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Abstract 
A model problem on optimal control of stochastic jump-driven systems subject to an 

ambiguous jump intensity is considered. The problem is formulated on the basis of the 

multiplier-robust control whose resolution reduces to solving a Hamilton-Jacobi-

Bellman-Isaacs (HJBI) equation with a term that is nonlinear and nonlocal. Mathematical 

analysis focusing on this term is carried out in this paper. We show that the equation 

admits a unique continuous viscosity solution: the value function. Furthermore, we 

present a convergent finite difference scheme that can numerically handle the equation, 

generating numerical solutions consistent with the mathematical analysis results. 

 

Keywords 
Multiplier-robust control, HJBI equation, Viscosity solution 

 

1. Introduction 

In this paper, a series of mathematical analysis results on a simplified stochastic control 

problem of jump-driven system dynamics subject to an ambiguous jump intensity is 

presented. The analysis results can be applied not only to environmental and ecological 

problems, our main motivations, but also to problems in finance especially real options. 

 Stochastic system dynamics are ubiquitous in many research areas of finance, 



economics, resource, environment, and ecology (Capasso and Bakstein, 2005). In 

problems related to finance, dynamics of asset and commodity prices are widely described 

as stochastic processes (Kwok, 2008). In problems related to environment and ecology, 

population dynamics are considered in the context of stochastic processes because of 

inherently nonlinear and complicated background biological and physical processes 

(Lande et al. 2003). Modeling, analysis, and control of stochastic system dynamics have 

thus been major research topics in mathematical sciences. The stochastic optimal control 

based on stochastic differential equations (SDEs) is an effective mathematical approach 

to handle these issues from a unified viewpoint (Fleming and Soner, 2006). 

 Accurate identification of parameters and coefficients appearing in system 

dynamics is a common key in optimal control problems. In general, controlled system 

dynamics are nonlinear as implied in many examples (Ji and Shi, 2017; Liang and Liu, 

2017; Yaegashi et al., 2018), meaning that a slight difference of parameter values may 

lead to qualitatively different system behavior like bifurcations (Grass et al., 2015). 

Unfortunately, even in simple mathematical models, accurate identification of parameters 

and coefficients are still difficult tasks (Collie et al., 2016; Zhou et al., 2014), and model 

misspecification remains as a critical issue. In practice, it is desirable to have an optimal 

control policy that works robustly against worst-case perturbations and misspecifications. 

One of the most successful approaches to efficiently handle stochastic system 

dynamics subject to model ambiguity is the multiplier-robust control (Hansen and Sargent, 

2001). This approach is based on the concept of stochastic control (Øksendal and Sulem, 

2005), in which the ambiguity is represented by nature as an opposite player of the 

decision-maker. Therefore, one of them is the maximizer and the other is the minimizer 

of some performance index, and the problem can be mathematically formulated as a 

differential game problem. In the framework of multiplier-robust control, the ambiguity 

is handled by the decision-maker through a penalization of a performance index based on 

a relative entropy, which statistically measures the distance between the true and believed, 

possibly distorted models. Then, finding the optimal control policy ultimately reduces to 

solving a Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation, which is a degenerate 

nonlinear (integro-) differential equation. In this sense, analysis of the control problem is 

equivalent to analysis of the HJBI equation. Problems related to finance (Shen et al., 

2018), insurance (Zeng et al., 2016), environment and ecology (Manoussi et al., 2018; 



Yoshioka and Yaegashi, 2018a), and fisheries (Yoshioka and Yaegashi, 2018b) have been 

investigated so far. 

A potential issue in modeling stochastic system dynamics is identification of 

noise properties, such as the volatility modulating the strength of a Brownian motion and 

the jump size and jump intensity of a compound Poisson process. Their identification 

results would critically affect behavior of the resulting system dynamics. In fact, several 

mathematical models of biological population dynamics subject to jump disturbances 

suggest that the noise intensity determines whether the population encounters an eventual 

extinction (Li et al., 2015; Schloman, 2018). The jump ambiguity has been an important 

research topic in financial management as well (Aït-Sahalia and Matthys, 2019). The 

HJBI equations in the framework of the multiplier-robust control with ambiguous jumps 

have terms that are nonlinear and nonlocal whose mathematical analysis seems to be 

difficult. Often, this difficulty has been overcome by assuming certain functional shapes 

of the coefficients to derive exactly-solvable models (Aït-Sahalia and Matthys, 2019; Zhu, 

2017). However, such a strategy would not always successfully work in more realistic 

and complicated problems. This issue motivates us to carry out detailed mathematical 

analysis of the HJBI equations having nonlinear and nonlocal terms. 

The objective of this paper is to formulate a simplified stochastic control 

problem of jump-driven systems subject to an ambiguous jump intensity. This problem is 

motivated by optimal controls of severe algae blooming in river environment (Yoshioka 

and Yaegashi, 2018a; Yoshioka, 2019), but can be considered as a model problem of other 

jump-driven stochastic control problems as well. The system is autonomous and is driven 

by a compound Poisson process. The model ambiguity is penalized by an entropic term 

(Zeng et al., 2016). The present problem, due to its simplicity, is not essentially a 

differential game problem but rather a control problem. Nevertheless, the resulting HJBI 

equation still has a term that is both nonlinear and nonlocal. The main mathematical tool 

in this paper is the concept of viscosity solutions (Azimzadeh et al., 2018; Crandall et al., 

1992), with which we can show that the HJBI equation admits a unique continuous 

viscosity solution: the value function. In addition, we show that a finite difference scheme 

can potentially generate numerical solutions converging toward the viscosity solution. 

Despite our analysis results are for the simplified problem, they can be to some extent 

applied to advanced models arising in problems that are more realistic. 



 The rest of this paper is organized as follows. Section 2 describes the setup of 

the mathematical model. Section 3 is devoted to analyzing the model. The numerical 

analysis is presented in Section 4, and Section 5 concludes this paper.  

 

 

2. Mathematical model 
2.1 Problem setting 
Consider the usual setting of optimal control of jump-diffusion processes (Øksendal and 

Sulem, 2005). The compound Poisson process defined on a complete probability space is 

denoted as tP   at time t  . Its jump intensity, which is the inverse of the mean time 

interval between each successive jumps, is denoted as 0l > . The jump size z  at each 

jump follows the probability distribution ( ) 0g g z= ³  having the compact support Z  

in ( )0,1  . Clearly, we should have ( )d 1
Z

g z z =ò  . The filtration generated by tP   is 

denoted as tF  . Set { } 0t t³
=F F  . The continuous-time state variable at time t   is 

denoted as tX , which is assumed to be a càdlàg process adapted to tF . In addition, we 

assume that the process tX  has the bounded range [ ]0,1W = . Set ( ]ˆ 0,1W = .  

The boundedness assumption is satisfied in many resource and population 

management problems under certain normalization of the state variables (Yoshioka, 2019). 

Assuming the unit interval as the domain is for the sake of simplicity of descriptions. The 

boundedness assumption can be reasonable in real options as well if we consider problems 

of non-renewable (exhaustible) resources. 

 

2.2 SDE without ambiguity 
The system dynamics equation without ambiguity is introduced as 

 0d dt t tX X P-= - , 0t >  (1) 

subject to the initial condition 0X x= ÎW  . This SDE represents a jump-driven 

decreasing process, and is explicitly solved as 

 ( )
1

1
tN

t k
k

X x z
=

= -Õ , 0t ³ . (2) 



The SDE (1) admits the path-wise solution (2) valued in W . 

 

Remark 2.1 

Practical problems should have drift and/or diffusion terms, but are not considered in this 

paper. This is because they in general do not affect the nonlinear and nonlocal part of the 

HJBI equation presented later. If we consider a system dynamics with an ambiguous 

diffusion term instead of (1), then we face with a problem with ambiguous volatility. The 

difference between our and such models is that the former considers a system having a 

discontinuous noise, while the latter considers a system having a continuous noise. 

 

Remark 2.2 

A generalized SDE like 

 0d dt t tX X Pw
-= - , 0t >  (3) 

with 0w >   may also be considered. The mathematical analysis results in this paper 

would apply to this generalized SDE with minor modifications. 

 

2.3 SDE with ambiguity 
We focus on optimal control of an ambiguous counterpart of the SDE (1). It is assumed 

that the jump intensity l  is ambiguous and is difficult to identify for the observer, the 

decision-maker. Such a situation can be encountered in modeling financial crisis (Jin et 

al., 2017) and flood disturbances (Yoshioka, 2019). 

The ambiguity is represented by a positive measurable process 0tf >  ( 0t ³ ) 

adapted to tF  at each 0t ³ . The expectation is denoted as E . Throughout this paper, 

we assume that each f  satisfies 

 ( )0

0
E ln 1 ds

s s se sd f f f
¥ -é ù+ - < +¥ê úë ûò  and ( )( )0

E exp ln 1 d
t

s s s sf f fé ù+ - < +¥ê úë ûò  (4) 

with some 0 0d >   and all 0t >  . They are technical conditions employed so that the 

performance index defined later is bounded. Notice that ( ) ln 1f f f f f= + - , ( )0 1f = , 

[ ): 0,f +¥ ® R  is non-negative and convex, having the global minimum 0 at 0f = . 

 The ambiguity introduced here is mathematically the same with that of Zeng 



(2016), which is based on the Girsanov’s theorem. If 

 ( ) ( )
0 0
ln d 1 d d

t t

s s sZ
P g z z sf f l+ - < +¥ò ò ò , 0t ³ , (5) 

then set the process 

 ( ) ( ) ( )( )0 0
exp ln d 1 d d

t t

t s s sZ
P g z z tf f f lL = + -ò ò ò , (6) 

which is a positive martingale under the current probability measure. We assume (5) 

holds throughout this paper, and set the Radon-Nikodym derivative ( )d
d

t

t
f= L

%

F

Q
Q , where 

Q   and %Q   represent the current and distorted measures, respectively. All the 

expectations appearing below are defined in the sense of the distorted probability measure 

%Q . 

The admissible set A  of tf  ( 0t ³ ) is defined as follows.  

 

Definition 2.1 

The set A , which is referred to as the admissible set, is defined as 

 
 is positive, bounded, measurable, adapted to  ,

and satisfies (4) and (5) for 0.
t t

t
f

f
ì üï ï= í ý³ï ïî þ

F
A . (7) 

 

Under the distorted measure %Q , based on the Girsanov’s theorem, tP  becomes 

a compound Poisson process tP% , which has the same jump size distribution g  but has 

the modulated jump intensity tlf   (Zeng et al., 2016). Based on the non-ambiguous 

counterpart (1), the SDE having ambiguity in the jump intensity is formulated as 

 0d dt t tX X P-= - % , 0t >  (8) 

subject to the same initial condition 0X x= ÎW  . The Poisson process with the jump 

intensity tlf  is denoted as tN% . As in (1), the SDE (8) is explicitly solved as 

 ( )
1

1
tN

t k
k

X x z
=

= -Õ
%

, 0t ³ , (9) 

which is càdlàg, decreasing, and valued in W . 



 
2.4 Performance index 
The performance index to be optimized is formulated. For the sake of simplicity of 

analysis, assume that the state variable represents the amount of a quantity that would 

cause some disutility, like the population of harmful algae. In more realistic models than 

that considered in this paper, the performance index would have additional terms of the 

cost of human interventions to control the state variable. Then, the maximization problem 

should be replaced by a min-max or a max-min problem. 

The performance index to be optimized is set as 

 ( ) ( )
0

; E ln 1 ds m
s s s sp x e X sd lf f f f

y
¥ -é ùæ ö

= - + -ê úç ÷
è øë û

ò . (10) 

Here, 0m >  is a constant that represents the sensitivity of disutility, and 0d >  is the 

discount rate representing how myopic the observer is: larger d  means that the observer 

is more myopic and puts larger weight on information near future. 0y >   is the 

ambiguity-aversion parameter of the observer: he/she is more ambiguity-averse with 

larger y  . The first term of the performance index p   is the disutility caused by the 

population, which simply represents the situation where a larger population causes a 

larger disutility. The second term represents the entropy penalization following the 

conventional models of multiplier-robust control (Zeng et al., 2016). 

 The value function is set as the worst-case performance index, which in the 

present model is 

 ( ) ( )sup ;x p x
f

f
Î

F =
A

 in W . (11) 

Notice that ( )0 0F =  . The maximizing element f  , which gives the worst-case 

modulation of the jump intensity, is denoted as *f f= . By the definition, we have 

 ( ) ( );x p x fF ³  for all f ÎA . (12) 

 
2.5 HJBI equation 
Set 

 ( ) ( )( )1

0
1 dg z z x zDF = F - F -ò . (13) 



By the dynamic programming principle, the HJBI equation that governs F  is formally 

derived as 

 ( )
0

inf ln 1 0mx
f

ld lf f f f
y>

ì ü
F + DF - + + - =í ý

î þ
 in Ŵ  (14) 

subject to the boundary condition ( )0 0F = . The HJBI equation (14) is directly solved 

at the other boundary 1x =  because no information from the outside is required at this 

boundary. A straightforward calculation shows 

 ( ) ( )
0

inf ln 1 1 e y

f

l llf f f f
y y

- DF

>

ì ü
DF + + - = -í ý

î þ
 (15) 

by 

 ( )
0

arg min ln 1 e y

f

llf f f f
y

- DF

>

ì ü
DF + + - =í ý

î þ
. (16) 

Consequently, our HJBI equation (14) is compactly written as 

 ( )1 0me xyld
y

- DFF + - - =  in Ŵ , ( )0 0F = . (17) 

In the context of Markov control, with an abuse of notation, the optimal control *f  is 

considered as a function of the state x  as 

 ( ) ( )* xx e yf - DF=  in W . (18) 

The goal of the present optimal control problem is to find this *f . 

 

Remark 2.3 

Our HJBI equation is actually a HJB equation since it is related to a maximization 

problem. Nevertheless, we use the term “HJBI equation” because we will analyze more 

realistic problem in future having game structures, based on the present simplified model. 

 

Remark 2.4 

The HJBI effectively reduces to 

 0mxd lF + DF - =  in Ŵ  (19) 

as 0y ® +   (the observer is ambiguity-neutral), which is the equation with the no 

ambiguity ( * 0f º  ). This is a reasonable result since the ambiguity-neutrality means 



ignorance of the ambiguity. 

 

 

3. Mathematical analysis 

The HJBI equation (17) is mathematically analyzed. Even in this simplified problem, 

existence, uniqueness, and regularity of solutions are not trivial because the equation is 

both non-linear and non-local.  

Firstly, we show a basic theoretical result of the value function, with which an 

appropriate definition of viscosity solutions to the HJBI equation (17) is found. 

 

Proposition 3.1 

 ( ) ( )1 2 1 2
1 m mx x x x
d

F - F £ -  for all 1 2,x x ÎW . (20) 

In addition, F  is increasing and non-negative in W . 

(Proof of Proposition 3.1) 

The solution tX  of (9) with the initial condition ix x=  is denoted as ,t iX  ( 1, 2i = ). 

Fix one f ÎA . Then, by (9), we have 

 

( ) ( )

( )

( )

1 2 ,1 ,20

1 20
1

1 20
1

1 20

1 2

; ; E d

E 1 d

E 1 d

E d

1

t

t

s m m
s s

N
ms m m

k
k

N
ms m m

k
k

s m m

m m

p x p x e X X s

e x x z s

e z s x x

e s x x

x x

d

d

d

d

f f

d

¥ -

¥ -

=

¥ -

=

¥ -

é ù- = -ê úë û
é ù

= - -ê ú
ë û
é ù

= - -ê ú
ë û
é ù£ -ê úë û

= -

ò

Õò

Õò

ò

%

%

. (21) 

The inequality (21) gives 

 ( ) ( )1 1 2 2
1; ;m mp x x x p xf f
d

£ - + , (22) 

and thus 

 ( ) ( )1 1 2 2
1; m mp x x x xf
d

£ - + F , (23) 



 ( ) ( )1 1 2 2
1 m mx x x x
d

F £ - + F . (24) 

Similarly, we obtain 

 ( ) ( )2 1 2 1
1 m mx x x x
d

F £ - + F . (25) 

Combining (24) and (25) proves the continuity result (20). 

 The non-negativity of F  follows directly from (11). Its increasing property is 

a consequence of the fact that tX  is increasing with respect to x  by (9) and that p  

is increasing with respect to x  as well by (10). 

□ 

 

Remark 3.1 

Similar continuity results are obtained if we replace m
sX   by an increasing Hölder 

continuous function on W . 

 

Remark 3.2 

As a byproduct of Proposition 3.1, we obtain the boundedness result 

 10 mx
d

£ F £  in W . (26) 

 

Secondly, we show that the equation (17) admits a unique continuous viscosity 

solution and also show that the solution is the value function. The definition of viscosity 

solutions follows that of Definition 1 of Azimzadeh et al. (2018). We notice the 

monotonicity property 

 ( ) ( )( ) ( ) ( )( )1 1

1 20 0
1 d 1 dg z z x z g z z x zF - £ F -ò ò  in Ŵ  (27) 

for any bounded ( )1 2
ˆ, CF F Î W   such that 1 2F £ F   in Ŵ   because of the non-

negativity of g . Therefore, the relationship equivalent to the second equation in Section 

2 of Azimzadeh et al. (2018) holds true. This result motivates us to define viscosity 

solutions to the HJBI equation (17) in the following manner. 

 



Definition 3.1 

(a) A function ( ) ( )ˆC USCY Î W W∩  with ( )0 0Y £  is a viscosity sub-solution if for 

all 0
ˆx Î W   and for all ( )1Cj Î W  , j - Y   is globally minimized at 0x x=  , 

( ) ( )0 0x xj = Y , j ³ Y  on W , and 

 ( )
( ) ( ) ( )( )

1
0 00

1 d

0 01 0
x g z z x z

mx e x
y jldj

y

æ ö- - Y -ç ÷
è ø

æ öò+ - - £ç ÷ç ÷
è ø

. (28) 

(b) A function ( ) ( )ˆC LSCY Î W W∩  with ( )0 0Y ³  is a viscosity super-solution to if 

for all 0
ˆx Î W   and for all ( )1Cj Î W  , j - Y   is globally maximized at 0x x=  , 

( ) ( )0 0x xj = Y , j £ Y  on W , and 

 ( )
( ) ( ) ( )( )

1
0 00

1 d

0 01 0
x g z z x z

mx e x
y jldj

y

æ ö- - Y -ç ÷
è ø

æ öò+ - - ³ç ÷ç ÷
è ø

. (29) 

(c) A function ( )CY Î W  is a viscosity solution if it is a viscosity sub-solution in the 

sense of Definition 3.1(a) as well as a viscosity super-solution in the sense of 

Definition 3.1(b). 

 

Now, we prove that the value function is a viscosity solution. 

 

Proposition 3.2 

The value function F  is a viscosity solution. 

(Proof of Proposition 3.2) 

The proof is based on that of Theorem 9.8 of Øksendal and Sulem (2005). Firstly, we 

show that the value function is a viscosity super-solution (j - F  is globally maximized 

at x  , ( ) ( )x xj = F  , j £ F   on W  ). Set a test function j   for viscosity super-

solutions. By the dynamic programming principle, for any stopping time 0t >  adapted 

to the filtration F , we have 

 ( ) ( ) ( )
ˆ ˆ

ˆ0
sup E ln 1 ds m

s s s sx e X s e X
t d dt

t
f

l f f f
y

- -

Î

é ùæ ö
F = - + - + Fê úç ÷

è øë û
ò

A
 (30) 



with ( )ˆ min ,t t r=  and a constant 0r > . Fix one f ÎA . By Definition 3.1(b), we 

obtain 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ
ˆ0

ˆ ˆ
ˆ0

ˆ

0

E ln 1 d

E ln 1 d

E ln 1 d

s m
s s s s

s m
s s s s

s m
s s s s s s s

x e X s e X

e X s e X

x e X X X s

t d dt
t

t d dt
t

t d

l f f f
y

l f f f j
y

lj dj lf j f f f
y

- -

- -

-

é ùæ ö
F ³ - + - + Fê úç ÷

è øë û
é ùæ ö

³ - + - +ê úç ÷
è øë û
é ùæ ö

³ + - - D + - + -ê úç ÷
è øë û

ò

ò

ò

, (31) 

which leads to 

 ( ) ( ) ( )
ˆ

0
0 E ln 1 ds m

s s s s s s se X X X s
t d ldj lf j f f f

y
-é ùæ ö

³ - - D + - + -ê úç ÷
è øë û

ò  (32) 

by ( ) ( )x xjF =  and an application of the classical Dynkin’s formula to ( )s
se Xd j- . 

Divided by [ ]ˆE t  and taking the limit 0r ® +  in (32) gives 

 ( ) ( ) ( )0 ln 1mx x x ldj f j f f f
y

³ - - D + - + -  (33) 

and thus 

 ( ) ( ) ( )ln 1 0mx x xldj f j f f f
y

+ D + + - - ³ , (34) 

where 0f f=  with an abuse of notation. Taking the minimum of the left hand-side with 

respect to 0f >  gives the desired inequality 

 ( ) ( )( )1 0x mx e xyldj
y

- DF+ - - ³  (35) 

by the monotonicity (27) and Proposition 3 of Azimzadeh et al. (2018). 

Secondly, we show that the value function is a viscosity sub-solution. With a

0e > , set constant an e -optimal policy ( )ef ÎA  such that 

 ( ) ( ) ( ) ( )( ) ( )
ˆ ˆ

ˆ0
E ln 1 ds m

s s s sx e X s e X
t e e ed dt

t
l f f f er
y

- -é ùæ ö
F £ - + - + F -ê úç ÷

è øë û
ò . (36) 

Set a test function j  for viscosity sub-solutions (j - F  is globally minimized at x , 

( ) ( )x xj = F  , j ³ F   on W  ). By Definition 3.1(a), we have j ³ F   and 



( ) ( )x xj = F  and obtain 

 ( ) ( ) ( ) ( )( ) ( )
ˆ ˆ

ˆ0
E ln 1 ds m

s s s sx e X s e X
t e e ed dt

t
lj f f f j er
y

- -é ùæ ö
£ - + - + -ê úç ÷

è øë û
ò . (37) 

Again by the Dynkin’s formula, we have 

( ) ( ) ( ) ( ) ( ) ( )( )ˆ

0
0 E ln 1 ds m

s s s s s s se X X X s
t e e e ed ldj lf j f f f er

y
-é ùæ ö

£ - - D + - + - -ê úç ÷
è øë û

ò . (38) 

Then, as in the proof for viscosity super-solutions, we have 

 ( ) ( ) ( )ln 1 mx x xle dj f j f f f
y

£ - - D - + - + . (39) 

Since e  is arbitrary, we have 

 ( ) ( ) ( )0 ln 1 mx x xldj f j f f f
y

£ - - D - + - +  (40) 

and consequently 

 ( ) ( ) ( )ln 1 0mx x xldj f j f f f
y

+ D + + - - £ . (41) 

Taking the minimum of the left hand-side with respect to 0f >  gives the desired result 

 ( ) ( )( )1 0x mx e xyldj
y

- DF+ - - £  (42) 

by the monotonicity (27) and Proposition 3 of Azimzadeh et al. (2018). 

□ 

 

Remark 3.3 

Proposition 3 of Azimzadeh et al. (2018), which is a non-trivial result on a linkage 

between different notions of viscosity solutions, is an essential element in the proof. In 

fact, we can take ( )w e e=  in the assumption of the proposition in the literature. 

 

The comparison (unique solvability) result below applies to our HJBI equation. 

 

Proposition 3.3 

The HJBI equation (17) admits at most one viscosity solution. 

(Proof of Proposition 3.3) 



As in the standard argument for comparison theorems (Crandall et al., 1992), it is 

sufficient to show that for any couple of a viscosity sub-solution F   and a viscosity 

super-solution F  , F ³ F   in W  . We already have ( ) ( )0 0F ³ F   by the definition. 

Therefore, what we have to prove here is F ³ F  in Ŵ . This statement is proven with 

a contradiction argument. 

Assume { }
ˆ

sup 0
W

F - F >  . Set :ej W ´ W ® R   as ( ) ( )21,x y x yej
e

= -  

and :fe W ´ W ® R   as ( ) ( ) ( ) ( ), ,f x y x y x ye ej= F - F -  . Then, fe   attains a 

maximum at some point in W ´W  because it is upper semi-continuous. A point at which 

fe  is maximized is denoted as ( ),x ye e ÎW ´ W . Then, we have 

 ( ) ( ) ( ) ( ), ,f x y f x x x xe e e e³ = F - F  (43) 

for all x ÎW . 

Following the standard argument of comparison theorems (Crandall et al., 1992), 

we can choose a sequence ke e=  with lim 0kk
e

®+¥
=  such that 

 0lim lim
k kk k

x y xe e®+¥ ®+¥
= =  (44) 

and 

 ( ) ( )21 1lim lim 0
k k k kk k

k k

x y x ye e e ee e®+¥ ®+¥
- = - =  (45) 

with some 0
ˆx ÎW   such that ( ) ( ) { }0 0

ˆ
sup 0x x

W
F = F = F - F >  . Hereafter, we only 

consider such a sub-sequence. Taking this sequence with (43) gives 

 ( ) ( ) ( ) ( )0 0x x x xF - F ³ F - F  (46) 

or equivalently 

 ( ) ( ) ( ) ( )0 0x x x xF - F ³ F - F  (47) 

for all ˆx ÎW . 

We see that ( ) ( ) ( )( ),x y x ye e ejF - F +   is maximized at xe   and 

( ) ( ) ( )( ),y x x ye e ejF - F -   is minimized at ye  . Therefore, we can use 

( ) ( ) ( ), ,x x y x ye e e e e ej jF + -   as a test function for the viscosity sub-solution and 



( ) ( ) ( ), ,y x y x ye e e e e ej jF - +  as that for the viscosity super-solution. Now, we have 
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and 
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my e y
e ey

e e
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æ ö- F - F -ç ÷
è ø
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è ø

. (49) 

Letting 0e ® +  in (48) and (49) yields 

 ( )
( ) ( ) ( )( )

1
0 00

1 d

0 01 0
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è ø

æ öòF + - - £ç ÷ç ÷
è ø

 (50) 

and 
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è ø
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respectively. Combining (50) and (51) yields 

 ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1
0 0 0 00 0

1 d 1 d
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x g z z x z x g z z x z

x x e e
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By ( ) ( )0 0 0x xF - F <  and 0d > , (52) gives 

 
( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1
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1 d 1 d
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and thus 

 ( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )1 1

0 0 0 00 0
1 d 1 dx g z z x z x g z z x zy y- F - F - < - F - F -ò ò , (54) 

which can be rearranged as 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1

0 0 0 00 0
1 d 1 dx g z z x z x g z z x zF - F - > F - F -ò ò . (55) 

Consequently, we have 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1

0 0 0 00 0
1 d 1 dx x g z z x z g z z x zF - F > F - - F -ò ò . (56) 

By (47), we obtain 
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. (57) 

Combining (56) and (57) leads to the contradiction 

 ( ) ( ) ( ) ( )0 0 0 0x x x xF - F > F - F . (58) 

Therefore, we must have ( ) ( )0 0 0x xF - F ³ . Since 0x  is arbitrary in Ŵ , F ³ F  in 

Ŵ . The proof is thus completed. 

□ 

 

Remark 3.4 

The comparison result still holds true when we replace mx   in the source term by 

( )f CÎ W . 

 

Proposition 3.3 shows that the HJBI equation (17) admits at most one 

viscosity solution. Consequently, by Proposition 3.2, in the present case it turns out that 

the unique viscosity solution is the value function. 

 

Theorem 3.1 

The value function F  is the unique viscosity solution to the HJBI equation (17). 

 

Finally, we show that the solution has the following asymptotic properties. The 

proof is omitted here since it is by a direct substitution of ( ) 2
1

Cx C xF =  with unknown 

constants 1 2,C C ÎR . 

 

Proposition 3.4 

The solution admits the following formal asymptotic expansion for small 0x ³ : 



 ( )
( ) ( )( )1

0

1

1 1 d
m

m
x x

g z z zd l
F

+ - -ò
∼ . (59) 

 

 

4. Numerical analysis 
Asymptotic behavior of the unique viscosity solution to the HJBI equation (17) was 

analyzed in Proposition 3.4, but its full explicit expression has not been found. Therefore, 

we present a finite difference scheme for discretization of the equation. The scheme is 

simple, but its stability, monotonicity, and consistency, which are key elements in 

analyzing convergence of numerical solutions to the viscosity solution (Azimzadeh et al., 

2018), are nontrivial issues. These issues are thus analyzed here. The present scheme can 

also be applied to problems having possibly nonlinear drift and diffusion terms with their 

appropriate discretization (Koleva and Vulkov, 2018; Yoshioka and Yaegashi, 2019). 

 

4.1 Discretization scheme 

The domain [ ]0,1W =  is divided into I  cells and 1I +  vertices ix x=  as 

 0 1 10 ... 1I Ix x x x-= < < < < = . (60) 

The i th cell is denoted as [ ]1,i i iI I +W =  ( 0 1i I£ £ - ). For the sake of simplicity, we 

use the uniform discretization /ix i I= . The value function F  approximated at ix x=  

is denoted as iF . We directly specify the boundary condition 0 0F = . The discretized 

(17) at ix x=  ( 1i ³ ) is set as 

 [ ]( )1 0i m
i ie xyld

y
- DFF + - - = , (61) 

where [ ]iDF  is the discretization of DF  specified below. 

Set a natural number J  . The possible range [ ]0,1   of the jump intensity is 

discretized as 

 0 10 ... 1Jz z z= < < < = . (62) 

Set ( )1/2 1 / 2j j jz z z+ += +  (0 1)j J£ £ - . The jump density g  is approximated at each 



1/2jz +  , and the approximation value of g   is denoted as jg  . Set the uniform 

discretization /jz j J=   with 1/z JD =  . We assume the condition of probability 

normalization in a discrete sense: 

 
1

0
1

J

j
j

g z
-

=

D =å . (63) 

For each i  ( 0 i I£ £ ) and j  ( 0 j J£ £ ), there is exactly one ( )1l I£ -  such that 

 ( )1/2 11l i j lx x z x+ +£ - < . (64) 

This l  is denoted as ,i jl . Set 
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1
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x x
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-
, (65) 

which satisfies ,0 1i jw£ £ . In addition, set the interpolated value 

 ( )
, ,, , , 11

i j i ji j i j l i j lw w +F = F + - F . (66) 

Then, we propose the discretization 
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J

i j i ji
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g z
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=

DF ® F - F Då . (67) 

Consequently, the fully-discretized equation is derived as 
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. (68) 

Collecting the equation (68) for 1 i I£ £  with the boundary condition 0 0F =  leads to 

I   non-linear equations and I   unknowns, meaning that the total number of the 

equations and that of the unknowns are the same. 

 

4.2 Analysis of the scheme 

Monotonicity, stability, consistency, and convergence of the scheme are analyzed 

(Azimzadeh et al. 2018; Barles and Souganidis, 1991). For their definitions, see Section 

3.1 of Neilan et al. (2017). We note 
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Introduce the notation ,i j i ju = F - F  when i j> . Then, the scheme is expressed as 

{ }( )
( ){ }
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, , , , 1, ,
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, 0
, 1 0
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z g w u w u
m

i i i j i ij I
S u e x

yld
y

-

+
=

æ ö
ç ÷- D + -
ç ÷
è ø

£ £

æ öåç ÷F º F + - - =ç ÷
ç ÷
è ø

 (1 i I£ £ ) (70) 

and 0 0 0S º F =   with the abbreviation { }( ) ( ), ,0 ,1 ,0
, , , ,... ,i i i j i i i i i Ij I

S u S u u u
£ £

F = F  . By 

this notation, the scheme is monotone if each iS  is increasing with respect to the first 

argument and decreasing with respect to the other arguments (Oberman, 2006). This is 

directly checked from (70). 

 

Proposition 4.1 

The present scheme is monotone. 

 

Stability of the scheme follows if we can find a global positive constant M  

such that i MF £  ( 0 i I£ £ ). This is proven as follows. 

 

Proposition 4.2 

The present scheme is stable. Moreover, 10 i d
£ F £  for 0 i I£ £ . 

(Proof of Proposition 4.2) 

Set 0 arg max i
i

i = F . Then, we must show 
0i

MF £  with a global constant 0M > . By 

the definition of 0i , we have 
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leading to 
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by (63) and (69). Therefore, we obtain the stability result by choosing 1M
d

= . 

Next, we show 0iF ³  ( 0 i I£ £ ). If this is true, then 10 i M
d

£ F £ =  and the 

proof is completed. We use an induction argument. Assume 1 0F < . Then, we have 

 [ ]( )1
1 1 1 0mx e yld

y
- DFF = - - <  (73) 

and thus 

 [ ]( )1
1 1mx e yl

y
- DF< - . (74) 

Therefore, we must have 

 [ ]1 0DF > . (75) 

On the other hand, combining (66) and (67) gives 
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since 0 0F = . This contradict with 1 0F < , showing 1 0F ³ . 

 Assume that we have 0iF ³  ( 00 i i£ £ ) for some 01 i I£ £ . If 1I = , then we 

have nothing to prove and thus assume 2I ³ . Assume 
0 1 0i +F < . Then, as in the case for 

1I = , we have 
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leading to 
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On the other hand, we have 
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with some non-negative constants 0 1ia£ £   ( 00 i i£ £  ), 
0 10 1ia +£ <  . By the 

assumption, (79) gives 
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and thus 
0 1 0i +F > . The contradicts with 

0 1 0i +F < . Therefore, we obtain 
0 1 0i +F ³  and 

0iF ³  ( 00 1i i£ £ + ), which completes the proof by the induction argument. 

□ 

 

Remark 4.1 

In an essentially the same way, it follows 10 m
i ix

d
£ F £  ( 0 i I£ £ ), which is consistent 

with Remark 3.2. In addition, it leads to [ ] 0iDF ³  ( 0 i I£ £ ) by (68). Furthermore, 

we obtain the lower-bound 1 m
i ix l

d y
F ³ - , with which Proposition 4.2 gives the sharper 

stability result 

 1 1max 0, m m
i i ix xl

d y d
ì ü

- £ F £í ý
î þ

 ( 0 i I£ £ ). (81) 

 

Finally, we show that the present scheme is consistent in the sense of Section 2 

of Azimzadeh et al. (2018), but this follows from continuity of viscosity (sub-, super-) 



solutions in Ŵ  at least if g  is a delta distribution concentrated at ( )0 0,1z Î  because 

the non-local term reduces to the point-wise term 

 ( ) ( )( ) ( )( )1

00
1 d 1g z z x z z xF - = F -ò . (82) 

For generic g , verifying the consistency property is a more complicated issue, but is 

possible under certain regularity conditions. A sufficient regularity condition for the 

probability density g  is as follows: 
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0
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g z g z z
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- =ò , (83) 

where ( )1 0,1g CÎ   and g   has a compact support in ( )0,1  . Then, we can discretize 

this g  as 
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and ( )J O I= . In this case, we can check that a condition similar to that obtained in 

Lemma 12 of Azimzadeh et al. (2018), and thus the consistency. 

 

Proposition 4.3 

The present scheme is consistent with an appropriate g . 

 

Propositions 4.1 through 4.3 lead to convergence of numerical solutions to the present 

scheme toward the viscosity solution to the equation (17). 

 

Proposition 4.4 

With an appropriate g , numerical solutions to the present numerical scheme converge 

to the unique viscosity solution to the HJBI equation (17), the value function, locally 

uniformly in Ŵ . 

 



Remark 4.2 

Uniqueness of numerical solutions follows from Theorems 5 of Oberman (2006) because 

the scheme is degenerate elliptic and proper in the sense of the literature. Existence of 

numerical solutions, however, is not a trivial issue in this framework because the scheme 

is not Lipschitz in the sense of Oberman (2006). We can overcome this issue through 

replacing (70) by 
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with { }{ }, ,ˆ min 2 ,max , 2i j i ju M u M= -  ( 0 ,i j I£ £ ). Then, the modified scheme admits 

a unique solution since it is Lipchitz, and thus admits a solution. The modified scheme is 

degenerate elliptic and proper, and thus admits a unique numerical solution. By choosing 

M  sufficiently large, by Proposition 4.2, the unique solution to the modified scheme is 

a solution to the present scheme, showing existence of numerical solutions. Consequently, 

the present scheme admits a unique numerical solution. 

 

 Several computational results are attached to this material (Figures 1 through 6). 

The computational conditions are 1,000I =  , 500J =  , 1.5m =  , 3d =  , 

( ) { }0.1 0.91.25 zg z c £ £= , 0.1 or 1l = , and 1,  10, or 100y = . The numerical solutions and 

asymptotic results (59) are plotted, suggesting their good agreement especially for the 

smaller l . Notice that the value function is normalized as dF  in these figures. Here, 

the numerical solutions are computed with the recursion 
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 0,1,2,...n =  (88) 

with the initial guess ( )0
iF  until ( ) ( )1 14max 10n n

i ii

+ -F - F £ . Typically, ( )0 110 10n O= - . 

 Our computational results on the optimal control *f   are consistent with the 

fundamental assumptions (4) and (6) of the model and in accordance with the 

asymptotic result (Proposition 3.5), especially for small l .  



 

Figure 1: The computed and asymptotic ( )xdF  and ( )* xf  with 0.1l =  and 1y = . 

Line: computed result, Circle: asymptotic result. 

 

 

Figure 2: The computed and asymptotic ( )xdF  and ( )* xf  with 1l =  and 1y = . 

Line: computed result, Circle: asymptotic result.  



 

Figure 3: The computed and asymptotic ( )xdF   and ( )* xf   with 0.1l =   and 

10y = . Line: computed result, Circle: asymptotic result. 

 

 

Figure 4: The computed and asymptotic ( )xdF  and ( )* xf  with 1l =  and 10y = . 

Line: computed result, Circle: asymptotic result.  



 

Figure 5: The computed and asymptotic ( )xdF   and ( )* xf   with 0.1l =   and 

100y = . Line: computed result, Circle: asymptotic result. 

 

 

Figure 6: The computed and asymptotic ( )xdF  and ( )* xf  with 1l =  and 100y =  

Line: computed result, Circle: asymptotic result. 

  



5. Conclusions 
Mathematical analysis on a simplified stochastic control problem of jump-driven systems 

subject to an ambiguous jump intensity was carried out. The main result was unique 

solvability of the HJBI equation in the viscosity sense. Numerical computation of the 

HJBI equation was performed as well.  

In future research, we will investigate to what extent our analysis results apply 

to problems with drift and diffusion terms. Analyzing advanced problems, such as ergodic 

control, impulse control, and singular control, is an interesting research topic as well. In 

addition, the model will be extended and applied to a management problem of biological 

population subject to a jump disturbance such that the observer has a difficulty in 

accurately identifying the jump intensity. This kind of problems frequently arise in 

environmental and ecological management in and around rivers. An example is 

management of algae population subject to floods. 
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