V̂XX

}
.

(2.12)

From the first-order condition for the optimality, if V̂K > 0 and V̂P < 0, we obtain the optimal
consumption c∗ and optimal abatement investment share θ∗:

c∗ = p
−ϕ(1−γ)

γ V̂
− 1

γ

K , (2.13)
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θ∗ = −1

2
x−1(Ak)−1 V̂K

V̂P
. (2.14)

Substituting (2.13) and (2.14) into (2.12), we obtain the following nonlinear PDE:

rV̂ =
γ

1− γ
p
−ϕ(1−γ)

γ V̂
− 1−γ

γ

K +

[
(A− δ)k +

1

2
x−1(Ak)−1 V̂K

V̂P
− 1

4
x−1V̂K

]
V̂K

+ [ηAkV̂P − δP p]V̂P + µxV̂X +
1

2
σ2x2V̂XX .

(2.15)

The optimal consumption level and abatement investment share are derived from the PDE
(2.15). Because of the nonlinearity, we have to solve the equation (2.15) numerically. The
numerical and/or asymptotic results will be presented in the conference.

3 The Model under Ambiguity

In this section, we assume that the central planner does not have perfect confidence in the distri-
bution of the abatement technology. In the presence of ambiguity, the central planner chooses a
probability distribution based on her best possible estimate, which is referred to as the reference
probability. The central planner is, however, concerned about the robustness of her decisions to
misspecification of the reference probability. To resolve the concern, she considers a set of equiv-
alent probability measures, P, on (Ω,F) in order to incorporate the possible misspecification.
Then, the reference probability measure P could be replaced by another equivalent probability
measure Q ∈ P . The penalty for a difference between the reference probability P and another
equivalent probability Q is imposed to avoid choosing a probability measure too far from the
reference probability measure. As in Hansen et al. (2002), Skiadas (2003), Hansen et al. (2006),
and Imai and Tsujimura (2018), we introduce a discounted relative entropy R(Q) to measure
the difference between P and Q:

R(Q) = r

∫ ∞

0
e−rt

(∫
log

(
dQ
dP

)
dQ

)
dt

= EQ

[∫ ∞

0
e−rt

h2t
2
dt

]
,

(3.1)

where ht is the measurable distortion between P and Q. We assume that

R(Q) <∞. (3.2)

Let WQ
t denote a Brownian motion under the measure Q. By Girsanov’s theorem, this is given

by

WQ
t =Wt −

∫ t

0
hsds. (3.3)

The dynamics of the abatement technology under the probability measure Q are written as:

dXt = (µ+ σht)Xtdt+ σXtdW
Q
t , X0 = x > 0. (3.4)

The central planner chooses a consumption level and an investment share for the abatement
activity in order to maximize social welfare under the abatement technology ambiguity. To
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solve this problem, we adopt the HS type robust control approach (Hansen and Sargent, 2001;
Hansen et al., 2002, 2006). In the HS type robust control approach, another decision-maker is
introduced to deal with her misspecification as a hypothetical evil decision-maker. The hypo-
thetical decision-maker chooses the worst possible abatement technology path for the central
planner, so that it chooses a probability measure Q to minimize the expected social welfare.
Then, the social planner’s model can be expressed as a two-player zero-sum game between the
social planner and the hypothetical decision-maker:

V (k, p, x) = max
{Ct,θt}

min
{ht}

EQ

[∫ ∞

0
e−rtU(Ct, Pt)dt+ ψR(Q)

]
, (3.5)

where V is the value function of the central planner’s problem and ψ ≥ 0 is the multiplier on
the penalty given as the relative entropy.

It follows from the central planner’s problem (3.5) that we have the following Hamilton–
Jacobi–Bellman–Isaac (HJBI) equation:

rV = max
c,θ

min
h

{
1

1− γ
(cp−ϕ)1−γ + [(1− θ)Ak − δk − c]VK+

[(ηAk − xθ2(Ak)2 − δP p]VP + (µ+ hσ)xVX +
1

2
σ2x2VXX + ψ

h2

2

}
.

(3.6)

From the first-order conditions for the optimality with respect to c, θ, and h, if V̂K > 0 and
V̂P < 0, we obtain the optimal consumption c∗∗, abatement investment share, θ∗∗, and distortion
h∗∗:

c∗∗ = p
−ϕ(1−γ)

γ V
− 1

γ

K , (3.7)

θ∗∗ = −1

2
x−1(Ak)−1VK

VP
, (3.8)

h∗∗ = −σx
ψ
VX . (3.9)

It follows from (3.9) that the probability distortion h goes to zero as ψ goes to infinity. That is,
the two probability measures coincide as ψ goes to infinity. This means that, when ψ goes to
infinity, the central planner acts as if she has the perfect confidence the distribution of abetment
technology. Then, the central planner’s problem (3.5) degenerates to the benchmark model.
On the other hand, the probability distortion h increases as ψ decreases. This means that the
central planner concerns with the model misspecification more and chooses Q far away from
P. However, the cost of taking Q increases as ψ increases due to the existence of the relative
entropy penalty. These considerations imply that the parameter ψ represents the robustness of
the model.

Substituting (3.7), (3.8), and (3.9) into equation (3.6), we obtain the nonlinear degenerate
PDE:

rV =
γ

1− γ
p
−ϕ(1−γ)

γ V
− 1−γ

γ

K +

[
(A− δ)k +

1

2
x−1(Ak)−1VK

VP
− 1

4
x−1VK

]
VK

+ [ηAkVP − δP p]VP + µxVX − 1

2

σ2x2

ψ
V 2
X +

1

2
σ2x2VXX .

(3.10)
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The optimal consumption level, abatement investment share, and distortion are derived from
the nonlinear PDE (3.10). The difference between both nonlinear PDE (2.15) and (3.10) is the

quadratic term −1
2
σ2x2

ψ V 2
X .

Because of the nonlinearity, we have to solve the equation (3.10) numerically as in Section
2. The numerical and/or asymptotic results will be presented in the conference.

4 Conclusion

In this paper, we analyzed a pollutant abatement investment strategy when the central planner
does not have confidence with the dynamics of abatement technology. The central planner maxi-
mizes social welfare under the abatement technology ambiguity by choosing a consumption level
and an investment share for the abatement activity. Due to the existence of abatement tech-
nology ambiguity, we adopt the HS type robust control approach to solve the central planner’s
problem. We obtained the nonlinear PDE, which derives the optimal consumption, abatement
investment share, and distortion. Because the PDE is nonlinear, it has to be solved numerically.
We leave the numerical calculation for future work. Appropriate boundary conditions should be
discussed considering the characteristics of the coefficients along the boundaries (Oleinik, 2012)

There are several ways to extend this paper in future. First, we would show the HJBI
equation admits a unique continuous viscosity solution as in Yoshioka and Tsujimura (2019).
A viscosity solution approach for a certain economic growth model has recently been used in
Yuan et al. (2018). Next, we would consider abatement technological progress that follows a
jump diffusion process. Next, we would incorporate both the production and the abatement
technology into the model. Finally, in practice, it is not always possible to track the economic
dynamics to be optimized, motivating us to incorporate the discrete costly observation as in
Dyrssen and Ekstrom (2018).
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