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1 Introduction

Using contingent claim models in corporate finance, numerous studies have analyzed the
interactions between financing and investment decisions. Such studies include those of
Brennan and Schwartz (1984), Mauer and Triantis (1994), Mauer and Sarkar (2005),
Sundaresan and Wang (2007), Wong (2010), and Shibata and Nishihara (2015). In these
contingent models, after the firm exercises its option to invest, bankruptcy becomes iden-
tical to liquidation (i.e., Chapter 7 of the US bankruptcy code). Once a firm enters a
period of financial distress, it is liquidated immediately (i.e., the firm stops operating).

In practice, most companies in financial distress try to drive a turnaround by restruc-
turing their outstanding debt by transferring corporate ownership to the debt holders
(i.e., Chapter 11 of the US bankruptcy code). In addition, even if the firm fails to do so
at the time of liquidation, the debt holders try to collect as much of the debt as possible,
for example, by selling the used facility in the second-hand market. Thus, in a contingent
claim model, we should incorporate optimization considerations at the time of default
and shutdown (liquidation). At the time of default, the option is to drive a turnaround
by transferring ownership to the debt holders. At the time of liquidation, the option is to
maximize the amount of debt collection.

These two considerations are not incorporated in prior studies. For example, assume
a model in which the amount of debt collection is not decided endogenously at the time
of liquidation (i.e., the amount is given). Now, when this amount is expected to increase,
the amount of debt issuance will decrease and the investment quantity will be invariant
at the time of investment.! These theoretical results are not fully consistent with the
empirical results of Riordan and Williamson (1985), Choate (1997), Vilasuso and Minkler
(2001), Acharya et al. (2007), and Sibikov (2009), where the amounts of asset liquidity
and debt issuance have a positive relationship. As shown in Section 4, without the option
of costly reversibility, the theoretical results are as follows: the correlation between the
debt-collected amount and face value is negative (—0.8206), the correlation between the
debt-collected amount and investment trigger is negative (—0.9491), and the correlation

between the debt-collected amount and investment quantity is 0.1566, which indicates

!These results correspond to those of our model without costly reversibility and to those of Shibata

and Nishihara (2018) without financing constraints.



almost no correlation.?

In this study, we assume that debt holders make optimal decisions for default and
shutdown (liquidation) after investment. Then, we examine the interactions between the
financing and investment decisions of equity holders. To be more precise, once a firm
goes into a period of financial distress, the debt holders get the ownership of corporate
management transferred to them from the equity holders. Then, they decide whether the
firm should continue or should cease operating after comparing the payoffs of continuation
and shutdown. In addition, at the time of shutdown, the debt holders maximize their
payoffs by recovering as much of their debt as possible. This extension provides theoretical
results that are consistent with existing empirical results.

Mathematically, as shown in Table 1, the model has eight control variables. Two of
these variables are determined automatically when the other six are chosen. The first
indicates whether to adopt risk-free debt or risky debt at the time of investment, and
the second indicates whether to continue or shut down at the time of default. These
two variables are decided by choosing the optimal coupon payment and shutdown trig-
ger, respectively. Thus, we have six control variables determined at the three times of
investment and financing, default, and shutdown (liquidation). We derive six optimal
decisions by working backward in three steps. First, we assume that four control vari-
ables (investment trigger, investment quantity, coupon payment, and default trigger) are
fixed. We also assume that debt is risky and debt holders decide to continue operation
at the time of default.®> Then, we define the value function after default, and derive the
optimal shutdown trigger and optimal liquidation value (which depend on the investment
quantity). Two decisions are made by the debt holders to maximize their payoffs (i.e., the
amount of debt collected). Second, we assume that three control variables (investment
trigger, investment quantity, and coupon payment) are fixed. We then define the value
functions after investment and derive the optimal default trigger (which depends on the
coupon payment and investment quantity). The decision on whether to continue or to
shut down is made automatically according to the magnitude of the relationship between

the default and shutdown triggers. Third, we formulate the value before investment, and

2These figures correspond to those on the right-hand side of Table 2.
3When debt is risk free, the debt holders will make no decision because they will obtain the face value

of the debt at the time of shutdown (liquidation).



then derive the optimal investment trigger, investment quantity, and coupon payment.
Here, the decision on whether to adopt a risk-free debt or risky debt is made automatically

according to the magnitude of the optimal coupon payment.
[Insert Table 1 about here]

Importantly, the debt holders in our model make two decisions after investment.*
These two decisions are based on two assumptions: partial reversibility and costly re-
versibility. The former yields one control variable, namely the shutdown trigger decision
(liquidation time). To be more precise, if the investment is partially reversible, the lig-
uidation value is defined by some portion of the investment cost corresponding to the
resale price of the used facility when the firm is liquidated. Then, the debt holders obtain
ownership of the corporate management at the time of default, and have the option to
continue operating or to stop. Several papers incorporate the notion of partial reversibility
for investment, including those of Abel and Eberly (1994), Abel and Eberly (1996), Abel
et al. (1996), and Wong (2010). However, these papers do not consider debt financing
because of the assumption of all-equity financing. The latter (the other control variable)
is due to the assumption of costly reversibility, which is observable in practice. For exam-
ple, assume that a facility (such as a plant or equipment) is industry-specific, implying
that the resale price is zero unless the firm incurs some cost. However, by changing the
industry-specific facility to a more general one with incurred costs (i.e., costly reversibil-
ity), the resale price may be positive in the second-hand market. Ramey and Shapiro
(2001) and Chirinko and Schaller (2009) show the existence of costly reversibility.> Shi-
bata and Wong (2019) incorporate the notion of costly reversibility. However, they do
not consider debt financing because all-equity financing is assumed.

The contribution of this study is that we consider the optimization problem of debt
holders with control variables during the financial distress period, as well as the inter-
actions between the financing and investment decisions of equity holders. To be more

precise, equity and debt holders have four and two control variables, respectively. How-

4In fact, debt holders have three control variables, although one of the three decisions is determined

automatically by choosing the other two decisions.
°For instance, Chirinko and Schaller (2009) estimated the irreversible premium that is both economi-

cally and statistically significant.



ever, in previous models, debt holders have no control variables,® and so the interactions
between the financing and investment decisions are considered only through the decision-
making of the equity holders. Thus, the difference between this and previous studies is
that we investigate the interactions by considering the decision-making of both equity
and debt holders. In particular, we consider how the debt holders’ maximization strate-
gies during financial distress affect the interactions between the financing and investment
decisions.

We provide a novel result by incorporating the debt holders’ optimization consider-
ations. As a benchmark, we assume that debt holders are not allowed to maximize the
amount of debt collected at the time of liquidation (i.e., the firm does not have the option
of costly reversibility). Then, if the liquidation value increases, the amount of debt is-
suance might decrease, the investment quantity will remain invariant, and the investment
is accelerated (the investment trigger decreases). These results do not fully fit with the
empirical findings of Riordan and Williamson (1985), Choate (1997), and Vilasuso and
Minkler (2001).” By contrast, assume that the firm is allowed to maximize the amount of
debt collected at the time of liquidation (i.e., the firm has the option of costly reversibil-
ity). A key finding is that our theoretical results are at least consistent with existing
empirical results (previously cited). To be more precise, if the liquidation value increases,
the debt issuance amount and investment quantity increase, and the investment is de-
layed (the investment trigger increases). These results are obtained through the following
mechanism. An increase in the amount of debt collected decreases the credit spread of the
debt holders, leading to an increase in the amount of debt issuance for the equity holders.
Then, the investment quantity is increased, and the investment is delayed. These results
fit well with those of the empirical studies of Riordan and Williamson (1985) and Vilasuso
and Minkler (2001).

The remainder of the paper is organized as follows. Section 2 describes our model,
derives the value functions after investment, and formulates the optimization problem.
Section 3 provides the solution to the problem and analyzes the properties of the solution.
Section 4 discusses the implications of the model. Section 5 concludes the paper. Technical

developments are included in two appendices. Appendix A provides the proof of the

6This is because investment is assumed to be completely irreversible.
"In these papers, firms with relatively specific assets incur little or no debt.
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lemmas and propositions in our model. Appendix B derives the solution in the absence

of costly reversibility.

2 Model

This section describes the model from three perspectives. First, we describe the model
setup. Second, we provide the value functions after investment. Third, we define the value

function before investment and formulate the financing and investment decision problem.

2.1 Setup

Consider a firm with an option to invest in a project facility. Throughout our analysis,
we assume that the firm is risk neutral and aims to maximize the expected firm value.
When the option to invest is exercised, the firm receives an instantaneous cash inflow
(1 — 7)gX(t) after investment, where 7 > 0 represents the tax rate, ¢ represents the
investment quantity, and X(¢) represents the stochastic price given by the geometric

Brownian motion
dX(t) = pX(t)dt + o X (t)dz(t), X(0) =z,

where 1 > 0 and o > 0 are positive constants, and z(¢) denotes the Brownian motion
defined by a risk-neutral probability space (2, F,Q).® For convergence, we assume that
r > p, where r is a constant risk-free interest rate.” We also assume that the current
value X(0) = z > 0 is sufficiently low that the firm does not undertake the investment
option immediately.

When the investment option is exercised, the firm incurs an investment cost I(gq) > 0.
We assume that I(g) is a function of the investment quantity ¢, and that it satisfies
three conditions: 7(0) > 0, I'(q) > 0, and I"(¢) > 0. From an economic viewpoint, I(q)
is interpreted as the purchase price of installing the production facility, which increases

with the magnitude of the investment quantity.

8This assumption is the same as that in Goldstein et al. (2001) and Sundaresan and Wang (2007).
9The assumption r > p ensures that the value of the firm is finite. See Dixit and Pindyck (1994) for

details.



After investment, the firm has the option to shut down the project and sell the used
production facility at a resale price of (s+k)I(q), where s € [0,1] and k£ € [0,1)N[0,1 — 5]
represent the reversible ratios without any cost (“costless reversibility”) and with a cost
(“costly reversibility”), respectively. Thus, the purchase price is decomposed into three
components: the costless reversible component sI(g), the costly reversible component
kI(q), and the depletable (disposal) component (1 — s — k)I(g), which is completely
depleted once the project is abandoned.

Let g(k) > 0 denote the cost function of costly reversibility. The function g(k) > 0 is
interpreted as the cost of the transformation from an industry-specific facility to a more
general facility.'® We assume that g(k) satisfies four conditions: ¢(0) = 0, ¢'(k) > 0,
g"(k) > 0, and limy_,; g(k) = +oo. The first condition, ¢g(0) = 0, means that the
cost is zero if the firm does not undertake the costly reversibility (i.e., & = 0). The
second and third conditions state that g(k) is strictly increasing and convex with £,
respectively. The final condition, limy_,; g(k) = o0, implies that £ < 1 when s =0 (i.e.,
completely restoring the zero-valued capital using the costly reversibility, which incurs a
huge cost that the firm cannot pay).!! In other words, the reason k < 1 is that it is too
costly to restore the used facility at the zero resale price to that at the purchase price.
Most importantly, the ratio of costly reversibility, & € [0,1) N [0,1 — s], is determined
endogenously, implying that the liquidation value is decided endogenously.

In addition, following Leland (1994) and Fan and Sundaresan (2000), we assume that
the firm incurs a (bankruptcy) liquidation cost a((s + k)I(q) — g(k)) > 0, representing
some portion of the liquidation value, where v € (0, 1). Thus, in this study, the liquidation

value is defined as (1 — a)((s + k)I(q) — g(k)) > 0.

2.2 Value functions after investment

This subsection provides the value functions after investment. When deriving these value
functions, we assume that X(¢), ¢ > 0, and ¢ > 0 are given. The value functions are

obtained by working backward.

10Tt can also be regarded as the marketing cost or search cost of finding a matching buyer for a highly

specialized facility.
1 The final condition means that it is impossible to obtain k& = 1 under s = 0, although we can have

s+ k=1 under s > 0.



Now, suppose that the firm stops operating. At the time of liquidation, the optimiza-

tion problem is formulated as

L(q) := max (s+k)I(q) — g(k). (1)

ke[0,1—s]
Note that the optimal ratio k is constrained by the regions of £ € [0,1 — s]. As shown in

Appendix A, we have the following lemma.

Lemma 1 The optimal costly reversible ratio, k(q), is obtained by

0, if I(q) € (0,4'(0)),
k(a) =19 ¢ '(I(q)), ifI(q) € [g'(0),9'(1 - )], (2)
1—s, if 1(q) € (¢'(1 — s), +00).

In Lemma 1, I(¢q) and ¢'(k) correspond to the marginal revenue and cost of costly
reversibility, respectively. Importantly, the investment cost I(g) turns out to be the
marginal revenue for the costly reversibility at the time of shutdown (liquidation). If
I(q) < ¢'(0), the firm does not exercise the costly reversibility. Otherwise, the firm
exercises the costly reversibility.

Substituting the optimal ratio k(g) into (1) gives

L(g) = (s + k(q))I(q) — g(k(q)) > 0, (3)

where L(q) represents the endogenous liquidation value and is a function of q.

We assume that the firm issues a perpetual debt to finance the investment cost I(g) >
0. For analytical convenience, we limit the condition such that the firm issues a perpetual
debt. This assumption, as in Black and Cox (1976) and Leland (1994), simplifies the
analysis without substantially altering the key economic insights. Then, the face value of
the debt is given as ¢/r > 0, where ¢ > 0 indicates the coupon payment. There are two
kinds of debts: risky debt and risk-free (riskless) debt. If the face value of the debt is

larger than the liquidation value after the bankruptcy costs, that is,

; > (1—a)L(g) >0

is satisfied, then the debt is risky. Otherwise, the debt is risk free. We define the threshold

of the coupon payment, which determines whether the debt is risky or risk free, as
01(q) :==r(l —a)L(q) 2 0. (4)

From (4), we have the following definition.



Definition 1 Debt is risk free if ¢ € (0,601(q)]. Debt is risky if ¢ € (61(q), +00).

Let D(X (1), ¢, ), E(X(t),q,¢), and V(X(t),q,¢) := D(X(t),q,¢) + E(X (1), q,¢) denote
the values after investment of the debt, equity, and total firm, respectively. Importantly,
each value differs according to whether the debt is risk free or risky. That is, each value

is defined as

fi, it e €10,01(q)],
f27 if c e (el(q)7+oo)7

where f € {D,E,V}. More precisely, subscripts 1 and 2 represent “risk-free debt and
equity” financing and “risky debt and equity” financing, respectively.'?

We denote the (stopping) time of investment (indicated by superscript “i”), default
(indicated by superscript “d”), and shutdown (indicated by superscript “s”) as T, T4, and
T3,

0|X(t) > 2'}, T9 = inf{t > T X (t) < 29}, and T8, := inf{t > T X(¢) < a8, A 29},13

respectively (m € {1,2}). Mathematically, these times are defined as T" := inf{t >

respectively, where 2!, 29, and x5, denote the associated investment, default, and shutdown

triggers, respectively.

2.2.1 Value functions of a firm financed by risk-free debt and equity

Assume the case of ¢ € [0,6;(q)], that is, a firm financed by risk-free debt and equity and
an all-equity-financed firm.
Consider any time ¢ > T" after investment. The value of the risk-free debt, Dy (X (t), ¢, c),

is equal to the face value of the debt, that is,

Dy(X(t),q,¢) = - >0. (5)

S o

The value of the equity, E; (X (t),q,c), is given by

Ey(X(1),q,¢)

= sup EX® [ /t om0 (1 = 7 (X () — €)du + e TED ((1 — a)L(q) - f)}

T (>1) r

2More precisely, the cases of ¢ = 0 and ¢ € (0,0;(q)] correspond to “all-equity” and “risk-free debt
and equity” financing, respectively. Here, by substituting ¢ = 0 into the functions under risk-free debt
and equity financing, we obtain the functions under all-equity financing. Thus, to simplify the notation,

we denote the subscript “1” for ¢ € [0,61(q)].
138pecifically, default does not exist for m = 1, but does for m = 2.



where EX® denotes the expectation operator conditional on X (t). The first term repre-
sents the discounted value of an instantaneous cash flow after tax, (1 — 7)(¢X (u) — ¢).
The second term indicates the discounted residual value (the liquidation value minus the
face value of the debt). Using the standard arguments of Dixit and Pindyck (1994),
E(X(t),q,c) is given by

B (000 = 00X() — (-0 + (0= 0)L(0) — vastla0 - 7 ) ()

r

where v = (1 —7)/(r — u), v := 1/2 4+ p/o? + ((u/0?) — 1/2)® + 2r/c?)Y/? < 0, and the

optimal shutdown trigger x3(q, ¢) := argmax, {(1 — «)L(q) — vqy — 7¢/r}(X(t)/y)” is

#la,0) = (1 - @)Llg) = 77) 2 0, ™)

where ¢ := v/((y — 1)v) > 0. Note that z5(q, ¢) is a negatively linear function of ¢ > 0.

2.2.2 Value functions of a firm financed by risky debt and equity

Assume the case of ¢ € (01(q),+00), that is, a firm financed by risky debt and equity.

The firm begins the corporate operation by issuing a risky debt at the time of invest-
ment, to obtain (1—7)(¢X (t) —c¢). Aslong as X (¢) maintains a level satisfying ¢ X (t) > c,
the firm continues to generate a cash flow. Once X () decreases to a lower level, it will
become difficult to pay ¢ > 0, and the firm will declare default. At the time of default,
following the absolute priority rule (APR), the debt holders will gain ownership of the
corporation (as new equity holders) and decide whether to continue to operate or to lig-
uidate the corporation. This decision depends on the magnitude of the coupon payment
and on the liquidation value.

On the one hand, if the debt holders continue to operate the corporation after default,
the instantaneous cash inflow reduces to (1 — a)(1 — 7)¢X(¢) by (1 — «), where o > 0.
This assumption follows Mella-Barral and Perraudin (1997).}* The parameter o > 0
is the same as that of the bankruptcy cost aL(g). Setting the same parameter enables
us to easily compare our results with the findings of Leland (1994) if we assume that

(s + k) } 0. On the other hand, if the debt holders stop operation at the time of default,

4They suppose that default impairs the efficiency of corporate management.

9



the firm is liquidated and the debt holders obtain (1 — «)L(g). To summarize, default
(“operating concern bankruptcy”) is defined as the transfer of management rights from the
equity to debt holders. Shutdown (“liquidation bankruptcy”) is defined as the cessation
of operation.

Consider any time t > T' after investment. The equity value after investment,
E>(X(t),q,c), is given by

T4
Ey(X(t),q,¢) :== sup EX® [/t e "1 — 1) (¢X (u) — c)du]

T4 (>t)

X () -1 -nt+ (1-nf -0 (L) ®

r z4(q, ¢)
where the optimal default trigger 2(g, ¢) := argmax, vgX (t) — (1 = 7)¢/r + ((1 = 7)c/r —
vqy) (X (t)/y)" is obtained by

r(q,c) = —
O

" c> 0. (9)

Note that (g, c) > 0 is a linear function of ¢ > 0, as originally shown by Black and Cox
(1976). We denote the optimal default time by T%(q,c) := inf{t > T'|X(¢t) < 2%(q,¢)}
for fixed ¢ > 0 and ¢ > 0.

We derive the debt value by working backward. We denote the value function following

default by W (z%(q, ¢), ¢). The value W(29(q, c),q) is defined by

W(z%(q,¢),q)

T3
=(1—-a) sup EXT'@0) {e’"Td(c) (/ e ™1 —71)¢X (u)du + e_’"TsL(q)ﬂ

T5(>T4(g,c)) T4(q,c)
B (1 —a)L(q), ) c € (01(q), 02(q)],
| et + (2 - vass@) (S5 ) ) e @ula)voo)

(10)

where 23 (q) := argmax, vqz?(q, k) + (L(q) — vqy)(x%(q,¢)/y)" and 65(q) are obtained as

75(q) = EL(q) >0 (11)
and
0>(q) == r(1 —7)"'L(q)(> 01(q) > 0), (12)



respectively. Note that lim,_g,() 2%(q, ¢) = 25(¢) > 0; that is, W (2z9(q, ¢), ¢) is continuous
at ¢ = 6,(q).

Assume that ¢ € (61(q),0:(q)] (derived from z%(q,c) < x3(q)) is satisfied. After
investment, when X (t) reaches z3(¢q), the firm does not shut down because X (t) does
not reach z%(q, ¢).!> When X (¢) decreases further and reaches (g, c), the firm defaults.
At the time of default, the debt holders gain the rights of management and ownership,
and shut down the firm. Thus, the firm exercises the default and shutdown options
simultaneously, which we call the “simultaneous default and shutdown” strategy.

Alternatively, suppose that ¢ € (62(q), +o0) (i.e., z9(q,c) > x5(q)) is satisfied. Then,
when X (t) decreases and reaches 29(q, c), the firm defaults. At the time of default, the
debt holders obtain the rights of management and ownership, and continue to operate the
firm. If X (¢) decreases further and reaches 25(q), the debt holders shut down the firm.
Thus, the firm exercises the default and shutdown options sequentially, which we call the
“sequential default and shutdown” strategy.

The market value of a risky debt after investment, Dy (X (%), ¢, ¢), is given by

T (g,c)
Dy(X(1),q,¢) :=E*" { / e edu + @D (1 — )W (2(q, ¢), q)
t

:; + (W(xd(Q,C)aQ) - ;) ( X () )7. (13)

74(g, ¢)

Note that Dy (X (t),q,¢) < ¢/r = D1(X (1), g, c). This property is obtained by the following
two results: W(z4(q,c),q) < (1 — a)L(q) < ¢/r and (X (t)/z%(g,c))” < 1. That is, the

market value of the risky debt is less than the face value of the debt.

2.2.3 Two value functions after investment

In the previous two subsections, we derived the value functions after investment for two
cases: ¢ € [0,61(¢q)] and ¢ € (61(q),+0o0). In this section, we have the following lemma

(see Appendix A for the proof).

Lemma 2 The value functions after investment, E,,(X(t),q,c) and D, (X (t),q,c), are

continuous at ¢ = 0y(q).

15When X (t) reaches z5(q), the debt holders will want to shut down the firm. However, the shutdown

is not exercised because the debt holders do not have the right to manage the firm.
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To summarize, in Subsection 2.2, we define the value functions after investment (i.e.,
E.(X(t),q,¢) and D,,(X(t),q,c) for m € {1,2}) and derive the optimal reversible ratio

and bankruptcy (default and shutdown) triggers (i.e., k(q), 25(q), 25(q), and x(q, c)).

2.3 Financing and investment decisions problem

This subsection provides the value function before investment.
The firm’s option value before investment is given as
Csup BT [e TV (X(TY),q.0) = 1(@)}], (14)
7>0,g>0,c>0
where X (0) =z, m € {1,2}, and V,,,(x,q,¢) := En(z,q,¢) + Dp(z,q,c). Here, whether
m =1 or m = 2 is decided by the magnitude of ¢ > 0. Under the standard argument, as
in (6), the discount factor of (14) is rewritten as
X —r i x 6
E'le = ()" (15)
where z < 7' := X(T') and B :=1/2 — /0 + ((u/0* — 1/2)% + 2r/0?)'/? > 1.
The firm’s optimization problem is formulated as
O = Im ia ’ ﬁa 16
(z) gonax (z',q,0)x (16)

where z < z' and

Tn(@, g, ¢) = (&) P{Viu(a',q,¢) = I(q)}. (17)

Note that the control variables before investment are the triple (', ¢, ).

Before analyzing the optimal financing and investment strategies with the option of
costly reversibility (i.e., the amount of debt collected is determined endogenously at liqui-
dation), we first review two extreme cases: the optimal financing and investment strategies

without the option (i.e., the amount of debt collected is determined exogenously).

2.4 Investment quantity in the absence of costly reversibility

In this subsection, as a benchmark, we assume that the firm does not have the option of
costly reversibility (i.e., & = 0), which gives the liquidation value (1 — a))Lx(gn), where
Lx(gn) := sI(gqn). Here, the subscript “N” indicates the optimum without the option of

12



costly reversibility. In addition, we consider the special case of the all-equity-financed firm
as a benchmark, where the subscript “U” indicates the optimum for the all-equity-financed
firm.

As shown in Shibata and Nishihara (2018), we have the following lemma (the super-

script “x” represents the optimum).

Lemma 3 Suppose that the firm does not have the option of costly reversibility (i.e.,

k =0). Then, the investment quantity g% is obtained by solving the following equation:

QNII(QN) _ B
I(QN) p— 1

In addition, we obtain ¢ = q{;x, where ¢y indicates the optimal investment quantity for

(18)

the all-equity-financed firm without costly reversibility.

6 In

To ensure the existence and uniqueness of ¢, (¢I'(q)/I(q)) is increasing with ¢.!
addition, see Appendix B for the two other solutions (ci,zY). Lemma 3 provides two
important properties. First, ¢\ is independent of s > 0, with the liquidation value
(1 — a)Lx(g%) increasing with s. Thus, if the firm does not have the option of costly
reversibility, an increase in (1 — ) Ly(g%) with s > 0 does not change ¢%.'” Second, when
the firm does not have the option of costly reversibility, the investment quantity of the

debt-equity-financed firm is the same as that of the all-equity-financed firm.

3 Model solution

In this section, we derive the solution to the firm’s optimization problem.

As shown in Appendix A, we have the following propositions.

Proposition 1 We obtain c(z',q) > 0,(q), where c(a',q) = argmaz, Va(z!,q,c). Thus,

we have

O(z) := Jo(z™, ¢*, c*)aP. (19)

16See Cui and Shibata (2017) for details.
17This theoretical result is not consistent with the empirical results of Riordan and Williamson (1985),

Choate (1997), and Vilasuso and Minkler (2001).
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Proposition 1 implies that the firm always prefers risky debt and equity financing to risk-
free debt and equity financing in equilibrium. In other words, even when the debt holders
maximize the amount of debt collected at liquidation, the firm always prefers a risky debt
issuance.

We provide a graphical proof of Proposition 1. First, we consider the shape of
V(2',q,c) with c. This is because the component dependent on ¢ in O(xz) is V (2!, ¢, c).

Figure 1 depicts V (2!, ¢, ¢) with c¢. The basic parameters are assumed to be
r=20.06,0 =0.2, 4 =0.005,5s =0.3,7 =0.15,a = 0.4, F = 5,and a = 20.

Then, the two other solutions are assumed to be 2! = 1 and ¢ = 10. Under these
parameters, we have k(q) = 0.3099 and 6,(q) = 2.2531, implying that V (2!, ¢, ¢) is given

as

Vi(@',q,¢), c€10,01(q)],
Va(zl, q,¢), c€ (8i(q),+00).

We see four properties.'® First, V;(z', ¢, ) is a linear function with ¢. Second, Vi (2!, ¢, 0,(q)) =
lim.,g, () Va(a', ¢, ¢). Third, dVa(2', ¢, ¢)/dc|c,(q > 0. Fourth, Va(z', ¢, c) is convex with
c. These four properties imply that there exists c(z, q) such that ¢(z',q) > 0,(q). Nu-

merically, under the basic parameters, we obtain
c(r',q) = 5.5 > 0;(q) = 2.2531.

In addition, Vx(z', ¢, c) indicates the total firm value for ¥ = 0.1 We see that costly

reversibility increases the value; that is, V(z', ¢, ¢) > Vx(z', ¢, ¢).
[insert Figure 1 about here]

Thus far, we have shown that the optimal coupon payment c(z', q) is larger than 6, (q).

We now derive the solution (z'*, ¢*, c*) to the problem in the following proposition.

18Gee Appendix A for details.
19We have 01x(q) = 1.89 for k(q) = 0, where 01x := r(1 — a)Ln(q).
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Proposition 2 For ¢* € (01(q%),02(q")], the triple (x*,q*,c*) is obtained by solving the

three simultaneous equations

(8= 1o + 75+ (5 -] - )t - (-7 +0)EH (D) 1) =0,
(20)

v+ (r{1- e - (L a-n+ 0t a-wee) (M) - o <o
21)

1 (“qji><1—z(91£'n —1)) —0, (22)

where = r/((1 — 7)) > 0. For ¢* € (fs(q*),+00), the pair (z™*,q*) is obtained by

solving the two simultaneous equations

vy 11—« gr' \” B
5= 2a+ (3 -1 1) () - o1t =, (23)
Siat 4 T2 (0o + (1= e @) () ol =0, (24)

where 1 := (1+7/(h(1—=7)))"' <1 and h := (1—y(1+a(l—7)/7))""/7 > 1. In addition,

ix

we obtain c* = c(x'*, q*), where c(x,q) is given as

. K .
c(x',q) = qul. (25)

On the one hand, for ¢* € (fy(q*), +00), the pair (2'*,¢*) is derived by solving the two
simultaneous equations (23) and (24) and c¢* is obtained by ¢* = c(z'*, ¢*), as originally
obtained in Leland (1994), where c(z!, q) is a linear function of 2. On the other hand, for
¢t € (0:1(q*),02(q")], the triple (z'*,¢*, c*) is obtained by solving the three simultaneous
equations (20)—(22). Here, ¢(z', ¢) is not derived explicitly.

Recall that ¢ is independent of s > 0, as in Lemma 3. In contrast, when the firm has
the option of costly reversibility, ¢* depends on s > 0. We summarize this result as the

following proposition (see Appendix A for the proof).

Proposition 3 Suppose that the firm has the option of costly reversibility. Fuirst, the
investment quantity is increased, that is, ¢ > q%. Second, q¢* is not always independent

of s > 0. Third, we obtain q* # qf;, although ¢ # qix-

In the following section, we consider how an increase in (1 — «)L(q) is related to ¢/r,

2!, and q.
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4 Model implications

This section numerically considers the important implications of our solution.
In the numerical calculation, the cost function for investment, 7(g) > 0, is assumed to

be
I(q) = F +¢* >0, (26)

where F' > 0 is a positive constant.?’ In addition, the cost function for costly reversibility,

g(k) > 0, is assumed to be

>0, (27)

where a > 0 is a positive constant.?’ The parameter a > 0 is interpreted as a measure of
the “efficiency” of the cost function for costly reversibility. Because ¢'(k) = a/(1 — k)2,
we have ¢'(0) = a and ¢'(1 — s) = a/s*. Thus, we obtain

0, / if I(q) € [0,a),
k() =14 1-— (%) , if I(q) € [a, 8%], (28)
1—s, otherwise.

From (28), whether k(q) = 0 or k(q) > 0 depends on F, a, and ¢. In particular,
an increase in a enlarges the region of k(¢) = 0. Additionally, whether s + k(¢q) < 1 or
s+ k(q) = 1 depends on F, a, s, and ¢. Specifically, an increase in a and s shrinks and
enlarges, respectively, the region of s + k(q) = 1.

Figure 2 depicts the regions of £ = 0 and k£ > 0 in the space (F,a). The two lines
indicate the boundaries of £k = 0 for ¢ = 0.1 and ¢ = 0.2. Thus, the regions from the
upper-left to the boundaries are the regions of k¥ = 0. This implies that the firm is more
likely to adopt costly reversibility for a smaller @ and larger F'. In addition, when F' =5
and a = 50 (corresponding to the blue point), we obtain & = 0 for o = 0.1, but & > 0
for 0 = 0.2. This implies that an increase in ¢ enlarges the regions of £ > 0. Moreover,
as in (28), the magnitude of s is independent of whether £ = 0 or k£ > 0, but depends on

whether £ <1 — s or k =1 —s. Thus, the key parameters are s, o, F, and a.

20We confirm that I(q) satisfies I(0) > 0, I'(q) > 0, and I"(¢q) > 0 for any ¢ > 0.
2INote that g(k) satisfies g(0) = 0, g’'(k) > 0, and g"(k) > 0 for any k > 0, and limy_,; g(k) = +oo.
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[insert Figure 2 about here]

Section 4.1 considers the effects of s (costless reversibility). Section 4.2 discusses the
comparative statics with o (volatility), F' (fixed cost for investment), and a (cost efficiency

for costly reversibility).

4.1 Effect of costless reversibility ratio

In this subsection, we consider the effects of s on various solutions and values.

[insert Figure 3 about here]

4.1.1 Financing and investment strategies with liquidation value

The top-left panel of Figure 3 depicts the optimal ratio of costly reversibility k* with
s. Recall that £* and s are endogenous and exogenous, respectively. We know that £*
increases with s € [0, §], where § = 0.74, but decreases with s € (8, 1]. Here, § represents
the minimum costless reversibility ratio that satisfies k+s = 1. In addition, k(q) = 0.2607
is maximized at § = 0.74. Importantly, £* depends on s € [0, §] because ¢* depends on s.

The other five panels of Figure 3 depict the effects of s on (1 — «)L(¢*) (liquidation
value), ¢*/r (face value of debt), ¢* (investment quantity), z'* (investment trigger), and
2% (default trigger).

As a benchmark, we assume that debt holders do not maximize the amount of debt
collected at liquidation (i.e., the no costly reversibility case of k = 0). In the top-right
panel, (1 — «)Lyx(g%) increases monotonically with s. In the middle-left and the middle-
right panels, ¢§/r and & have a V-shaped curve with s. In the middle-right panel, zi}
decreases monotonically with s. In the bottom-left panel, ¢ is independent of s. In the
bottom-right panel, z{* has a V-shaped curve with s and 2% increases monotonically with
s. Thus, we conclude that there is no consistent relationship between these five panels.

By contrast, we assume that debt holders maximize the amount of debt collected at
liquidation (i.e., the costly reversibility case of & > 0). In the top-right, middle-left,
middle-right, bottom-left, and bottom-right panels, (1 — a)L(q*), ¢*/r, ¢*, ', and z%*
have a A-shaped curve with s. They increase monotonically with s € [0, 5], but decrease

with s € (§,1]. To clarify the relationship between the financing—investment strategies
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and the liquidation value, the three panels of Figure 4 display ¢/r, 2!, and ¢ with respect
to (1 — «)L(q), showing that all three have a positive relationship with (1 — «)L(¢). In
addition, to clarify whether these have a positive relationship, we calculate the correlation
in Table 2. In particular, the correlation between (1 — «)L(gq) and ¢/r is 0.7228, the
correlation between (1 —a)L(q) and z' is 0.3416, and the correlation between (1 —«)L(q)
and ¢ is 0.7629.

[insert Figure 4 about here]
[insert Table 2 about here]
Thus, we summarize the results are follows.

Observation 1 Suppose that debt holders do not have the option of mazximizing the
amount of debt collected at liquidation (i.e., the no costly reversibility case of k = 0).
An increase in the liquidation value does not have a consistent relationship with the fi-
nancing and investment decisions. In particular, iof the liquidation value increases, the
tnvestment trigger is decreased, investment quantity is invariant, and debt issuance s
either increased or decreased. By contrast, suppose that debt holders have the option of
mazximizing the amount of debt collected at liquidation (i.e., the costly reversibility case
of k > 0). An increase in the liquidation value has a consistent relationship with the
financing and investment decisions. In particular, an increase in the liquidation value

leads to an increase in the investment trigger, investment quantity, and debt issuance.

Observation 1 implies that if the liquidation value increases, the firm increases the
amount of debt issuance and the investment quantity, leading to delayed investment.
These results fit well with the empirical studies of Riordan and Williamson (1985), Choate
(1997), and Vilasuso and Minkler (2001).

Returning to Figure 3, there are two additional interesting results. First, in the middle-
right panel, 2! < i, is not always obtained, but xi; < zi, is always obtained. To be more
precise, we obtain x' > zi; for s € (0.5023,0.74). Without the option of costly reversibility,

debt financing always enables the firm to hasten the investment.?? By contrast, with the

22Recall that in our model, the firm exercises the investment once X (¢) reaches z' from below. We
define the notion as follows: if the investment trigger is larger (smaller) than the benchmark trigger, the

investment will be exercised later (earlier).
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option of costly reversibility, debt financing does not always enable the firm to hasten the
investment. For s € [0.5023,0.74], the investment is delayed under debt-equity financing
rather than under all-equity financing. The reason is as follows. Because debt financing
enables the firm to increase the investment quantity when the firm has the option of costly
¢ 23

reversibility, the debt-equity-financed firm implies the delayed investmen

We summarize these results as follows.

Observation 2 Suppose that debt holders do not mazximize the amount of debt collected
at liquidation (i.e., the no costly reversibility case of k = 0). Debt-equity financing always
hastens the investment, compared with all-equity financing. By contrast, suppose that debt
holders mazximize the amount of debt collected at liquidation (i.e., the costly reversibility

case of k > 0). Then, debt-equity financing does not always hasten the investment.

Second, we observe another interesting result in the bottom-right panel. On the
one hand, under no costly reversibility (i.e., & = 0), the firm exercises the sequential
bankruptcy (default and shutdown) strategy for s € [0,0.84), but adopts the simultane-
ous bankruptcy (default and shutdown) strategy for s € [0.84,1]. On the other hand,
under costly reversibility (i.e., & > 0), the firm exercises the sequential bankruptcy (de-
fault and shutdown) strategy for s € [0,0.74), but adopts the simultaneous bankruptcy
(default and shutdown) strategy for s € [0.74, 1]. Thus, if we assume s € [0.74,0.84), by
the option of costly reversibility, the bankruptcy strategy is changed from sequential to

simultaneous. We summarize these results as follows.

Observation 3 Costly reversibility induces the firm to change the bankruptcy (default

and shutdown) strategies from sequential to simultaneous.

Observation 3 reflects the findings of Nishihara and Shibata (2018) and Shibata and
Nishihara (2018).

4.1.2 Option value and total firm value

[insert Figure 5 about here]

23Without the option of costly reversibility, because debt financing is invariant to the investment

quantity, the debt-equity-financed firm implies the hastened investment.
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The top-left panel of Figure 5 depicts O (option value) with s. We see that O > Oy
(and Oy > Oyy). The reason is intuitive. When the firm has the option of costly
reversibility, the value with the option is increased. The top-right panel gives V (2'*, ¢*, ¢*)
(total firm value at the time of the investment). We see that V' has a V-shaped curve

with s.

4.1.3 Credit spread, leverage, and default probability

The middle-left panel shows that ¢/r — Dy(z',q,c¢) > 0; this represents the difference
between the face value of the debt and the market value. A positive difference is guaran-
teed because debt is risky. Interestingly, the difference is larger with the option of costly
reversibility than without the option. Thus, costly reversibility increases the difference
between the face value of the debt and the market value.

The middle-right and bottom-left panels depict the credit spread cs and leverage D/V/,

respectively. The credit spread (in basis points) is defined as

i ¢ 4
cs:=cs(x',q,c) = | =————1r ) x 10" > 0.
( ) <D2($1, q, C) )
Here, cs > 0 is always positive because debt is risky (i.e., ¢/r > Dy(2', ¢, ¢)). The leverage

(as a percentage) is defined as

9;:94££f2xm22a
Vo Va(al g0

We see that ¢s and D/V are kinked at s = 0.74. The reason for these kinked curves
is the change of bankruptcy strategies from sequential to simultaneous. We see that cs
decreases with s, whereas D/V increases with s. Importantly, we find that cs < ¢sy and
D/V > Dyx/Vx.2* From these results, when the liquidation value is increased under the
option of costly reversibility, the credit spread is decreased and the leverage is increased.

The bottom-right panel depicts p (default probability) with s. The default probability

(as a percentage) is defined as

(" 7><1o2>0
P= a1, 0) =

24When the firm does not have the option of costly reversibility, the credit spread and leverage are

defined as csy and Dy /Vn, respectively.
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When the firm exercises the sequential bankruptcy (default and shutdown) strategy, the
default probability is constant. When the firm exercises the simultaneous bankruptcy
(default and shutdown) strategy, the default probability is not constant. We have p > px.

These four panels provide the following observation.

Observation 4 Costly reversibility increases the difference between the face value of the

debt and the market value, leverage, and default probability, but decreases the credit spread.

4.2 Comparative statics

[insert Figure 6 about here]

The three top panels of Figure 6 depict the effects of o (volatility) on k (costly re-
versible ratio), ¢/r (face value of debt), and z' (investment trigger), respectively. In the
top-left panel, the firm does not exercise the costly reversibility option for o € [0.15,0.186],
but does do so for o € (0.186,0.2]. Thus, an increase in o means that the firm is more
likely to adopt the costly reversibility option. This result is consistent with those of the
empirical studies of Leahy and Whited (1996), Guiso and Parigi (1999), and Ghosal and
Loungani (2000).

The middle-left, middle-middle, and middle-right panels of Figure 4 depict the effects
of F (fixed investment cost) on k, ¢/r, and x', respectively. In the lower-left panel, the
firm does not exercise the option of costly reversibility for F' € [2,3.2], but does do so for
o € (3.2,10]. Thus, k* increases with F'. A larger fixed cost of investment (F') corresponds
to a larger production facility I(q), which results in greater production (¢). A larger firm
is assumed to have a larger production facility. Thus, our result fits well with that of the
empirical study of Folta et al. (2006), where a large firm is better able to redeploy its
assets. We see that ¢/r and z' increase with F. An increase in F' increases the amount
of debt issuance and delays the investment.

The bottom-left, bottom-middle, and bottom-right panels of Figure 4 depict the effects
of a (costly reversibility efficiency) on k, ¢/r, and ', respectively. In the lower-left panel,
the firm exercises the option of costly reversibility for a € [40, 78], but does not do so for
a € (78,100]. Thus, an increase in a decreases k*. This is consistent with the empirical

findings of Asplund (2000), where the salvage values for the high transaction costs of the
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second-hand market are reduced. We find that ¢/r and 2' decrease with a. An increase

in a decreases the amount of debt issuance and accelerates the investment.

5 Concluding remarks

We examine the interaction between financing and investment decisions under the con-
dition that debt holders have the option of maximizing the debt-collection amount if a
firm is liquidated during financial distress. We add to the literature by incorporating the
optimization considerations of the debt holders’ debt-collection amount.

We provide a novel result on the interactions between financing and investment deci-
sions by incorporating the debt holders’ maximization considerations. As a benchmark,
unless we do not consider the option of maximizing the debt-collection amount at liquida-
tion, the relationship between the financing—investment decisions and the liquidation value
is inconsistent with that identified by empirical studies in this literature. By contrast,
suppose that debt holders have the option of maximizing the debt-collection amount at
liquidation. Now, the relationship between the financing-investment decisions and the lig-
uidation value fits well with existing empirical evidence (as previously cited). To be more
precise, as the liquidation value increases, the amounts of debt issuance and investment

quantity increase, leading to a delayed investment.

Appendix A

In this appendix, we provide the proofs of Lemmas 1-3 and Propositions 1-3.

Proof of Lemma 1

The Lagrangian can be formulated as

max L= (s+k)(q)—g(k)+ Mk+ (1 —5—Fk), (A.1)

where A\; > 0 and Ay > 0 denote the multipliers on the constraints. The Karush—Kuhn—
Tucker (KKT) conditions are given by

oL
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and

k>0, A >0, ME=0,
kﬁl—s, )\220, )\2(1—S—k):0

(A.3)

We obtain the optimal costly reversible ratio k(q) based on whether A\; > 0 and Ay > 0
are strictly positive. First, suppose A\; > 0 and Ay > 0. We then obtain £ = 0 and
k =1 — s, which is a contradiction. This implies that at least one of A\; > 0 and Ay > 0
must be zero. Second, suppose A; = 0 and Ay = 0. We then obtain £ € (0,1 — s) and
I(q) = ¢'(k). Using ¢"(k) > 0, ¢'(0) < (q) < ¢'(1 — s) must be satisfied. We thus obtain
k(q) = ¢’ "(I(g)). Third, suppose \; = 0 and Xy > 0. We then have k(¢) = 1 — s and
I(q) > ¢'(1 — s). Finally, suppose A\; > 0 and Ay = 0. We then obtain k(¢) = 0 and
I(q) < g'(0).

Proof of Lemma 2

It is straightforward to obtain

21(q,01(q)) = limeyg, () 2%(q ©),
Ey (X(t)a q, 01 (Q)) = hchl(‘Z) Es (X (t)v q, C)a (A4)
Di(X(t),q,61(q)) = limey, (g) Dy (X (t),q,c).

From (A.4), we show that the value functions are continuous at ¢ = 0;(q).

Proof of Lemma 3

First, we show that ¢% is obtained by solving (18) if £ = 0. This proof is easily obtained
from the proof of Proposition 3. Recall that g(k) = 0 if £ = 0. By substituting k& = 0
into (A.17) and (A.18), ¢§ must be satisfied with ¢xI'(gn)/I(gn) = /(B — 1). This
completes the proof. In addition, to ensure the existence and uniqueness of ¢y, we need
the condition that (¢I'(¢)/I(g))’ > 0. We assume this condition, as in Wong (2010) and
Cui and Shibata (2017).

Second, we show that ¢\, = ¢{jy. Similarly, this proof is easily obtained by substituting
k=0 and ¢ =0 into (A.17) and (A.18). ¢{x must satisty qunI'(qun)/I(qun) = B/(5—1).
This completes the proof.
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Proof of Proposition 1

First, differentiating V1 (X (¢), ¢, ¢) with respect to ¢ yields

dVi(X(t),q,c) _ V1 (X (t),q,c) N oV (X (t),q,c) 0x5(q, c)
de Jc 075 (g, ¢) Jc

=0

()

where we have the envelope theorem (i.e., 0Vi(X (%), q,c)/0z5(q,c¢) = 0). The positive

sign of Inequality (A.5) is obtained from X (t) > z3(g,¢) and v < 0.

Next, we prove that there exists an optimal coupon payment ¢(X(¢),q) such that
c(X(t),q) > 0:1(q) (i-e., the firm always issues risky debt) by using the properties of two
functions, Vi (X (¢), ¢, ¢) and V(X (t), g, ¢). Substituting 2%(q, ¢) = ¢/(kq) into Vo(X (¢), ¢, ¢)
yields

Va(X(2),4,0) (A-6)

(X () + 24 <(1 “a)L(g) - (-7 +1)E (an(t))”)

UqX(t)—i—T;—<ai(1—7)+T>E<KqX(t)>7—|—l_aL(q)<X(t)>77

v—1 r c I—v z5(q)
\ cE (GZ(Q)7+OO)7
where k = r/((1 — 7)e) > 0. By differentiating V5(X (¢),q,c) in (A.6) with respect to c,
we have
L (1229 ) (XD e a0t
WX 0. 0) Al = }
de ;{1 . (3 —mmlj)) (“qf“’) } ¢ € (0(q), +0),
‘ " (A7)
and
' R (“qf“))lo, ¢ € (0:(0), 02(a)),
d?V5(X (1), q,c) _ { <0 ,
a D(i-seat =) ) (M) <o e (i) voo)
“ " (A.8)
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From (A.8), V3(X(t), ¢, c) is a concave function of ¢. As ¢ | 6;(q), the upper equation of

(A7) is

de

From (A.4) and (A.5), we have V; (X (1), ¢, 01(q)) = limeyg, ) V2(X(t), ¢, ¢); also, V1 (X (t), ¢, ¢)

is maximized at ¢ = 61(¢). In addition to these two results, from (A.8) and (A.9), there
exists ¢(X (1), q) such that ¢(X(t),q) > 61(q), where ¢(X(t),q) is given as

c(X(t),q) = argmax V5(X (), q, ). (A.10)

The result ¢(X (t),q) > 61(¢) means that Vi (X(t),q,01(q)) < Va(X(t),q,c(X(t),q)) (the
firm issues risky debt). Therefore, from X (t) = x'* and q¢ = ¢*, we obtain ¢* := c(z'*, ¢*) >
01 (¢*), which completes the proof. The left-hand side panel of Figure 1 provides a graph-
ical proof of ¢(X(t),q) > 61(q).

Proof of Proposition 2

We provide the solution to the problem (i.e., 2'*, ¢*, and ¢*). Depending on the magnitude
of ¢*, there are two cases: ¢* € (01(¢*),02(¢")] and ¢* € (62(q*), +00).

Suppose that ¢ € (01(q),02(q)] (i-e., z%(q,c) < 25(q)). The problem is defined as
max,i , . J2(z', ¢, ¢) in (16). By differentiating Jo(z, ¢, ¢) with respect to z', ¢, and ¢, we
obtain (0.J;/0z)x' = 0, (0J2/0q)q = 0, and (8.Jo/0c)c = 0 as

— B{Vala', q,c) — I(q)} + vga’ +7{(1 —a)L(g) — (——(1—-7) +r)f} <”“1‘/’3i>7 —

o T (CA.n)

'+ (r{1- it - (5 a-n 40+ a-were) (M) - ar)
(A.12)
oy ((—v)(l —a)Llo) + (= D1 -+ T>§> (“qfiy =0.  (A13)

By arranging (A.11)—(A.13), we obtain (20)—(22).
Suppose that ¢* € (62(q*), +0) (i.e., 29(q*, c*) > 25(¢*)). The problem is defined as
max,i , . Jo(2', ¢, ¢) in (16). Here, by arranging the lower equation of (A.7), we obtain the

optimal coupon payment as c(z!, q) := argmax, = (k/h)qz', where h = (1 — (1 + a(1 —

25



7)/7))~Y7. Substituting ¢ = c(a',q) into the three components in the lower equation of

(A.6) gives

Vol ela', ) — 1= O‘L(q>< @))7

1—7 eL(q
= vgx' + Z qu‘ —(a 7 (1—7)+71)h"= qu‘
r h v — r h
=~ —~
=c(a,q) =c(z',q)
:7}1—77—1
v—1 11 v — T T 1
o 1 R — L h}’y _ 1
qu—i—( ( = + 5 ) >1_Tthx
=1
= (1 T l) vqr'
B 1—7n "
::'(/)_1
Thus, Jo(2', q, c(z!, q)) is rewritten as
gl 0) = 0 { Lot + 12000 () 10} (A14)
Y 1—7y eL(q))
=Va(eh g.c(a0))

Note that (A.14) has two control variables, z' and ¢. By differentiating (A.14) with respect
to 2! and ¢, (0.Jy/0x')z' = 0 and (8.J5/0q)q = 0 become

— B{Va(@', ¢, ¢, q)) — I(q)} + %q:vi + 7(;;1?;))7 =0, (A.15)
Lt + 122 (2l + (1= e 0) (o)~ ara) =0, (216

respectively. By arranging (A.15) and (A.16), we obtain (23) and (24).

Proof of Proposition 3

First, we show the proof of ¢* > ¢¥. For ¢ € (01(q), 02(q)], substituting (A.12) and (A.13)
into (A.11) gives

== a)s k@) (B) Y (arte) - -2 1)
c)) 31

o(k(9)) (q) > 0. (A7)
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For ¢ € (f2(q), +00), substituting (A.16) into (A.15) gives

(1-a-merr () ) (o0 - 5750)

~~

>0
B < qxi )7
=(l—« k > 0. A.18
( )B—lg( (9)) Tw) 2 (A.18)
In both (A.17) and (A.18), ¢* satisfies the following condition:
ql'lq) . B
> . A.19
I{q) —p—1 (4.19)

Recall that ¢ satisfies (18), as shown in Lemma 3. Because ¢I'(q)/I(q) is increasing with
q, we obtain ¢* > g% for ¢* € (61(¢*), +00).

Second, we show the proof that ¢* is not independent of s. For ¢* € (0,(¢*), 02(¢%)],
we obtain ¢* by solving (20)-(22), which include s. For ¢* € (65(q*),+00), we obtain ¢*
by solving (23) and (24), which include s. Thus, it is clear that ¢* is not independent of
s.

Third, we derive the implicit solution of ¢{;. The problem is formulated as

max Ji (2}, qu, 0), (A.20)
i,qu
where

Ty

Ji (2}, qu, 0) := (x‘U)ﬁ{ vqual + i—jL(q) (M) —I(qu)}- (A.21)

~”

= (IlU »qU ,0)

By differentiating (A.20) with zi; and qu, (8.J;/0z%;)zk; and (9.J1/0qu)qu become

(8~ 1)vaurls + (8 — 1)1 ——Llo) (%)7 _ BI{q) =0, (A.22)
vqury + 1:—3(711(%) + (1= 7)qul'(qu)) <6(1_QUTSU)IUL((JUD7 —qul'(qu) = 0.
(A.23)
Substituting (A.23) into (A.22) gives
(1 — (1 —a)(s+ k(qu) ( 1 _QUO;TU >7> (qu'(qU) - %H%))
~ (- ( ) s (A29)

Because both (A.17) and (A.18) differ from (A.24), we obtain ¢* # ¢j;.
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Appendix B

In this appendix, we provide the solution to the financing and investment decisions prob-
lem without costly reversibility. The proof is the same as that of Proposition 1.

First, in the problem without costly reversibility, we show that cx(zk, gx) > Oin(gx),
where ex(z, gn) = argmax, Va(zk, g, en) subject to L = Ly(gn) := sI(gy). This
inequality implies that the firm always prefers risky debt. Here, fix(gx) and fax(gn) are
defined as 0;x(gx) := (1 — a)Lx(gn) and fox(gn) := (1 — 7)1 Lx(gn).

Next, recall that, for ¢§ € (fin(gy), +00), g% is obtained by solving (18). The two
other solutions, 2} and ¢} are obtained as follows. For ¢ € (6ix(g%), fox(g%)], we obtain

xx and ¢y by solving

(B — Dvgiay +5TC7N + (5—7){(1 —a)Ln(gk) — (L(l - ) +T)C_N} (My

— BI(qy) =0, o T (61:.1)
1 (1—%(9”“07(51*“)—10 <%>7:0. (B.2)

We derive (B.1) and (B.2) by substituting £ = 0 into (20) and (22). For ¢§; € (fan(gx), +00),

we obtain xy by solving

(5= Dot + 5= ) o) (50 ) st =0 (B3

We derive (B.3) by substituting £ = 0 into (23). The optimal coupon payment is obtained

as ¢ = c(ax, ¢%).
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Control variables Decision makers

At the time of investment

[nvestment trigger Equity holders
Investment quantity Equity holders
Coupon payment Equity holders

Risk-free debt or risky debt Equity holders

At the time of default after investment
Default trigger Equity holders

Continuation or shutdown Debt holders

At the time of shutdown (liquidation) after default
Shutdown trigger Debt holders
Liquidation value Debt holders

Table 1: Control variables and decision makers

There are eight control variables. Two of eight control variables are decided automatically
by determining the other six control variables. In particular, the decisions about risk-free
debt or risky debt and continuation or shutdown are automatically decided by determining

the optimal coupon payment and shutdown trigger, respectively.
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Costly reversibility

No costly reversibility

0.7228
0.3416
0.7629

Lx(gn)

ex/r
N

gN

—0.8206
—0.9491
0.1566

c/r
L(q) | o'
q
Table 2:

Correlation of numerical solution

This table shows the correlation for numerical solution in Figure 4.
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164.6133
163.8969

V (total firm value)

155 L L
0 22531 55 8

Figure 1: Total firm value with ¢

The parameters are r = 0.06, 0 = 0.2, p = 0.005, s = 0.5, 7 = 0.15, « = 04, F =5,
a =50, 2" =1, and ¢ = 10. We see c(z',q) = 5.5 > 6,(q) = 2.2531.
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k>0 for 0=20%
k=0 for 0=10%

50 - [ ]

Figure 2: Regions of £ = 0 and k£ > 0 in space (F,a)
Two lines indicate the boundaries of k = 0 for 0 = 10% and o = 20%, respectively. The
regions upper-left to the boundaries represent the regions of £ = 0. For F' = 5 and a = 50,

we have k£ = 0 for 0 = 10% but k& > 0 for o = 20%.
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Figure 3: Effects of costly reversibility
The parameters are r = 0.06, 0 = 0.2, 4 = 0.005, F =5, 7 = 0.15, a = 0.4, and a = 50.
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118.8964 1.2190 10.6802

Y 2
— i ---9
N - -x, n

clr (face value of debt)
X (investment trigger)
q (investment quantity)

ZL0526 R Tl

R S . .. L1

76,9172 Tt 09503 -
0 39.2836 55.36 ) 467662  55.36 0 467662 55.36
(1-0)L(@) (iquidation value) (1-a)L(a) (iquidation value) (1-)L(q) (liquidation value)

Figure 4: Effects with liquidation value L(q)
The basic parameters are » = 0.06, © = 0.005, 7 = 0.15, « = 0.4, 0 = 0.2, F' = 5, and
a = 50.

37



46.0594 . 215.2429 .
—o0 / —V
---Oy ., ---Vn
----Oyx11 ! -V,
,
Oyy*1l K Von
.
K
.
@ S —~
g /s g
g , E
c . g
2 4 4
g H
z 4 E
s . e
g L <
5 43.7896 na -
L 161.6421 B
42.5264 . . . 137.6611 L . e
0 0.65 074 084 1 0 065 074 084 1
s s
11.3928 86.7347 — . .
7 o
g R
] S
£ 10.3852 R
3 .
£ _ .
.
@ 'g N
8 o N
b o Ay
§ @ \
] = |
2
3 4 ‘\
14 \
] \
3 s
£ \
£ \
~ \
a \
= v
S \
\
\
6.9659 - - L
6.7719 v 56.2363 : . :
0 065 074 084 1 0 065 074 084 1
S
S
53.9884 . . 201789
4 A
i 4
i a
f i
f )
; I
, '
, '
I .
;
1 § I'
— ! - 1
& ! > 1
- ' = T
o I 3 .
i=} ©
& ! o '
g I 8
] < '
& . = .
2
B / T !
I s )
I a I
! 1
I :
r 1
z' '
Phd 1
Pid I
. ;
e 17.9723 — 1
49,0931 L= : . . .
0 0.65 074 084 1 0 0.74 084 1
s s

Figure 5: Leverage and credit spread

The parameters are r = 0.06, 0 = 0.2, 4 = 0.005, F =5, 7 = 0.15, = 0.4, and a = 50.
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03071

K (reversible ratio)

The basic parameters are r = 0.06, s = 0.3, 4 = 0.005, 7 = 0.15, « = 0.4, 0 = 0.2, F =5,

and a = 50.
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Figure 6: Comparative statics with o, F', and «a
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