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Abstract
We consider a firm that is currently producing an established product subject to a stochastic
environment. The firm has the one-time opportunity to undertake an irreversible investment
to switch to a new product, which changes the drift and volatility of the firm’s underlying
stochastic profit flow. We show that it is optimal to invest in the new product if an increase
in the expected growth outweighs the increase in risk from switching. We find that the effect
of uncertainty on the optimal investment strategy is not straightforward. The overall effect
of uncertainty is determined by the interplay between the value of waiting and the effect of
Jensen’s inequality. Contrary to the standard real options result, that higher uncertainty
delays investment, we show that an increase in volatility in the old market can both accelerate
or delay the investment. We perform an analysis of the antecedents of this non-monotonic
effect of uncertainty, and provide extensive economical reasoning for the results. Further,
we show that an investment opportunity with changing characteristics of the stochastic
environment and constant profit function, can be transformed to a case of changing profit
function and constant parameters of the stochastic process.
Keywords: Switching options, Real options, Endogenous switching, Optimal stopping

1. Introduction

For a firm currently active in an established product market, switching to a new product
is characterized by a change in the firm’s stochastic environment. In deciding when to
invest in the new product, the firm should take into account how the decision will affect the
development of its expected profits, and the related uncertainty from changing the product
market within which it operates. Highly innovative products might have the potential to
become blockbusters, but also come with additional uncertainty stemming from risks related
to how consumers respond to the new product. In the automotive industry, a pressing issue
for traditional automobile manufacturers has been whether to enter the novel market for
electric vehicles (EVs), and if so, when to enter. The industry incumbents have well-defined

∗Corresponding author.
Email address: tord.olsen@ntnu.no (Tord Olsen)



markets for their traditional products, but might be missing out on the growing profits from
green transportation1. The EV market is growing faster than the market for traditional
cars2,3. However, the younger EV market is exposed to higher uncertainty due to demanding
technological challenges4 and uncertain adoption rates of consumers5. Therefore, entering
the EV market might change both the expected growth and uncertainty of the firm’s profits.

This paper studies the investment problem of a monopolistic firm that has the one-time
opportunity to switch from one stochastic profit flow to another. Such investment problems
under uncertainty can be characterized as real options (Dixit & Pindyck, 1994; Trigeorgis,
1996), recognizing that the firm has discretion of the investment timing. However, a common
assumption in modelling real options problems is that the uncertainty faced by the firm is
both independent of the firm’s actions and constant. In that, the fundamental uncertainty
is modelled by an exogenous stochastic process, often a geometric Brownian motion with
constant drift and volatility parameters. Acknowledging that the investment decisions of
the firm can alter the characteristics of its uncertain profits, we need to account for the fact
that the parameters of the stochastic process can be endogenously changed by the decision
of the firm. We model the switch in products as a change from one stochastic regime to
another. We model the underlying stochastic process as a geometric Brownian motion, but
with different drift and volatility coefficients for each regime. Thus, the firm changes the
characteristics of its stochastic environment from investing in the new product.

Most earlier work on investment decisions under uncertainty is limited to models where,
upon investment, the functional form of the profit function change, but not the parameters
of the underlying stochastic process (Dixit & Pindyck, 1994). One of the contributions
here is Alvarez & Stenbacka (2001), who studies a setting where the profit function can be
improved by adopting a new technology at a later stage. Their model does however assume
that the long-term growth and the volatility driving the profits remain constant, and find
that increased uncertainty delays the decision to invest. In contrast, our paper allows the
parameters of the stochastic process driving the profits to be changed after investment.
Under this assumption, increased uncertainty might not delay investment, but accelerate
it. Another strand of the literature allows the stochastic process that the firm faces to be
subject to different regimes, and that the process alternates between these regimes over
time. Bensoussan et al. (2012) introduce a model where the firm is exposed to exogenous
and random switches of regimes, in which the regimes differ in the growth and volatility

1The traditional German car manufacturers see a stagnation in their traditional markets, and set
lofty goals for their EV portfolio. https://www.economist.com/news/business/21737534-coddled-successive-
governments-industry-dogged-dieselgate-lagging-electric

2Boston Consulting Groups predictions on the EV market going forward:
https://www.bloomberg.com/news/articles/2017-11-02/battery-powered-cars-to-be-half-of-global-auto-
market-by-2030

3Statistics on the sales volumes of EVs: http://www.ev-volumes.com/
4How the technological uncertainty of the EV market affects the forecasts for the market:

https://www.bcg.com/publications/2018/electric-car-tipping-point.aspx
5On the challenges in the EV market from consumer behaviour:

https://www.bloomberg.com/news/features/2017-12-19/the-near-future-of-electric-cars-many-models-
few-buyers
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of the underlying stochastic process. Thus, the firm acknowledges that it might be facing
different structures in its stochastic environment, but has no way of influencing the switching
process itself. Like other studies on investment under uncertainty, Bensoussan et al. (2012)
find that the optimal strategy of the firm is characterized by an investment threshold, where
the firm invests as soon as it observes the exogenous process to reach the threshold. In a
similar vein, Bollen (1999) studies the life-cycle problem of products, where the demand
for a firm’s output is randomly switched from an increasing to a decreasing regime. The
author shows that the assumption of a constant regime for the stochastic demand can yield
significant errors in the value of an investment opportunity. The aforementioned models
allow the stochastic process to switch regimes, but do not allow the firm to affect these
switches endogenously. Thus, they still assume that the firm is passive w.r.t. its stochastic
environment. One attempt on making the underlying stochastic dependent on the firms
actions is presented in Busch et al. (2013). They extend the setting of Bensoussan et al.
(2012), by allowing the firm to alter the probability of a switch taking place through its
investments. This represents an indirect influence of the firm on the stochastic environment,
while in our paper we aim to model this explicitly.

For models considering a firm’s possibility to directly influence the underlying stochastic
process, the available literature is sparse. Kwon (2010) is one of the first to account for
changing parameters of the underlying stochastic process in the investment decision. Kwon
(2010) studies a firm currently producing an aging product, with the one-time opportunity
to invest in a new product. He models the firm’s initial profits by an arithmetic Brownian
motion with negative drift. Investing in the new product increases the drift of the process.
Assuming the resulting drift to still be negative, the paper also considers an exit option
after investment, finding that increased uncertainty can both delay or speed up investment
in the new product. Matomäki (2013, Article 1) generalizes the problem of Kwon (2010)
by allowing for general specifications of the stochastic process, as well as including changes
in volatility. He confirms the results of Kwon (2010), that increased uncertainty can both
delay or expedite investment. However, both these papers include an exit option in addition
to the investment option. Thus, the reason for the non-monotonic effect of uncertainty in
these studies is that increasing the volatility increases the value of the exit option, which
then makes it more attractive to invest sooner. Contrarily, the value of waiting from the
option to invest in the new product increases in uncertainty, which therefore induces a delay
in investment. Further, Hagspiel et al. (2016) extends Kwon (2010) by allowing for capacity
discretion for the new product, while keeping the volatility constant and only switching the
drift. This induces a monotonic effect of uncertainty, where increasing the volatility leads to
an increase of the investment threshold. In the work of Kwon (2010), increased uncertainty
makes it more likely that the exit option will be used, as the firm has a fixed capacity of
production of the second product and cannot adjust to the increased uncertainty in the
market. In Hagspiel et al. (2016), the possibility of optimizing the capacity restores the
monotonic effect of uncertainty, which suggests that the firm can adjust the capacity to the
change in volatility, and therefore making the increased value of the exit option smaller than
the increased value of the option to invest in the second product. The aforementioned models
with direct changes to the parameters of the stochastic process all include an exit option,
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which we do not consider. Our work is in line with Alvarez & Stenbacka (2003), as they
look at a situation where the firm can invest in a new product, with changing parameters of
the stochastic environment, and not including other embedded options. Upon investment,
they assume that the volatility of the underlying stochastic process changes, while the drift
is not affected. They find that uncertainty can indeed both delay and accelerate investment,
under both concave and convex profit functions. This non-monotonic behaviour is a pure
effect of the change in parameters of the underlying stochastic process, and does not arise
from the presence of a compound option, like an option to exit.

In solving our problem, we utilize the theoretical framework of stochastic optimal control
(Pham, 2009), relying on a viscosity solution approach to solving stochastic optimal control
problems (Crandall et al., 1992). We apply the results of Ly Vath & Pham (2007) for a
general switching problem, which permit multiple switches between various regimes. Our
problem is a special case of the multidimensional problem studied therein. Thus, we employ
well-defined mathematical results to investigate a novel investment problem, in addition an-
alyzing how the optimal strategy depends on the underlying parameters. We show that it is
optimal to invest in the new product if an increase in the expected growth from switching
regimes outweighs the increase in risk. Our results confirm the findings of Alvarez & Sten-
backa (2003) under cases where the drift is not changed from investment. Also allowing for
a potential change in drift, we find that the effect of uncertainty on the optimal strategy
is more complex and multifaceted than the results of Alvarez & Stenbacka (2003) imply.
We show that increasing the uncertainty in the profits from the initial product can both
delay or accelerate the investment. Further, we provide extensive economic reasoning for
the determinants of this non-monotonic behaviour. Finally, we show that the posed problem
can be transformed to a problem of constant parameters of the stochastic process, but with
a change in the profit function after investment.

The rest of this paper is structured as follows. Section 2 presents the model, using the
mathematical results of Ly Vath & Pham (2007) of optimal switching. Section 3 presents
the comparative statics of the resulting investment threshold. Section 4 presents how a
problem of changed profit function but constant parameters of the stochastic process can
be transformed to a problem of constant profit function but changing process parameters.
Section 5 provides some concluding remarks and possibilities for future work, while Appendix
A presents proofs of all propositions.

2. Model

The firm currently operates in a market with an established product, denoted as regime
i = 1. It holds a one time opportunity to invest in a new product, therewith switching to a
regime i = 2. Switching incurs an irreversible investment cost. The profitability of the firm is
uncertain, and assumed to follow a stochastic process given as a geometric Brownian motion
with regime-dependent diffusion parameters. We define a stochastic process θϑi taking values
in R∗+ = (0,∞) which satisfies the stochastic differential equation

dθi(t) = αiθi(t)dt+ σiθi(t)dWt, θi(0) = ϑ, i = 1, 2, (1)
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where W is a Wiener process, and αi and σi are drift and volatility coefficients of the
process θ in regime i at time t, respectively. The drift parameter of each regime represents
the general drift of the market of the given product, while the volatility parameter represents
the uncertainty inherent in the given market. We assume that the driving Wiener process
W is the same in both regimes, and only the growth and diffusion parameters change. This
accounts for a case where the firm changes its product offering when switching regime, but
stays within the same general market structure or consumer base for its products. The profit
flow per time period for the firm in regime i is given by π(θi(t)) = ηθγi (t), where η > 0 and
γ ∈ (0, 1] are constants. We assume without loss of generality that there are no variable or
fixed cost for producing the product. The profit flow is Hölder continuous and thus satisfy
linear growth conditions with γ ∈ (0, 1], where γ = 1 implies Lipschitz continuity6. This
condition on the value function is necessary to utilize the approach of Ly Vath & Pham
(2007), and ensures that the profit function is continuous and cannot explode in value.

The value function of the investment problem, given that the firm is currently in regime
i = 1, 2, is denoted by vi. These are the unique continuous viscosity solutions with linear
growth conditions on (0,∞) and boundary conditions vi(0+) = (−gij)+, i 6= j to the system
of variational inequalities (Ly Vath & Pham, 2007, Thm. 3.4)

min{rv1 − L1v1 − π1, v1 − (v2 − g12)} = 0,
min{rv2 − L2v2 − π2, v2 − (v1 − g21)} = 0.

(2)

Here r is the discount rate, gij is the cost of switching from regime i to j, and Li the
second-order operator associated with the diffusion θ when the system is in regime i, which
for an arbitrary C2-function ϕ on (0,∞) is given as Liϕ = 1

2σ
2
i θ

2 ∂2

∂θ2ϕ+αiθ
∂
∂θ
ϕ. We assume

that r > αi ∀i, so that the drift in each region is not higher than the discount factor. This
assures that investment might be optimal for the firm. Otherwise, the optimal strategy
would always be to wait, as the profits would grow at a higher rate than the discount factor.
The regions of θ where it is optimal for the firm to switch from regime i to j are denoted
by Si = Sij and defined as

Si = {ϑ > 0: vi(ϑ) = vj(ϑ)− gij}, i, j = 1, 2, i 6= j. (3)

The firm would switch from regime i to j for any realizations of the diffusion process for
which the optimal value function in the regime equals the value of the other regime, minus
the switching cost. This is refereed to as the stopping regions of the investment problem.
We define an upper and lower threshold of θ where it is optimal to switch from regime i as
ϑ
∗
i = supSi ∈ [0,∞] and ϑ∗i = inf Si ∈ [0,∞], where the convention inf ∅ =∞ ensures that
ϑ∗i =∞ if Si = ∅. I.e., if the stopping region is empty, it is never optimal to switch.

The first term of the maximization in the system of variational inequalities in Eq. (2)

6Hölder continuity implies that a function f satisfies | f(x) − f(y) |α≤ C | x − y |α for some finite
constant C and α ∈ (0, 1). Lipschitz continuity arises when α = 1 in this expression. This also assures that
the expectation of the form E

[∫ T
t
f(θ(t), t)dt

]
is well defined (Pham, 2005), where θ(t) is a continuous-time

stochastic process.
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denotes the value function for i = 1, 2 when the firm would optimally stay in regime i and
not switch, i.e. the continuation region. This term yields a second-order ordinary differential
equation for i = 1, 2 given by

rvi − Livi − πi = 0. (4)

Omitting the particular term stemming from the running profit function πi, this ODE has
the homogeneous solution given by

vi(ϑ) = Aϑβ
i
1 +Bϑβ

i
2 , (5)

for some constants A and B, and

βi1 = −αi
σ2
i

+ 1
2 +

√√√√(−αi
σ2
i

+ 1
2

)2

+ 2r
σ2
i

, (6)

βi2 = −αi
σ2
i

+ 1
2 −

√√√√(−αi
σ2
i

+ 1
2

)2

+ 2r
σ2
i

. (7)

It can be shown that βi1 > 1 and βi2 < 0 (see e.g. Dixit & Pindyck (1994)). Further denote
the particular solution to the ODE in Eq. (4) as V̂i(ϑ), subject to the boundary condition
V̂i(0+) = π(0) = 0. V̂i is then defined as

V̂i(ϑ) = E
[∫ ∞

0
e−rtπ(θ̂ϑi (t))

]
= ηϑγ

r − αiγ + 1
2σ

2
i γ(1− γ) = Kiηϑ

γ, (8)

where θ̂ϑi is the solution to the SDE dθ̂(t) = αiθ̂(t)dt + σiθ̂(t)dWt, with θ̂(0) = ϑ, and we
define the perpetual multiplier Ki as

Ki = 1
r − αiγ + 1

2σ
2
i γ(1− γ) > 0. (9)

The particular solution for each regime represents the value of never switching, i.e. the value
of the firm given that it produces product i = 1, 2 forever.

The model outlined above follows the work of Ly Vath & Pham (2007) and would gen-
erally allow for multiple switches between the two regimes. However, we focus on a single
switch case from an initial regime i = 1 to a regime i = 2. Switching is costly and irre-
versible, so that g12 > 0. Switching back is not possible in our case. Using Theorem 4.1
in Ly Vath & Pham (2007), the existence of a finite switching threshold ϑ∗1 depends on the
difference of the value of staying in the regimes in perpetuity, i.e. V̂2 − V̂1, given that there
is no salvage value of switching back. Formally, the result says that for i, j = 1, 2, i 6= j,
assuming gij > 0 and gji ≥ 0, if V̂i = V̂j, then Si = ∅ and ϑ∗1 = 1. However, if V̂j > V̂i,
then Si = [ϑ∗i ,∞) with ϑ∗i ∈ (0,∞) and Sj = ∅. This assures that after switching from
the initial regime i = 1, switching back is not optimal, as long as there is a non-negative
cost of switching back. The intuitive explanation of this is that if the value of producing
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the two products forever are equal, the firm has no incentive to pay a positive investment
cost to switch products, and the switching threshold is infinite. Conversely, if one of the
products has a higher value of producing in perpetuity, there is a finite threshold at which
the firm should pay an investment cost to obtain the more profitable profit stream. Given
no salvage value there is never an incentive to switch back to the less valuable regime. We
can now investigate the optimality of switching, for different combinations of the diffusion
parameters. The following proposition presents the conditions on the diffusion parameters
for the existence of an optimal finite switching threshold.

Proposition 2.1.

(i) If α1 = α2 and σ1 = σ2, then K1 = K2 and S1 = ∅. Therefore, it is never optimal to
switch regime in this case.

(ii) If α1 6= α2 and σ1 = σ2, then it is optimal to switch for some threshold ϑ∗i ∈ (0,∞) if
α1 < α2, but never optimal otherwise.

(iii) If α1 = α2 and σ1 6= σ2, then it is optimal to switch for some finite threshold if
γ ∈ (0, 1) and σ1 > σ2, but never optimal if γ = 1 or if σ1 < σ2.

(iv) If α1 6= α2 and σ1 6= σ2, the existence of an optimal switching threshold depends both
on the difference in drift and volatility for the regimes. There exists a finite investment
threshold ϑ∗1 if K2 > K1, which is equivalent to the condition

α2 − α1 + 1
2(1− γ)(σ2

1 − σ2
2) > 0. (10)

We see from Proposition 2.1 (iii) that the effect of uncertainty is dependent on whether
γ = 1 or γ ∈ (0, 1). If γ = 1, the profit functions become linear in the diffusion process and
the uncertainty of the regime does not affect the expected present value of the perpetuity.
Thus, the existence of a finite switching threshold is solely dependent on the difference in
drift, i.e. the sign of α2 − α1. However, if γ ∈ (0, 1), the profit function becomes concave in
the diffusion process, and a change in volatility alone can induce switching. The intuition
for why a concave profit function leads to dependence on the volatility for the value of the
perpetuity, is that a downward shock has a larger negative effect on the firms profit than the
positive effect of an equal upward shock. Since the negative effect dominates, an increase
in the uncertainty yields a lower value of the perpetuity since shocks (both negative and
positive) are more likely with increased uncertainty of the diffusion process. In the case of
γ = 1, the effects of downward and upward shocks of equal size on the profit are equal, so
the net effect is zero, making the expected value independent of uncertainty.

If both the drift and the volatility in the regimes are different, Proposition 2.1 (iv)
indicates that the optimality of switching depends on the interplay between the parameters
of the two regimes. Even if the drift of the second regime is higher than for the first, it is
still not optimal to switch if σ2 is sufficiently high compared to σ1. If α1 > α2, there is an
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Figure 1: Minimum required change in drift α2 − α1 for the existence of a finite investment threshold ϑ∗
1.

upper bound on σ2 for switching to be optimal, given by

σ2
2 < σ2

1 −
2(α1 − α2)

1− γ . (11)

Indeed, if α1 > α2 and 0 < σ1 <

√
2(α1−α2)

1−γ , it can never be optimal for the firm to switch,
for any positive volatility σ2. Figure 1 shows the minimum required change in drift from
investing necessary for the existence of a finite threshold ϑ∗1, as a function of σ1 and σ2. We
see that the required change in drift increases in σ2 and decreases in σ1, as a decrease in
the change of volatility σ1 − σ2 from investing makes switching less attractive. In this, the
firm requires a higher boost in drift from introducing the new product for switching to be
optimal. Figure 1a shows how the steepness of the threshold for the required boost in drift
increases when γ decreases. This is due to the fact that a lower γ yields a more concave
profit function, so that the asymmetric effect of shocks discussed in the last paragraph is
strengthened. Given that a finite optimal threshold exists, the following proposition presents
the optimal value function of the firm and the investment threshold.

Proposition 2.2. Assuming that the conditions in Proposition 2.1 for the existence of a
finite switching threshold hold, i.e. K2 > K1, the value of the firm, given that it is currently
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in regime i = 1, is given by

v(ϑ) = v1(ϑ) =

Aϑβ
1
1 + V̂1(ϑ), ϑ < ϑ∗1,

V̂2(ϑ)− g12, ϑ ≥ ϑ∗1,
(12)

where V̂1(ϑ) and V̂2(ϑ) are given by Eq. (8). The constant A and the threshold ϑ∗1 are obtained
from the value-matching and smooth-fit property of v1(ϑ∗1). These boundary conditions give
the explicit expressions

ϑ∗1 =
[

β1
1

β1
1 − γ

1
K2 −K1

g12

η

] 1
γ

, (13)

A = ηγ

β1
1

(K2 −K1)(ϑ∗1)γ−β
1
1 . (14)

Proposition 2.2 states that the optimal investment strategy of the firm is to invest in the
new product if the value of the stochastic process θ1(t) is higher than a certain threshold,
i.e. ϑ ≥ ϑ∗1. Otherwise, the firm continues to produce the initial product, and holds on to
the the option to invest at some later time, which is done as soon as θ1(t) reaches ϑ∗1. For
any current value ϑ of the stochastic process θ(t), the value of the firm is given by Eq. (12).
If ϑ < ϑ∗1, the firm’s value is given as the value of producing in regime i = 1 forever, plus an
option value from the opportunity to switch. If ϑ ≥ ϑ∗1, the firm switches to regime i = 2
immediately, and the value of the firm is given as the expected discounted cash flows from
producing in regime i = 2, minus the investment cost.

3. Comparative statics

This section presents a comparative static analysis on the optimal investment threshold
ϑ∗1 with respect to the drift and volatility of each regime. Throughout this section we assume
that the conditions in Proposition 2.1 for the existence of a finite switching threshold hold.
Proposition 3.1. The optimal switching threshold ϑ∗1 is decreasing in α2 and increasing in
α1.

Intuitively, if the positive change in drift from switching product is increasing (decreas-
ing), the firm has more (less) incentive to switch, and thus the threshold where the firm
would optimally pay the investment cost to obtain a more valuable profit flow decreases
(increases). The following proposition presents the effect of uncertainty on the optimal
investment threshold.
Proposition 3.2.

(i) The optimal switching threshold ϑ∗1 is strictly increasing in σ2. It is increasing in σ1
if the following condition holds,

β1
1 − 1
β1

1 − γ
× 1

1
2σ

2
1(2β1

1 − 1) + α1
− (1− γ) K2

1
K2 −K1

> 0, (15)
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Figure 2: Effect of initial uncertainty σ1 on investment threshold ϑ∗
1 for three different values of α2, capturing

different levels of the change in drift from switching. General parameter values: α1 = 0.02, r = 0.1, σ2 = 0.3,
g12 = 100, γ = 0.9.

and decreasing otherwise.

(ii) If σ2 = σ1 = σ, then the optimal switching threshold ϑ∗1 is increasing in σ.

We find that the investment threshold is always increasing in the post-investment volatil-
ity σ2. If the volatility in the new market increases, the firm has less incentive to switch.
Therefore, the firm demands a higher expected profit to switch to the new market and the
threshold increases, which is a standard real options result. This result is similar to that of
Alvarez & Stenbacka (2003) for a concave profit function. For the effect of uncertainty on
investment timing, they point to the interplay of two opposing effects: (1) the real options
effect, and (2) the Jensen’s inequality effect7. Since increased post-investment uncertainty
will decrease the expected cumulative profits after investment under a concave profit func-
tion (from Jensen’s inequality), it will increase the value of waiting (the real options effect),
and hence delay investment.

However, the effect of the initial volatility σ1 is ambiguous, and a higher volatility can
both accelerate or delay investment. The condition in Eq. (15) is rather involved, as it
depends on most of the underlying parameters. Changing the initial volatility affects both
the value of the option of switching and the value of producing in the initial regime in
perpetuity, relative to the new regime. We refer to these two effects as the option effect and
the perpetuity effect. An increase in the initial volatility would through the option effect
increase the value of waiting, which increases the threshold. Reversely, it is also decreasing
the attractiveness of the initial regime relative to the second regime through the perpetuity
effect, which increases the incentive of switching and lowers the threshold. Figure 2 plots
the threshold ϑ∗1 as a function of pre-investment volatility σ1 for three different levels of
α2, showing that for different values of α2 the effect of initial volatility on the investment
threshold can be various. In Figure 2c, we see that increasing σ1 can delay investment

7From Jacod & Protter (2004): Jensen’s inequality states that if X is a random variable and φ is a convex
(resp. concave) function, then φ(E(X)) ≤ (resp. ≥ ) E(φ(X))
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if the change in drift is relatively large. Figure 2b shows a non-monotonic behaviour for
small levels of α2 relative to α1, so that marginally increasing σ1 can delay investment for
relative low levels of uncertainty, and accelerate investment for higher levels. In the case
where the drift of the two regimes is equal, Figure 2a shows that increased initial volatility
decreases the investment threshold monotonically, suggesting that the adverse change in
value of staying in the initial regime is larger than the increased option value of switching.
However, in Figure 2a we see that the investment threshold is very large when σ1 is close to
σ2. In this case, the benefit of switching to the new product is small. When the change in
volatility from switching becomes larger, the threshold drastically decreases in value, as the
firm would get a larger benefit from switching to the second regime with lower volatility.
In Alvarez & Stenbacka (2003), where the drift is equal for the two regimes, they also find
that the effect of the initial uncertainty is unclear, but state that their numerical results
suggest that the threshold should decrease in the initial uncertainty. Our analysis confirms
the results of Alvarez & Stenbacka (2003). We show that also accounting for a potential
change in drift leads to a more complex picture of the effect of uncertainty when the drift
are changed from investing as well.

Investigating the antecedents of the two opposing effects, that is, the real options effect
and the perpetuity effect, w.r.t. higher initial volatility, we look at how the left-hand side
of Eq. (15) varies in the underlying parameters, ceteris paribus. In Figure 3, Eq. (15) is
plotted as a function of the drift in each regime, the volatilities, the discount rate, and the
level of concavity in the profit function. Note that we always assure that the conditions
in Proposition 2.1 hold, so that a finite switching threshold exists. From Figure 3a and
Figure 3b we find that the drift of the first and second regime have the opposite effect,
as this represents changing the difference in drift obtained by switching regime, in each
direction. An increase in the change of drift, i.e. α2 − α1, makes the value of staying in
the first regime relatively lower than being in the second regime. From this, the perpetuity
effect is relatively weaker and the option effect is more dominant. In Figure 3c we see that
increased level of the initial uncertainty makes the marginal effect of a further increase in
volatility smaller. Increasing the initial volatility strengthens both the option effect and the
perpetuity effect. However, Figure 3c shows that increasing initial volatility would make
the perpetuity effect more dominant. Economically, this suggests that for a higher level of
uncertainty, a change in the initial uncertainty has a larger effect on the value of continuing
to produce the first product, than on the value of waiting inherent in the option to invest in
the new product. This explains the non-monotonic behaviour observed in Figure 2b. For the
post-investment uncertainty, we see from Figure 3d that this also makes the perpetuity effect
more dominant. Increasing the uncertainty in the second regime makes the attractiveness
of the new product lower, and therefore weakens the option effect. The initial regime is not
affected by the post-investment volatility, and therefore becomes relatively more attractive.
Thus, increasing the initial uncertainty has more effect from the impact it has on the value
of producing the initial product, the perpetuity effect, than on the value of waiting. In
Figure 3e, we see that increasing the discount rate makes the perpetuity effect relatively
more dominant compared to the options effect. A higher discount rate makes future profits
less significant than profits today. Thus, the options effect from increased initial volatility
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is less dominant, as this represents the value of waiting from the option to invest in the new
product in the future. For γ, which represents the degree of concavity of the profit function,
Figure 3f shows that the perpetuity effect is less dominant when γ increases. This is intuitive,
as the initial uncertainty has less effect on the value of producing the first product for a
lower degree of concavity, resulting from a higher γ, and therefore the option effect is more
dominant.

4. Improved profit flow and identical diffusion

Now assume that the initial profit flow is similar to before, but with different multi-
plicative constants ηi so that πi(θ(t)) = ηiθ

γ(t) for the two regimes i = 1, 2. The profit
flow in the second regime has a structural improvement, so that η2 > η1 in this regime.
This can be seen as an upward boost in the profit flow from investing, as this yields that
π1(ϑ) = η1ϑ

γ < π2(ϑ) = η2ϑ
γ. However, now we assume that the diffusion parameters are

identical in the two regimes, i.e. α1 = α2 and σ1 = σ2. Proposition 4.1 presents the optimal
switching strategy for a firm, given that the drift and volatility coefficients are constant and
denoted by α1 and σ1, respectively.

Proposition 4.1. Given identical diffusions for the two regimes, but a structural multiplica-
tive improvement of the profit flow in regime i = 2 over regime i = 1, the value of the firm
is given as in Eq. (12) in Proposition 2.2, with constant A and optimal switching threshold
ϑ∗1 given by

ϑ∗1 =
[

β1
1

β1
1 − γ

g12

K1(η2 − η1)

] 1
γ

, (16)

A = (η2 − η1)γ
β1

1
K1(ϑ∗1)γ−β

1
1 . (17)

From Proposition 4.1, we can see that an investment problem of investing to boost the
profit function can be transformed to a problem of investing to change the coefficients of the
stochastic process. We refer to the former problem as a profit switching problem, and to the
latter as a regime switching problem. The following corollary denotes how one problem can
be transformed into the other.

Corollary 4.2. For a regime switching problem with πi(θ(t)) = η1θ
γ
i (t) and θi(t) defined as

in Eq. (1) with i = 1, 2, the equivalent profit switching problem with πi(θ(t)) = ηiθ
γ
1 (t), with

η2 > η1 and θ1(t) defined as in Eq. (1) with i = 1 is obtained by setting

η2

η1
= K2

K1
, (18)

where Ki is the perpetual multiplier in regime i = 1, 2 as defined by Eq. (9).

Corollary 4.2 implies that a firm is indifferent between the opportunity of investing to
change the coefficients of the stochastic regime and keeping the profit structure unchanged,
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Figure 3: Value of the left hand side of Eq. (15) as a function of the underlying parameters. General
parameter values: α1 = 0.01, α2 = 0.06, σ1 = 0.3, σ2 = 0.2, r = 0.08, γ = 0.9. These plots show the
dependence on the underlying parameters for the condition that increased initial uncertainty will increase
the investment threshold. A value above (below) zero indicates that increased initial uncertainty increases
(decreases) the investment threshold for the given parameters.
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and the opportunity to boost the profit structure without the ability to affect the stochastic
process, as long as the problem parameters satisfy Eq. (18). This result shows that a problem
of singular optimal switching with structurally identical profit flows and different diffusion
parameters can be transformed to a problem with changing profit structure but identical
coefficients of the stochastic process. Here structurally equal profit flows means that for
any realized value of the stochastic process the profit flow is equal, i.e. π1(ϑ) = π2(ϑ). This
suggests that one could specify the effect of an investment as either changing the coefficients
of the underlying stochastic process, or changing the form of the profit functions, and obtain
the same results, as long as the earlier assumptions hold. These two different problem
specifications have different reasoning. Therefore, the fact that these problem statements
are connected could give important insight into similarities between different rationales of
investing. More rigorous investigation should be performed on this connection in future
work.

5. Conclusions

This paper studies the investment problem of a monopolistic firm subject to a concave
profit function, for which the profits are dependent on a stochastic process, specified by a
geometric Brownian motion. The firm is currently active in the market with an established
product, with the opportunity to invest in a new product. The two products represents
different regimes for the firm’s stochastic environment, which we model by different coef-
ficients for the drift and volatility of the geometric Brownian motion in each regime. We
utilize the results of Ly Vath & Pham (2007) to solve the problem, using as a viscosity
solution approach.

We find that increased uncertainty in the second market always delays investment, but
that increasing the uncertainty of the initial market can both delay or speed up the in-
vestment, dependent on the change in the drift it obtains in the new market relative to
the current one. Further, the effect of initial uncertainty is shown to be dependent on two
effects: (1) the option effect and (2) the perpetuity effect, which arises from the concave
profit function of the firm. We study how the drift and volatility in the two regimes, the
discount rate, and the degree of concavity in the profit function influence these two effects,
and give economic reasoning for which effect dominates in each case. We confirm the re-
sults of Alvarez & Stenbacka (2003), while also showing that the dependence of the optimal
investment strategy on the initial uncertainty is more multifaceted when we account for a
concurrent change in drift as well as in volatility. Alvarez & Stenbacka (2003) remark that
the non-monotonic effect of uncertainty might explain why empirical studies that assume the
drift and volatility to be constant have difficulties assessing empirically if the relationship
between uncertainty and investment is positive or negative.

A possible extension of this work is to account for strategic interactions in the investment
problem. For an exogenous switching problem, Bensoussan et al. (2017) study the case of
a duopoly game of Stackelberg competition. In the endogenous switching option that we
study in this paper, the decisions of the firms in the game to invest might also affect the
regime for the other firms in the market.

14



This paper is an initial effort of extending the study of investment problems under en-
dogenous effects on the stochastic process, similar to the problems studied in Kwon (2010),
Hagspiel et al. (2016), and Matomäki (2013, Article 1). Including decision-dependent
changes in the stochastic process yields novel results that partly contradict the well es-
tablished results of earlier work on investment under uncertainty, and give exciting new
possibilities for future research. Especially looking into the connection between changes in
the stochastic process and changes in the profit functions is promising. Our results indicate
that these two classes of problems for a singular investment decision can be transformed into
one another. If this result holds in general, it might give further insight into the reasoning
for investments under changing profit regimes.

Appendix A. Proofs

Appendix A.1. Proof of Proposition 2.1
Defining the perpetual discount factor Ki as Eq. (9), Theorem 4.1 in Ly Vath & Pham

(2007) states that the condition for the existence of a finite investment threshold in a two-
regime case depends on the sign of K2 −K1, and the sign of the switching costs. Part (i)
follows from Theorem 4.1 (1) in Ly Vath & Pham (2007) directly, while part (ii)–(iv) are
found by solving for K2 > K1.

Appendix A.2. Proof of Proposition 2.2
Noting that the profit functions in each regime are structurally equal, i.e. π1(ϑ) = π2(ϑ) =

ηϑγ, and satisfying Hölder continuity and linear growth (γ ∈ (0, 1]), the assumptions of
Ly Vath & Pham (2007) are fulfilled. Thus, the value function are directly found by Theorem
4.1 in Ly Vath & Pham (2007), as g12, g21 ≥ 0 (i.e. there is no salvage value). The constant
A and threshold ϑ∗1 is found by direct derivations of the continuity and smoothness of the
value function at the threshold.

Appendix A.3. Proof of Proposition 3.1
Given that the threshold ϑ∗1 is given by Eq. (13), the partial derivatives w.r.t. α2 and α1

are given by

∂ϑ∗1
∂α2

= −(ϑ∗1)1−γg12

η
×
(

K1

K2 −K1

)2
× β1

1
β1

1 − γ
< 0, (A.1)

∂ϑ∗1
∂α1

= (ϑ∗1)1−γg12β
1
1

(K2 −K1)η
×
[

1
1
2σ

2
1(2β1

1 − 1) + α1
+ 1
β1

1 − γ
K2

1
K2 −K1

]
> 0, (A.2)

which always hold as long as the conditions for existence in Proposition 2.1 are fulfilled,
i.e. K2 > K1 and g12 > 0.
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Appendix A.4. Proof of Proposition 3.2
(i) Given that the threshold ϑ∗1 is given by Eq. (13), the partial derivatives w.r.t. σ2 and

σ1 are given by

∂ϑ∗1
∂σ2

= (ϑ∗1)1−γg12(1− γ)σ2

η
×
(

K1

K2 −K1

)2
× β1

1
β1

1 − γ
> 0 (A.3)

∂ϑ∗1
∂σ1

= (ϑ∗1)1−γg12σ1β
1
1

(K2 −K1)η(β1
1 − γ) ×

[
β1

1 − 1
β1

1 − γ
× 1

1
2σ

2
1(2β1

1 − 1) + α1
− (1− γ)K2

1
K2 −K1

]
. (A.4)

Equation (15) arises from the bracketed term in Eq. (A.4), which determines the sign
of the derivative.

(ii) Given that the threshold ϑ∗1 is given by Eq. (13), and σ1 = σ2 = σ the partial derivative
w.r.t. σ is given by

∂ϑ∗1
∂σ

= (ϑ∗1)1−γg12σβ
1
1

(K2 −K1)η(β1
1 − γ) ×

(1− γ)(K2 +K1)

+ β1
1 − 1
β1

1 − γ
× 1

1
2σ

2(2β1
1 − 1) + α1

 > 0,
(A.5)

which always hold as long as the conditions for existence in Proposition 2.1 are fulfilled.

Appendix A.5. Proof of Proposition 4.1
Define the profit functions for each regime to be πi(θ(t)) = ηiθ(t), i = 1, 2, with η2 >

η1, and that the stochastic process following a geometric Brownian motion has constant
parameters, α and σ. Then the expected discounted value of producing in perpetuity in
a regime i, for any realized value ϑ of the process θ(t), is given by Eq. (8) and given as
V̂i(ϑ) = Kηiϑ

γ, with K defined as in Eq. (9). In the stopping region, the value of the firm is
given by V̂2(ϑ), while the value in the continuation region is given by the Bellman equation

rV (ϑ)dt = η1ϑ
γdt+ E[dV (ϑ)]. (A.6)

Expanding the expectation using Itô’s Lemma, we obtain the differential equation

1
2σ

2ϑ2∂
2V (ϑ)
∂ϑ2 + αϑ

∂V (ϑ)
∂ϑ

− rV (ϑ) + η1ϑ
γ = 0. (A.7)

The particular solution to this second-order differential equation is given by V P (ϑ) = V̂1(ϑ),
while the homogeneous part (excluding the last term) is given by V H(ϑ) = A1ϑ

β1 + A2ϑ
β2 ,

where β1 and β2 are the positive and negative solution to the quadratic equation 1
2σ

2β(β −
1) + αβ − r = 0. The boundary condition that V H(ϑ → 0+) = 0 dictates that A2 = 0.
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Given that the firm is currently in regime i = 1 and there is a switching cost g12 to switch
to regime i = 2, the value of the firm is given as in Eq. (12). Noting that the value
function v(ϑ) should be continuous and smooth at the investment threshold ϑ = ϑ∗1 (Dixit
& Pindyck, 1994; Alvarez & Stenbacka, 2003), we obtain the stated values of the constant
A1 and threshold ϑ∗1 by direct derivation.

Appendix A.6. Proof of Corollary 4.2
We compare the solution for the regime switching problem given in Proposition 2.2 and

the solution for the profit switching problem given in Proposition 4.1. Equate the expressions
for the investment threshold in each problem, given for the regime switching problem by
Eq. (13), with η = η1, and for the profit switching problem by Eq. (16). By straightforward
rearrangement, we find that the stated condition in Eq. (18) makes the investment thresholds
equal. Next, comparing the constant term for the solution of each problem, given by Eq. (14)
and Eq. (17), we find directly by substitution that these are equal when Eq. (18) holds.
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